JPS6115247B2 - - Google Patents

Info

Publication number
JPS6115247B2
JPS6115247B2 JP8814979A JP8814979A JPS6115247B2 JP S6115247 B2 JPS6115247 B2 JP S6115247B2 JP 8814979 A JP8814979 A JP 8814979A JP 8814979 A JP8814979 A JP 8814979A JP S6115247 B2 JPS6115247 B2 JP S6115247B2
Authority
JP
Japan
Prior art keywords
low
temperature fluid
boiling point
turbine
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8814979A
Other languages
Japanese (ja)
Other versions
JPS5614812A (en
Inventor
Kyota Iwaki
Toshio Nakakoshi
Satoshi Tsukahara
Zensuke Tamura
Haruichiro Sakaguchi
Haruyuki Yamazaki
Isao Mishiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Original Assignee
Hitachi Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Steel Corp filed Critical Hitachi Ltd
Priority to JP8814979A priority Critical patent/JPS5614812A/en
Publication of JPS5614812A publication Critical patent/JPS5614812A/en
Publication of JPS6115247B2 publication Critical patent/JPS6115247B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、低沸点媒体を作動流体として利用す
る発電プラントの運転制御方法およびその装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for controlling the operation of a power plant that uses a low boiling point medium as a working fluid.

低沸点媒体利用発電プラントは主として製鉄所
の排熱や地熱等の利用を目的として開発されたも
のである。この基本的な系統をまず第1図により
説明する。図において、熱源流体1の保有熱は、
加熱器2における熱交換によつて高温流体3に伝
えられる。高温流体3は、直接式熱交換器4にお
いて低温流体6と熱交換し、冷却された流体は循
環ポンプ5によつて再度加熱器へ送られる。低温
流体6には低沸点媒体が使用されており、直接式
熱交換器4において、高温流体3と直接々触する
ことによりその大半が気化し、その蒸気はタービ
ン7に導かれ、タービン7を駆動し、発電機8に
より発電する。タービン7を出た蒸気は凝縮器9
によつて凝縮され、凝縮液ポンプ11によつて加
圧され、流体制御弁12によつて流量制御された
後、再び直接式熱交換器4に送られる。
Power plants using low boiling point media were developed primarily for the purpose of utilizing waste heat from steel plants and geothermal heat. This basic system will first be explained with reference to FIG. In the figure, the retained heat of the heat source fluid 1 is
It is transferred to the hot fluid 3 by heat exchange in the heater 2 . The hot fluid 3 exchanges heat with the cold fluid 6 in the direct heat exchanger 4, and the cooled fluid is sent to the heater again by the circulation pump 5. A low-boiling point medium is used as the low-temperature fluid 6, and most of it is vaporized by direct contact with the high-temperature fluid 3 in the direct heat exchanger 4, and the steam is led to the turbine 7. The generator 8 generates electricity. The steam leaving the turbine 7 is sent to the condenser 9
The liquid is condensed, pressurized by a condensate pump 11, and after its flow rate is controlled by a fluid control valve 12, it is sent to the direct heat exchanger 4 again.

第2図に、従来用いられている流量制御弁12
による流量制御法を示す。先ず、直接式熱交換器
4の内部圧力を圧力検出器16によつて検出し、
この検出信号を液温設定器17に入れて、温度設
定値Tを設定する。圧力Pと温度Tの関係は第3
図の溶解特性から任意に定めることができ、例え
ば溶解率を一定にするには(a)の曲線に乗るように
定めれば良い。一方、直接式熱交換器4の高温流
体入口管路に設けられた温度検出器18によつて
高温流体の温度を検出し、先の温度設定値Tとも
ども低温流体流量制御装置19に導いて加算す
る。その結果、負の場合には温度検出器18にあ
らわれる高温流体系統の温度が液温設定器17で
設定された温度より低いことを示しており、高温
流体液温をあげるため、流量制御弁12を絞つて
低温流体流量を少なくし、また正の場合には逆に
流量制御弁12を開いて低温流体流量を増し、高
温流体液温を低下させることが行われる。
FIG. 2 shows a conventional flow control valve 12.
The flow rate control method is shown below. First, the internal pressure of the direct heat exchanger 4 is detected by the pressure detector 16,
This detection signal is input to the liquid temperature setting device 17 to set the temperature setting value T. The relationship between pressure P and temperature T is the third
It can be determined arbitrarily from the dissolution characteristics shown in the figure. For example, in order to keep the dissolution rate constant, it may be determined so as to ride the curve (a). On the other hand, the temperature of the high-temperature fluid is detected by the temperature detector 18 provided in the high-temperature fluid inlet pipe of the direct heat exchanger 4, and the temperature is guided to the low-temperature fluid flow rate control device 19 together with the previous temperature set value T, and added. do. If the result is negative, it indicates that the temperature of the high-temperature fluid system appearing on the temperature detector 18 is lower than the temperature set by the liquid temperature setting device 17, and in order to raise the temperature of the high-temperature fluid, the flow control valve 12 is operated. is throttled down to reduce the low temperature fluid flow rate, and if positive, the flow rate control valve 12 is conversely opened to increase the low temperature fluid flow rate and lower the high temperature fluid temperature.

