JPS6059406B2 - Control method and device for power plant using low boiling point medium steam - Google Patents

Control method and device for power plant using low boiling point medium steam

Info

Publication number
JPS6059406B2
JPS6059406B2 JP7085478A JP7085478A JPS6059406B2 JP S6059406 B2 JPS6059406 B2 JP S6059406B2 JP 7085478 A JP7085478 A JP 7085478A JP 7085478 A JP7085478 A JP 7085478A JP S6059406 B2 JPS6059406 B2 JP S6059406B2
Authority
JP
Japan
Prior art keywords
heat exchanger
medium
temperature
boiling point
direct heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7085478A
Other languages
Japanese (ja)
Other versions
JPS54162043A (en
Inventor
昭三 中村
晴一郎 坂口
聰 塚原
康昭 赤津
成久 杉田
倫夫 黒田
孝治郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7085478A priority Critical patent/JPS6059406B2/en
Publication of JPS54162043A publication Critical patent/JPS54162043A/en
Publication of JPS6059406B2 publication Critical patent/JPS6059406B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は低沸点媒体蒸気を利用する発電プラントの制御
方法およびその装置に係り、特に、低沸点媒体蒸気を得
る直接式熱交換器と、廃熱ガス等の加熱媒体にて中間熱
媒体を加熱する加熱器とを介して中間熱媒体を循環させ
るのに好適な、低沸点媒体蒸気を利用する発電プラント
の制御方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for controlling a power plant that utilizes low-boiling medium vapor, and particularly relates to a direct heat exchanger for obtaining low-boiling medium vapor and a heating medium such as waste heat gas. The present invention relates to a method and apparatus for controlling a power plant that utilizes low boiling point medium vapor and is suitable for circulating an intermediate heat medium through a heater that heats the intermediate heat medium at a power plant.

低沸点媒体蒸気を利用する発電プラントは、夕)−ピン
作動媒体たる低沸点媒体が、発電所、製鉄所等からの廃
熱ガスや地熱流体等、低熱源媒体によつても高エネルギ
ーの蒸気となり、資源有効活用にかなうという点で近年
注目されている。
Power plants that use low-boiling point medium steam are capable of generating high-energy steam even if the low-boiling point medium, which is the pin working medium, is a low heat source medium such as waste heat gas or geothermal fluid from power plants, steel plants, etc. In recent years, it has attracted attention as it is effective in utilizing resources.

低沸点媒体蒸気はこれらの低熱源媒体と低沸点媒体と.
の熱交換により発生する。かかる低沸点媒体は一般に熱
伝導率が低いため、蒸発による熱抵抗が大きく、それゆ
え熱交換部の熱貫流率を大きく採ることができず、伝熱
面積も従来のプラントにおけるものと比べかなり大きく
なる。そこで、所望の伝熱面積を得るにおいて、間接式
熱交換器を用いる場合は伝熱管配管等により構造が複雑
となり、また大型化も避けられないことは明白であるの
で一定制約のもとに直接式熱交換器を用い、熱交換器の
小型化、単純構造化が望まれた。ここで一定の制約とは
、低沸点媒体と加熱媒体とが直接接触することにより反
応しない事と、直接式熱交換器に供給される加熱側媒体
中に低沸点媒体蒸気と反応する物質や伝熱性能に影響を
与える不純物を含有しない事、そして後述の如き低沸点
媒体自体の熱反応を生じない様に低沸点媒体の温度の急
変化に対処てきる事てある。この一定の制約は、低沸点
媒体との反応性が無い中間熱媒体を使用し、中間熱媒体
を低熱源媒体で加熱した後に、低沸点媒体が供給されて
いる直接式熱交換器に供給することで満たされた。更に
、中間熱媒体は資源有効利用の為循環使用することが望
まれた。しかしながら中間熱媒体と低沸点媒体とが直接
接触するならば中間熱媒体中には多少の低沸点媒体が溶
存することになり、この低沸点媒体は特定温度以上で爆
発性、燃焼性を有するものが多く、これらの性質を示さ
ぬ点で近年フロンが注目されているが、これとても特定
温度以上においては自ら分解し腐食性を有する分解生成
物を発生するものであり、一方、低熱源媒体とはいえ供
給される媒体(以下、加熱媒体)は廃熱ガスや地熱媒体
等高温でしかも温度の変動を伴うものであるから、加熱
器内における低沸点媒体の燃焼、分解をはじめとする熱
反応の発生防止対策が必要となる。そこで従来、加熱媒
体又は中間熱媒体の温度を、加熱器の入側で検出し、加
熱流体又は中間熱媒体の流量制御又は供給停止が考えら
れてきたが、この従来案は次の欠点を有していた。まず
、加熱媒体の流量制御や供給停止には高価でしかも大型
の高温用バルブを必要とする。次に、中間熱媒体の流量
制御や供給停止は直接式熱交換器への中間熱媒体供給量
を変動させるので、低沸点媒体の溶解量、発生蒸気量、
直接式熱交換器内の蓄積等を考慮すると、直接式熱交換
器へ供給される低沸点媒体の量も制御しなくてはならず
、制御系統は複雑となり、また、加熱器に供給される以
上、低沸点媒体の熱反応を防止することは困難である。
本発明の目的は、低沸点媒体蒸気を発生させる直接式熱
交換器を介して低沸点媒体を混入した中間熱媒体が循環
する経路上に設けた加熱器内における、低沸点媒体の熱
反応を防止することにある。
Low boiling point medium vapor is composed of these low heat source medium and low boiling point medium.
This occurs due to heat exchange. Such low-boiling point media generally have low thermal conductivity, so the thermal resistance due to evaporation is large, so it is not possible to increase the heat transfer coefficient of the heat exchange section, and the heat transfer area is also considerably larger than that in conventional plants. Become. Therefore, in order to obtain the desired heat transfer area, when using an indirect heat exchanger, the structure becomes complicated due to heat transfer tube piping, etc., and it is obvious that the size will inevitably increase. It was desired to use a type heat exchanger to make the heat exchanger smaller and simpler in structure. Certain restrictions here include that the low-boiling point medium and the heating medium do not react due to direct contact, and that the heating medium supplied to the direct heat exchanger contains substances that react with the vapor of the low-boiling point medium. It does not contain impurities that affect thermal performance, and it handles sudden changes in the temperature of the low boiling point medium so as not to cause thermal reactions of the low boiling point medium itself as described below. This certain limitation is due to the use of an intermediate heat medium that has no reactivity with the low boiling point medium, and after heating the intermediate heat medium with the low heat source medium, it is supplied to the direct heat exchanger that is supplied with the low boiling point medium. I was filled with that. Furthermore, it was desired that the intermediate heat medium be recycled for efficient resource use. However, if the intermediate heat medium and the low-boiling point medium come into direct contact, some low-boiling point medium will be dissolved in the intermediate heat medium, and this low-boiling point medium is explosive and flammable at a certain temperature or higher. Freon has attracted attention in recent years because it does not exhibit these properties, but it decomposes on its own above a certain temperature and generates corrosive decomposition products.On the other hand, it does not exhibit these properties. However, since the supplied medium (hereinafter referred to as heating medium) is high temperature and fluctuates in temperature, such as waste heat gas or geothermal medium, thermal reactions such as combustion and decomposition of low boiling point medium in the heater may occur. It is necessary to take measures to prevent the occurrence of Conventionally, it has been considered to detect the temperature of the heating medium or intermediate heating medium at the inlet side of the heater to control the flow rate or stop the supply of the heating fluid or intermediate heating medium, but this conventional method has the following drawbacks. Was. First, an expensive and large high-temperature valve is required to control the flow rate or stop the supply of the heating medium. Next, controlling the flow rate or stopping the supply of the intermediate heat medium changes the amount of intermediate heat medium supplied to the direct heat exchanger, so the amount of dissolved low boiling point medium, the amount of generated steam,
Considering the accumulation in the direct heat exchanger, the amount of low boiling point medium supplied to the direct heat exchanger must also be controlled, making the control system complex, and the amount of low boiling point medium supplied to the heater. As described above, it is difficult to prevent the thermal reaction of the low boiling point medium.
An object of the present invention is to control the thermal reaction of a low-boiling medium in a heater installed on a path through which an intermediate heat medium mixed with a low-boiling medium circulates through a direct heat exchanger that generates low-boiling medium vapor. The purpose is to prevent it.

特許請求の範囲第1項および第2項記載の発明は、中間
熱媒体が、低沸点媒体と中間熱媒体とを直接に接触させ
て低沸点媒体蒸気を得る直接式熱交換器と、中間熱媒体
を廃熱ガス等の加熱媒体にて加熱する加熱器とを介して
、循環する系統においては、前記加熱器に供給される加
熱媒体の温度の変動により、前記加熱器出側から前記直
接式熱交換器入側に至る経路上の温度が変動し、この温
度変動に基づいて前記直接式熱交換器への低沸点媒体供
給量を制御することにより、前記加熱器内の温度を設定
温度に保たんとするならば、直接式の熱交換を経て低沸
点媒体を混入した中間熱媒体が前記加熱器に供給されて
も、前記加熱器内にて中間熱媒体中の低沸点媒体の熱反
応を防止することができることを確認し、前記加熱器出
側から前記直接式熱交換器手前に至る経路上にて検出し
た温度と設定温度との比較に基づいて、前記直接式熱交
換器に供給される低沸点媒体の流量を加減して前記直接
式熱交換器における交換熱量の増減を制御し、これによ
つて前記加熱器に供給される中間熱媒体の温度を制御す
るものである。
The invention described in claims 1 and 2 provides a direct heat exchanger in which the intermediate heat medium directly contacts the low boiling point medium and the intermediate heat medium to obtain low boiling point medium vapor; In a system in which the medium is circulated through a heater that heats the medium with a heating medium such as waste heat gas, the direct type The temperature on the path leading to the input side of the heat exchanger fluctuates, and by controlling the amount of low boiling point medium supplied to the direct heat exchanger based on this temperature fluctuation, the temperature inside the heater is brought to the set temperature. If the intermediate heat medium mixed with a low boiling point medium is supplied to the heater through direct heat exchange, the thermal reaction of the low boiling point medium in the intermediate heat medium will not occur in the heater. supply to the direct heat exchanger based on a comparison between the temperature detected on the path from the outlet side of the heater to the front of the direct heat exchanger and the set temperature. The amount of heat exchanged in the direct heat exchanger is controlled by adjusting the flow rate of the low boiling point medium, thereby controlling the temperature of the intermediate heat medium supplied to the heater.