しかしながら、この流量制御法では、プラント
の熱容量が大きいため、負荷変動に対して安定す
るまでの時間が長く、低温流体の溶解度が変化
し、これを補うためには溶解度変化量相当の低温
流体タンクを必要とする欠点を有する。
However, with this flow rate control method, because the heat capacity of the plant is large, it takes a long time to stabilize against load fluctuations, and the solubility of the low-temperature fluid changes. It has the disadvantage of requiring

本発明は上記の事情に鑑みてなされたもので、
直接式熱交換器において熱交換を行う高温・低温
流体の相互溶解を考慮した低沸点媒体利用発電プ
ラントの運転制御方法および装置を提供すること
を目的とする。
The present invention was made in view of the above circumstances, and
The object of the present invention is to provide an operation control method and device for a power generation plant using a low boiling point medium that takes into account the mutual dissolution of high temperature and low temperature fluids that exchange heat in a direct heat exchanger.

本発明の運転制御方法は、低温流体が凝縮され
る凝縮器内の凝縮液面水位を検出し、この液面水
位を一定に保つべく、直接式熱交換器へ供給する
低温流体の流量を制御することを特徴とする。
The operation control method of the present invention detects the condensate liquid level in the condenser where the low-temperature fluid is condensed, and controls the flow rate of the low-temperature fluid supplied to the direct heat exchanger in order to keep the liquid level constant. It is characterized by

また、本発明の運転制御装置は上記の運転制御
方法を実施するための凝縮液面水位検出器と、こ
の検出信号と予じめ設定された設定値との比較信
号に基づいて、流量制御弁を制御する装置とから
なることを特徴とする。
The operation control device of the present invention also includes a condensate level detector for carrying out the above operation control method, and a flow rate control valve based on a comparison signal between this detection signal and a preset setting value. It is characterized by comprising a device for controlling.

以下、本発明を実施例によつて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to Examples.