特許請求の範囲第3項および第4項記細の発明は、更に
、前記直接式熱交換器出側の温度が設定値以下にならぬ
よう制御するならば、前述した前記加熱器内の温度を設
定温度にする応答がより早くなると共に直接式熱交換器
における低沸点媒体蒸気の効率低下が防止できることを
確認し、前記加熱器出側から前記直接式熱交換器手前に
至る経路上にて検出した温度(以下、入側温度)とこれ
に対応する設定温度との比較に基づいて、前記直接式熱
交換器に供給される低沸点媒体の流量を加減する(以下
、主制御)と共に、前記直接式熱交換器出側から前記加
熱器手前に至る経路上にて検出した温度(以下、出側温
度)がこれに対応する設定温度よりも低くなつた場合に
、前記主制御に優先して、出側温度とこれに対応する設
定温度との比較に基づいて、前記直接式熱交換器に供給
される低沸点媒体の流量を加減し、これらによつて前記
直接式熱交換器における交換熱量の増減を制御し、前記
加熱器に供給される中間熱媒体の温度を制御するもので
ある。
The invention as recited in claims 3 and 4 further provides that if the temperature at the exit side of the direct heat exchanger is controlled so as not to fall below a set value, the temperature in the heater described above It has been confirmed that the response to set temperature is faster and a decrease in the efficiency of low boiling point medium vapor in the direct heat exchanger can be prevented. Based on a comparison between the detected temperature (hereinafter referred to as inlet temperature) and the corresponding set temperature, the flow rate of the low boiling point medium supplied to the direct heat exchanger is adjusted (hereinafter referred to as main control); When the temperature detected on the path from the outlet side of the direct heat exchanger to the front side of the heater (hereinafter referred to as outlet temperature) becomes lower than the corresponding set temperature, priority is given to the main control. The flow rate of the low boiling point medium supplied to the direct heat exchanger is adjusted based on the comparison between the outlet temperature and the corresponding set temperature, and the exchange rate in the direct heat exchanger is thereby adjusted. It controls the increase and decrease of the amount of heat and controls the temperature of the intermediate heat medium supplied to the heater.

以下、特許請求の範囲第1項および第2項記載の発明の
実施例につき第1図によつて説明する。
Hereinafter, embodiments of the invention described in claims 1 and 2 will be described with reference to FIG.

本実施例は加熱流体に廃熱ガスを用いたものであり、中
間熱媒体は循環ポンプ5によつて、廃熱ガス1が流過す
る加熱器2に一定速度で供給される。加熱器2はシェル
アンドチューブ型の間接式熱交換器であつて、中間熱媒
体は加熱器2内の伝熱管内を流過する。加熱器2を経る
ことにより加熱された中間熱媒体は、その温度を加熱器
2の出口に設置された温度検出器13て検出されると共
・に、中間熱媒体供給管3を経て、低沸点媒体が供給さ
れている直接式熱交換器6に供給される。直接式熱交換
器6における熱交換により低温化した作用済み熱媒体は
、循環ポンプ5により、中間熱媒体排出管4を経て再び
加熱器2に供給され、以・後、上記の動作を繰り返すこ
とにより循環する。一方、直接式熱交換器6に供給され
た液体の低沸点媒体は、その大部分が中間熱媒体との熱
交換により加温されて低沸点媒体蒸気となり、発生低沸
点媒体蒸気輸送管7を経てタービン8を駆動すノる。タ
ービン8を駆動した低沸点媒体蒸気は、回収され、凝縮
器9を経ることにより液化され、循環ポンプ10により
、流量調節弁11が設けられた低沸点媒体供給管12を
経て、再び直接式熱交換器6に供給され、以後、上記の
動作を繰り返すことにより循環する。中間熱媒体と低沸
点媒体とは直接式熱交換器6により直接接触し、低沸点
媒体の大部分は蒸気となつて発生低沸点媒体蒸気輸送管
7に至るが、直接接触である為に、一部分が中間熱媒体
に混入することは避けられない。よつて中間熱媒体は、
低沸点媒体を含有した状態で加熱器2に供給される。温
度検出器13は加熱器2で加熱され、直接式熱交換器6
に供給される中間熱媒体の温度を検出し、出力てある検
出温度信号15を流量調節弁制御装置14に送る。流量
調節制御装置14内に送られた検出温度信号15は、加
算器17において設定温度信号16との偏差を取られ偏
差信号18を発生し、偏差信号18は比例・積分制御器
19において比例積分制御信号である制御用信号20に
変換され、すなわち流量調節弁制御装置14において制
御用信号20を発生し、低沸点媒体供給管12に設置し
た流量調節弁11の開度を制御する。ここて開度は、温
度検出器13において検出した中間熱媒体の温度が高い
程、大になるようにする。本実施例において、後述の如
く、設定温度信号16と中間熱媒体の循環速度とは、低
沸点媒体との熱交換により低温度化した中間熱媒体と共
同して、温度検出器13を流過する時点での温度が特定
温度を越えぬように設定されている。本実施例並ひに本
実施例を適用し,た発電プラントの構成、動作は以上の
ようであるから、本実施例によれは次の効果がある。温
度検出器13の設置箇所が加熱器2の出口であることは
、加熱器2内の最高温度を常時検出することになり、更
に、この最高温度に基づいて直ちに流量.調節弁11を
制御することになり、すなわち温度検出器13て検出さ
れてから、検出温度信号15に基ついて発生する直接式
熱交換済み低温化中間熱媒体が加熱器2に供給されるま
での時間が極めて早くなるので、加熱器2内の最高温度
が低沸点!媒体の熱反応を生ずる特定温度に達すること
を防ぎ、よつて加熱器内における低沸点媒体の熱反応の
防止を早期応答をもつて達成する。次に、特許請求の範
囲第3項および第4項記載の発明の実施例につき第2図
によつて説明する。
In this embodiment, waste heat gas is used as the heating fluid, and the intermediate heat medium is supplied at a constant speed by a circulation pump 5 to the heater 2 through which the waste heat gas 1 flows. The heater 2 is a shell-and-tube type indirect heat exchanger, and the intermediate heat medium flows through heat transfer tubes in the heater 2. The temperature of the intermediate heat medium heated by passing through the heater 2 is detected by a temperature detector 13 installed at the outlet of the heater 2, and the temperature of the intermediate heat medium is detected by the temperature detector 13 installed at the outlet of the heater 2. A direct heat exchanger 6 is supplied with boiling point medium. The heated heat medium whose temperature has been lowered by heat exchange in the direct heat exchanger 6 is supplied to the heater 2 again via the intermediate heat medium discharge pipe 4 by the circulation pump 5, and the above operation is repeated thereafter. circulates. On the other hand, most of the liquid low boiling point medium supplied to the direct heat exchanger 6 is heated by heat exchange with the intermediate heat medium to become low boiling point medium vapor, and the generated low boiling point medium vapor transport pipe 7 is heated. The turbine 8 is then driven. The low boiling point medium vapor that drove the turbine 8 is recovered, liquefied by passing through the condenser 9, and then passed through the low boiling point medium supply pipe 12 provided with the flow rate control valve 11 by the circulation pump 10, and is again directly converted into heat. It is supplied to the exchanger 6 and thereafter circulated by repeating the above operation. The intermediate heat medium and the low boiling point medium come into direct contact with each other through the direct heat exchanger 6, and most of the low boiling point medium turns into steam and reaches the generated low boiling point medium vapor transport pipe 7, but due to the direct contact, It is unavoidable that a portion of it will be mixed into the intermediate heat medium. Therefore, the intermediate heat medium is
It is supplied to the heater 2 in a state containing a low boiling point medium. The temperature sensor 13 is heated by the heater 2 and is heated by the direct heat exchanger 6.
The temperature of the intermediate heat medium supplied to the intermediate heat medium is detected, and an output detected temperature signal 15 is sent to the flow control valve control device 14. The detected temperature signal 15 sent into the flow rate adjustment control device 14 is subjected to a deviation from the set temperature signal 16 in an adder 17 to generate a deviation signal 18. It is converted into a control signal 20 which is a control signal, that is, the control signal 20 is generated in the flow control valve control device 14 to control the opening degree of the flow control valve 11 installed in the low boiling point medium supply pipe 12. Here, the opening degree is made larger as the temperature of the intermediate heat medium detected by the temperature detector 13 is higher. In this embodiment, as will be described later, the set temperature signal 16 and the circulation speed of the intermediate heat medium mean that the intermediate heat medium, whose temperature has been lowered by heat exchange with a low boiling point medium, flows through the temperature sensor 13. The temperature is set so that it does not exceed a specific temperature. Since the configuration and operation of this embodiment and a power generation plant to which this embodiment is applied are as described above, this embodiment has the following effects. Since the temperature detector 13 is installed at the outlet of the heater 2, the maximum temperature inside the heater 2 is constantly detected, and the flow rate is immediately determined based on this maximum temperature. The control valve 11 is controlled, that is, from the time when the temperature is detected by the temperature sensor 13 until the direct heat-exchanged low-temperature intermediate heat medium generated based on the detected temperature signal 15 is supplied to the heater 2. Since the time becomes extremely fast, the maximum temperature inside heater 2 is at a low boiling point! It is prevented that a certain temperature is reached which would cause a thermal reaction of the medium, and thus the prevention of a thermal reaction of the low-boiling medium in the heater is achieved with an early response. Next, an embodiment of the invention described in claims 3 and 4 will be described with reference to FIG.

本実施例も、前記第1の実施例と同様の発電プラントに
適用したものである。第1の実施例と異なるところは、
直接式熱交換器6の出口にも温度検出器21を設けた点
にある。すなわち加熱器2を経ることにより加熱された
中間熱媒体は、その温度を加熱器2の出口に設置された
温度検出器13で検出されると共に、第1の実施例と同
様にして直接式熱交換器6に供給される。直接式熱交換
器6における熱交換により低温化した作用済み熱媒体は
、その温度を直接式熱交換器6の出口に設置された温度
検出器21にて検出されると共に、第1の実施例と同様
に加熱器2に送られ、以後、上記の動作を繰り返すこと
により循環する。低沸点・媒体の循環経路についても第
1の実施例と同様である。温度検出器13は加熱器2て
加熱され、直接式熱交換器6に供給される中間熱媒体の
温度を検出し、出力てある検出温度信号15を流量調節
弁制御装置14に送る。流量調節弁制御装置14内に送
られた検出温度信号15は、加算器17において設定温
度信号16との偏差を取られ偏差信号18を発生し、偏
差信号18は信号優先回路28に送り込まれる。一方、
温度検出器21は蒸気発生器6で熱交換に寄与した後の
中間熱媒体の温度を検出し、出力てある検出温度信号2
2をやはり流量調節弁制御装置14に送る。流量調節弁
制御装置14内に送られた検出温度信号22は、加算器
24において設定温度信号23との偏差を取られ偏差信
号25すなわちαを発生し、αは信号選択回路26にお
いて選択偏差信号27すなわちβに変換され、βもやは
り信号優先回路28に送り込まれる。尚、αとβとの関
係を示すとαくOのときβ=K・α(Kは定数) α≧0のときβ=0 である。
This embodiment is also applied to the same power plant as the first embodiment. The differences from the first embodiment are as follows:
The point is that a temperature detector 21 is also provided at the outlet of the direct heat exchanger 6. That is, the temperature of the intermediate heat medium heated by passing through the heater 2 is detected by the temperature detector 13 installed at the outlet of the heater 2, and the intermediate heat medium is directly heated as in the first embodiment. It is supplied to the exchanger 6. The temperature of the heated heat medium that has been lowered by the heat exchange in the direct heat exchanger 6 is detected by the temperature detector 21 installed at the outlet of the direct heat exchanger 6, and the temperature of the heated heat medium is lowered by the heat exchange in the direct heat exchanger 6. The water is sent to the heater 2 in the same manner as above, and is then circulated by repeating the above operation. The circulation route for the low boiling point medium is also the same as in the first embodiment. The temperature detector 13 detects the temperature of the intermediate heat medium heated by the heater 2 and supplied to the direct heat exchanger 6, and outputs a detected temperature signal 15 to the flow rate regulating valve control device 14. The detected temperature signal 15 sent into the flow control valve control device 14 is subjected to a deviation from the set temperature signal 16 in an adder 17 to generate a deviation signal 18, and the deviation signal 18 is sent to a signal priority circuit 28. on the other hand,
The temperature detector 21 detects the temperature of the intermediate heat medium after it has contributed to heat exchange in the steam generator 6, and outputs a detected temperature signal 2.
2 is also sent to the flow control valve control device 14. The detected temperature signal 22 sent to the flow rate regulating valve control device 14 is subjected to a deviation from the set temperature signal 23 in an adder 24 to generate a deviation signal 25, that is, α, and α is a selected deviation signal in the signal selection circuit 26. 27, that is, β, and β is also sent to the signal priority circuit 28. The relationship between α and β is as follows: when α×O, β=K·α (K is a constant), and when α≧0, β=0.

信号優先回路28内にβが送り込まれると、β=K・α
(Kは定数)であるときはリレー29を介し比例・積分
制御器19に送り込まれ、β=0であるときは偏差信号
18がリレー30を介し比例・積分制御器19に送り込
まれる。βも偏差信号18も、比例・積分制御器19に
おいて比例積分制御信号である制御用信号20に変換さ
れ、すなわち流量調節弁制御装置14において制御用信
号20を発生し、低沸点媒体供給管12に設置した流量
調節弁11の開度を制御する。流量調節弁11(:i)
開度制御をより具体的に示すと、次のごとくなる。イ
温度検出器13を流過する中間熱媒体の温度が設定値を
越えて高くなりはじめる。
When β is sent into the signal priority circuit 28, β=K・α
(K is a constant), the deviation signal 18 is sent to the proportional/integral controller 19 via the relay 29, and when β=0, the deviation signal 18 is sent to the proportional/integral controller 19 via the relay 30. Both β and the deviation signal 18 are converted into a control signal 20 which is a proportional-integral control signal in the proportional-integral controller 19, that is, the control signal 20 is generated in the flow rate regulating valve control device 14, and the low-boiling point medium supply pipe 12 The opening degree of the flow control valve 11 installed in the flow control valve 11 is controlled. Flow rate control valve 11 (:i)
More specifically, the opening degree control is as follows. stomach
The temperature of the intermediate heat medium flowing through the temperature detector 13 begins to rise beyond the set value.

口 直ちに流量調節弁制御装置14に基づく比例積分制
御によつて直接式熱交換器6に供給される低沸点媒体の
流量が増加しはじめる。
Immediately, the flow rate of the low boiling point medium supplied to the direct heat exchanger 6 begins to increase by proportional-integral control based on the flow rate regulating valve control device 14.

ハ 帽こよつて温度検出器21を流過する中間熱媒体の
温度が低くなりはじめる。
C. The temperature of the intermediate heat medium flowing through the temperature sensor 21 begins to decrease.

二 温度検出器21を流過する中間熱媒体の温度が設定
値を越えて低くなりはじめる。
2. The temperature of the intermediate heat medium flowing through the temperature detector 21 exceeds the set value and begins to drop.

ホ 直ちに流量調節弁制御装置14に基づく比例積分制
御によつて直接式熱交換器6に供給される低沸点媒体の
流量が減少しはじめる。
E Immediately, the flow rate of the low boiling point medium supplied to the direct heat exchanger 6 begins to decrease by proportional-integral control based on the flow rate adjustment valve control device 14.

へ ホによつて温度検出器21を流過する中間熱媒体の
温度が設定値を越えて高くなりはじめる。
Due to E and E, the temperature of the intermediate heat medium flowing through the temperature sensor 21 begins to exceed the set value.

ト 直ちに前記口の動作が開始され、以下前記口からへ
の動作が繰り返えされる。
G. The mouth movement starts immediately, and the mouth movement is repeated thereafter.

チ この繰り返しによつて温度検出器21を流過する中
間熱媒体の温度は一定値以上になる。
H. By repeating this process, the temperature of the intermediate heat medium flowing through the temperature detector 21 becomes equal to or higher than a certain value.

直接式熱交換器6出側を経た中間熱媒体は加熱器2に送
られ、加熱されるが、この際、加熱器2に廃熱ガス1の
温度上昇開始時におけるよりも低温の中間熱媒体が供給
されることによつて、温度検出器13を流過する中間熱
媒体の温度を設定値にもどす。若し温度検出器13を流
過する中間熱媒体の温度が設定値を越えて低下したとし
ても、以上の逆の作用によつて再び設定値に戻らせるこ
とができ、このようにして温度検出器13を流過する中
間熱媒体の温度すなわち加熱器2内を流過する中間熱媒
体の最高温度は、加熱器2内において低沸点媒体が熱反
応を生ぜず、しかも直接式熱交換器6内における低沸点
媒体蒸気の発生効率を低下せしめない温度範囲に納まる
。本実施例においても、後述の如く、設定温度信号16
と中間熱媒体の循環速度とは、低沸点媒体との熱交換に
より低温化した中間熱媒体と共同して、温度検出器13
を流過する時点での温度が特定温度を越えぬように設定
されている。また、設定温度信号23の設定温度は、中
間熱媒体が温度検出器13を流過する時点での温度が設
定温度であるときよりも低く設定されている。本実施例
並びに本実施例を適用した発電プラントの構成、動作は
以上のようであるから、本実施例によれは第1の実施例
の効果に加えて次の効果がある。温度検出器21の設置
箇所が直接式熱交換器6の出口であることは、直接式熱
交換器6内の中間熱媒体の最低温度を常時しかも直ちに
検出することになり、更に、この最低温度が一定温度以
下になるようであれば直ちに設定温度信号23に基づく
制御を開始する為、直接式熱交換器内を必要以上に温度
低下させることはなくなり、また、直接式熱交換器へ供
給される中間熱媒体の温度も異常低温化することもなく
なり、よつて前記第1の実施例の効果に加え、直接式熱
交換器6内における効率の高い低沸点媒体蒸気発生を、
早期応答をもつて達成することができる。尚、例えば発
電プラントは次の条件で与えられている。
The intermediate heat medium that has passed through the outlet side of the direct heat exchanger 6 is sent to the heater 2 and heated; By supplying the temperature, the temperature of the intermediate heat medium flowing through the temperature sensor 13 is returned to the set value. Even if the temperature of the intermediate heat medium flowing through the temperature sensor 13 drops beyond the set value, it can be returned to the set value again by the above-mentioned reverse action, and in this way, the temperature can be detected. The temperature of the intermediate heat medium flowing through the heater 2, that is, the maximum temperature of the intermediate heat medium flowing through the heater 2, is such that the low boiling point medium does not cause a thermal reaction in the heater 2, and the direct heat exchanger 6 The temperature falls within a temperature range that does not reduce the efficiency of generating low boiling point medium vapor within the temperature range. Also in this embodiment, as described later, the set temperature signal 16
and the circulation speed of the intermediate heat medium means that the intermediate heat medium, whose temperature has been lowered by heat exchange with a low boiling point medium,
The temperature is set so that the temperature does not exceed a specific temperature at the time the fluid flows through the fluid. Further, the set temperature of the set temperature signal 23 is set lower than when the temperature at the time when the intermediate heat medium flows through the temperature detector 13 is the set temperature. Since the configuration and operation of this embodiment and the power plant to which this embodiment is applied are as described above, this embodiment has the following effects in addition to the effects of the first embodiment. Since the temperature detector 21 is installed at the outlet of the direct heat exchanger 6, the lowest temperature of the intermediate heat medium in the direct heat exchanger 6 is always and immediately detected. If the temperature drops below a certain level, control based on the set temperature signal 23 is started immediately, so the temperature inside the direct heat exchanger will not drop more than necessary, and the temperature that is supplied to the direct heat exchanger will not be lowered more than necessary. Therefore, in addition to the effects of the first embodiment, highly efficient low boiling point medium vapor generation in the direct heat exchanger 6 is achieved.
This can be achieved with early response. For example, a power generation plant is given the following conditions.

イ 加熱器2に供給される廃熱ガスの温度;200〜5
000C口 使用する中間熱媒体; ヒンダートエステル油 ハ 使用する低沸点媒体; フロンR−113 二 廃熱ガス1の温度500℃が伝熱管壁を介すること
により、ヒンダートエステル油中においてフロンR−1
13が分解する温度(循環速度)、時定数をも加味して
)1900C ホ 温度検出器13に対応する設定温度(設定温度信号
16の設定温度)1500C へ 温度検出器21に対応する設定温度(設定温度信号
23の設定温度)1000C よつて、温度検出器13ての検出温度と設定温度(前記
ホ)との比較に基づく制御ては、直接式熱交換器6の出
側は120±40℃の範囲に落ちつき、加熱器2を介し
て温度検出器13を流過する中間熱媒体の温度が150
±30℃の範囲に納まり、フロンR−113の熱分解は
防止される。
B Temperature of waste heat gas supplied to heater 2; 200 to 5
000C port Intermediate heat medium used; Hindered ester oil C Low boiling point medium used; Freon R-113 2 The temperature of 500°C of waste heat gas 1 passes through the heat exchanger tube wall, causing Freon R in the hindered ester oil. -1
13 decomposes (circulation speed) and time constant) 1900C e Set temperature corresponding to temperature detector 13 (set temperature of set temperature signal 16) to 1500C Set temperature corresponding to temperature detector 21 ( The set temperature of the set temperature signal 23) is 1000 C. Therefore, in the control based on the comparison between the temperature detected by the temperature detector 13 and the set temperature (e), the output side of the direct heat exchanger 6 is 120 ± 40 °C. The temperature of the intermediate heat medium flowing through the temperature detector 13 via the heater 2 reaches 150.
The temperature is within the range of ±30°C, and thermal decomposition of Freon R-113 is prevented.

Claims (1)

【特許請求の範囲】 1 中間熱媒体を廃熱ガス等の加熱媒体にて加熱する加
熱器と、低沸点媒体と中間熱媒体とを直接に接触させて
低沸点媒体蒸気を得る直接式熱交換器とを有する低沸点
媒体蒸気を利用する発電プラントの制御方法において、
前記加熱器出側から前記直接式熱交換器手前に至る経路
上にて温度を検出し、この検出温度と設定温度との比較
に基づいて、前記直接式熱交換器に供給される低沸点媒
体の流量を加減して前記直接式熱交換器における交換熱
量の増減を制御し、これによつて、前記加熱器に供給さ
れる中間熱媒体の温度を制御することを特徴とする、低
沸点媒体蒸気を利用する発電プラントの制御方法。 2 中間熱媒体を廃熱ガス等の加熱媒体にて加熱する加
熱器と、低沸点媒体と中間熱媒体とを直接に接触させて
低沸点媒体蒸気を得る直接式熱交換器とを有する低沸点
媒体蒸気を利用する発電プラントの制御装置において、
前記加熱器出側から前記直接式熱交換器手前に至る経路
上に設けた温度検出器と、前記直接式熱交換器手前にて
低沸点媒体の供給流量を調節する流量調節弁と、前記温
度検出器にて検出された検出温度と設定温度との比較に
基づいて、前記直接式熱交換器における交換熱量の増減
を制御すべく、前記流量調節弁を制御する流量調節弁制
御装置とを設けたことを特徴とする、低沸点媒体蒸気を
利用する発電プラントの制御装置。 3 中間熱媒体を廃熱ガス等の加熱媒体にて加熱する加
熱器と、低沸点媒体と中間熱媒体とを直接に接触させて
低沸点媒体蒸気を得る直接式熱交換器とを有する低沸点
媒体蒸気を利用する発電プラントの制御方法において、
前記加熱器出側から前記直接式熱交換器手前に至る経路
上にて直接式熱交換器入側の温度を検出し、この直接式
熱交換器入側の検出温度と直接式熱交換器入側の設定温
度との比較に基づいて、前記直接式熱交換器に供給され
る低沸点媒体の流量を加減すると共に前記直接式熱交換
器出側から前記加熱器手前に至る経路上にて直接式熱交
換器出側の温度を検出し、この直接式熱交換器出側の検
出温度が直接式熱交換器出側の設定温度よりも低くなつ
た場合に、前記直接式熱交換器入側の検出温度と直接式
熱交換器入側の設定温度との比較に基づく制御に優先し
て、直接式熱交換器出側の検出温度と直接式熱交換器出
側の設定温度との比較に基づいて、前記直接式熱交換器
に供給される低沸点媒体の流量を制御し、これによつて
、前記加熱器に供給される中間熱媒体の温度を制御する
ことを特徴とする、低沸点媒体蒸気を利用する発電プラ
ントの制御方法。 4 中間熱媒体を廃熱ガス等の加熱媒体にて加熱する加
熱器と、低沸点媒体と中間熱媒体とを直接に接触させて
低沸点媒体蒸気を得る直接式熱交換器とを有する低沸点
媒体蒸気を利用する発電プラントの制御装置において、
前記加熱器出側から前記直接式熱交換器手前に至る経路
上に設けた直接式熱交換器入側の温度検出器と、前記直
接式熱交換器出側から前記加熱器手前に至る経路上に設
けた直接式熱交換器出側の温度検出器と、前記直接式熱
交換器手前にて低沸点媒体の供給流量を調節する流量調
節弁と、前記直接式熱交換器入側の温度検出器にて検出
された検出温度と直接式熱交換器入側の設定温度との比
較に基づくとともに、前記直接式熱交換器出側の温度検
出器にて検出された検出温度が直接式熱交換器入側の設
定温度よりも低くなつた場合に、前記直接式熱交換器入
側の温度検出器にて検出された検出温度と直接式熱交換
器入側の設定温度との比較に基づく制御に優先して、前
記直接式熱交換器出側の温度検出器で検出された検出温
度と直接式熱交換器出側の設定温度との比較に基づいて
、前記直接式熱交換器における交換熱量の増減を制御す
べく、前記流量調節弁を制御する流量調節弁制御装置と
を設けたことを特徴とする、低沸点媒体蒸気を利用する
発電プラントの制御装置。
[Scope of Claims] 1. A heater that heats an intermediate heat medium with a heating medium such as waste heat gas, and a direct heat exchange for obtaining low boiling point medium vapor by bringing the low boiling point medium into direct contact with the intermediate heat medium. In a method for controlling a power generation plant using low boiling point medium steam having a
A low boiling point medium that detects the temperature on a path from the outlet side of the heater to the front side of the direct heat exchanger, and supplies the low boiling point medium to the direct heat exchanger based on a comparison between the detected temperature and a set temperature. A low boiling point medium, characterized in that the flow rate of the medium is controlled to increase or decrease the amount of heat exchanged in the direct heat exchanger, thereby controlling the temperature of the intermediate heat medium supplied to the heater. A method of controlling a power generation plant that uses steam. 2. A low boiling point device that has a heater that heats an intermediate heat medium with a heating medium such as waste heat gas, and a direct heat exchanger that brings the low boiling point medium and the intermediate heat medium into direct contact to obtain low boiling point medium vapor. In a control device for a power generation plant that uses medium steam,
a temperature detector provided on a path from the outlet side of the heater to before the direct heat exchanger; a flow rate control valve for adjusting the supply flow rate of the low boiling point medium before the direct heat exchanger; A flow rate adjustment valve control device is provided to control the flow rate adjustment valve in order to control an increase or decrease in the amount of heat exchanged in the direct heat exchanger based on a comparison between the detected temperature detected by the detector and the set temperature. A control device for a power generation plant that utilizes low boiling point medium steam, characterized by: 3. A low boiling point device that has a heater that heats an intermediate heat medium with a heating medium such as waste heat gas, and a direct heat exchanger that brings the low boiling point medium and the intermediate heat medium into direct contact to obtain low boiling point medium vapor. In a method of controlling a power generation plant using medium steam,
The temperature at the inlet side of the direct heat exchanger is detected on the path from the outlet side of the heater to the front side of the direct heat exchanger, and the detected temperature at the inlet side of the direct heat exchanger is compared with the temperature at the inlet side of the direct heat exchanger. Based on the comparison with the set temperature on the side, the flow rate of the low boiling point medium supplied to the direct heat exchanger is adjusted and the flow rate of the low boiling point medium supplied to the direct heat exchanger is adjusted. The temperature on the outlet side of the direct heat exchanger is detected, and when the detected temperature on the outlet side of the direct heat exchanger becomes lower than the set temperature on the outlet side of the direct heat exchanger, the temperature on the inlet side of the direct heat exchanger is detected. Priority is given to control based on a comparison between the detected temperature of the direct heat exchanger and the set temperature on the inlet side of the direct heat exchanger. the flow rate of the low boiling point medium supplied to the direct heat exchanger based on the heat exchanger, thereby controlling the temperature of the intermediate heat medium supplied to the heater. A method of controlling a power generation plant that uses medium steam. 4. A low boiling point device that has a heater that heats an intermediate heat medium with a heating medium such as waste heat gas, and a direct heat exchanger that brings the low boiling point medium into direct contact with the intermediate heat medium to obtain low boiling point medium vapor. In a control device for a power generation plant that uses medium steam,
A temperature detector on the inlet side of the direct heat exchanger provided on the path from the outlet side of the heater to the front side of the direct heat exchanger, and a temperature detector on the path from the outlet side of the direct heat exchanger to the front side of the heater. a temperature detector on the outlet side of the direct heat exchanger, a flow rate control valve for adjusting the supply flow rate of the low boiling point medium before the direct heat exchanger, and a temperature detector on the inlet side of the direct heat exchanger. Based on the comparison between the detected temperature detected by the heat exchanger and the set temperature on the inlet side of the direct heat exchanger, the detected temperature detected by the temperature detector on the outlet side of the direct heat exchanger Control based on a comparison between the detected temperature detected by the temperature detector on the direct heat exchanger inlet side and the set temperature on the direct heat exchanger inlet side when the temperature becomes lower than the set temperature on the input side of the direct heat exchanger. Based on the comparison between the detected temperature detected by the temperature detector on the outlet side of the direct heat exchanger and the set temperature on the outlet side of the direct heat exchanger, the amount of heat exchanged in the direct heat exchanger is given priority to 1. A control device for a power generation plant using low boiling point medium vapor, characterized in that a flow rate regulating valve control device is provided for controlling the flow rate regulating valve in order to control an increase or decrease in the amount of water.
JP7085478A 1978-06-14 1978-06-14 Control method and device for power plant using low boiling point medium steam Expired JPS6059406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7085478A JPS6059406B2 (en) 1978-06-14 1978-06-14 Control method and device for power plant using low boiling point medium steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7085478A JPS6059406B2 (en) 1978-06-14 1978-06-14 Control method and device for power plant using low boiling point medium steam

Publications (2)

Publication Number Publication Date
JPS54162043A JPS54162043A (en) 1979-12-22
JPS6059406B2 true JPS6059406B2 (en) 1985-12-25

Family

ID=13443560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7085478A Expired JPS6059406B2 (en) 1978-06-14 1978-06-14 Control method and device for power plant using low boiling point medium steam

Country Status (1)

Country Link
JP (1) JPS6059406B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458493A (en) * 1982-06-18 1984-07-10 Ormat Turbines, Ltd. Closed Rankine-cycle power plant utilizing organic working fluid
JP6425310B2 (en) * 2016-01-20 2018-11-21 東芝三菱電機産業システム株式会社 Heat recovery system and controller

Also Published As

Publication number Publication date
JPS54162043A (en) 1979-12-22

Similar Documents

Publication Publication Date Title
JPH0664171B2 (en) Nuclear reactor equipment
JP2008309046A (en) Exhaust heat power generation device, and method for controlling degree of superheating of working medium steam of exhaust heat power generation device
NL8201698A (en) STEAM GENERATOR FOR RECOVERING HEAT.
JPS58122308A (en) Method and equipment for heat storage operation of waste heat recovery rankine cycle system
JPS6059406B2 (en) Control method and device for power plant using low boiling point medium steam
JPH0242102A (en) Method for recovering thermal energy and apparatus thereof
US3947319A (en) Nuclear reactor plants and control systems therefor
JPH0742844B2 (en) Hot water turbine plant
KR840002969A (en) Absorption Cooling Water System Control System
CN104990065B (en) Boiler feedwater circulation deaerating type of cycles in turbine LP rotors
JPS61152916A (en) Binary cycle power generation plant
JP2002156493A (en) Site heat supply equipment of nuclear power station
JPS58219982A (en) Connecting plant of nuclear power installation and sea water desalting apparatus
JPS61108814A (en) Gas-steam turbine composite facility
JPS6115247B2 (en)
JPS6214041B2 (en)
JPS55835A (en) Secondary fluid temperature controller for heat exchanger
SU566056A1 (en) Waste gas cooling plant
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JPH074452Y2 (en) Low temperature heat source utilization device
JPS58216773A (en) Coupling plant for nuclear power installation and sea water desalting device
JPS6080088A (en) Controlling method of heat exchanging amount in separate type heat exchanger
JPH05187606A (en) Water supply preheater for coke dry type fire fighting apparatus
SU1670297A1 (en) Heat recovery system
JPH08313053A (en) High-temperature water heating device