本発明における高温流体及び低温流体の循環系
統は第1図と同様であるので、本発明に直接関係
する凝縮器まわりの詳細を第4図に示した。図に
おいて、加熱器2にて熱交換した高温流体3は直
接式熱交換器4に流入し、低温流体6と熱交換す
る。高温流体にはポリオールエステル油、アルキ
ルベンゼン油、水等が使用でき、低温流体にはフ
ロン、アンモニア等の低沸点媒体が使用される。
これらの高、低温流体は直接接触することによ
り、互いに溶解し、低温流体の一部は蒸気となる
が温度の降下した高温流体3と低温流体6は溶解
して高温流体タンク15に一時貯蔵された後、循
環ポンプ5によつて加熱器2へ送られる。一方、
蒸気になつた低温流体はタービンへ導かれてター
ビンを駆動した後、凝縮器へ導かれ、冷却水10
によつて冷却されて凝縮する。凝縮液は凝縮液ポ
ンプ11によつて加圧され、直接式熱交換器へ供
給される。このプラントの入熱量変化に対し、低
温流体流量を制御することにより熱バランスをと
る。このような直接式熱交換器を有する発電プラ
ントでは温度、圧力条件によつて第3図に示した
ように溶解度が異なり、同一圧力を得るためには
溶解度が大きいほど温度は低くなる。この高温流
体温度は加熱器でのボイラ効率に影響し、高温流
体温度が低いほど発電機出力は大きくなる。そこ
でプラントの保有する低温流体を最大限溶解さ
せ、負荷変動に対しても安定して運転するために
は凝縮液ポンプ11の保護上、問題となる凝縮液
面水位13を一定値以上に保つ必要がある。
Since the circulation system for high-temperature fluid and low-temperature fluid in the present invention is the same as that shown in FIG. 1, details around the condenser that are directly related to the present invention are shown in FIG. 4. In the figure, high-temperature fluid 3 that has undergone heat exchange in heater 2 flows into direct heat exchanger 4 and exchanges heat with low-temperature fluid 6. Polyol ester oil, alkylbenzene oil, water, etc. can be used as the high temperature fluid, and low boiling point media such as chlorofluorocarbons and ammonia can be used as the low temperature fluid.
When these high-temperature and low-temperature fluids come into direct contact, they dissolve into each other, and a portion of the low-temperature fluid becomes vapor, but the high-temperature fluid 3 and low-temperature fluid 6, which have lowered their temperatures, are dissolved and temporarily stored in the high-temperature fluid tank 15. After that, it is sent to the heater 2 by the circulation pump 5. on the other hand,
The low-temperature fluid that has turned into steam is led to the turbine and drives the turbine, and is then led to the condenser where the cooling water 10
It is cooled and condensed by The condensate is pressurized by a condensate pump 11 and fed to the direct heat exchanger. Heat balance is achieved by controlling the flow rate of low-temperature fluid in response to changes in the amount of heat input to the plant. In a power generation plant having such a direct heat exchanger, the solubility varies depending on temperature and pressure conditions as shown in FIG. 3, and in order to obtain the same pressure, the higher the solubility, the lower the temperature. This hot fluid temperature affects the boiler efficiency in the heater, and the lower the hot fluid temperature, the higher the generator output. Therefore, in order to maximize the melting of the low-temperature fluid possessed by the plant and to operate stably even under load fluctuations, it is necessary to maintain the condensate level 13 above a certain value in order to protect the condensate pump 11. There is.

そこで、本発明においては、凝縮器9に凝縮液
面水位を検出する検出器14を設け、この検出値
と、設定器21によつて予じめ設定された水位と
を比較してその差に基づいて流量制御弁12を制
御する低温流体流量制御装置22を設ける。今、
プラントへの入熱量が増加し、高温流体3に伝え
られると入熱量増加以前の低温流体蒸気量と高温
流体温度上昇による溶解していた低温流体の蒸発
との合計された蒸気がタービンから凝縮器に流
れ、凝縮することにより凝縮液面水位が上昇す
る。そこで、その液面水位を検出器14により検
出し、その変化分に応じて流量制御弁12を開
き、流量を増加させる。入熱量が減少した場合は
逆に流量制御弁12を絞り、流量を減少させる。
このようにすれば、プラントの入熱量を常に最大
にでき、プラントの熱容量に関係なく制御できる
ため、安定した運転が可能であるとともに低温流
体タンクが不要である。
Therefore, in the present invention, a detector 14 for detecting the condensate level is provided in the condenser 9, and this detected value is compared with the water level preset by the setting device 21, and the difference is calculated. A cryogenic fluid flow control device 22 is provided to control the flow control valve 12 based on the cryogenic fluid flow rate control device 22 . now,
When the amount of heat input to the plant increases and is transmitted to the high temperature fluid 3, the steam that is the sum of the amount of low temperature fluid vapor before the increase in heat input and the evaporation of the low temperature fluid that was melted due to the rise in the temperature of the high temperature fluid is transferred from the turbine to the condenser. As the condensate flows and condenses, the condensate level rises. Therefore, the liquid level is detected by the detector 14, and the flow rate control valve 12 is opened according to the change in the level to increase the flow rate. When the amount of heat input decreases, the flow control valve 12 is conversely throttled to reduce the flow rate.
In this way, the amount of heat input to the plant can always be maximized and can be controlled regardless of the heat capacity of the plant, allowing stable operation and eliminating the need for a low-temperature fluid tank.

本発明によれば入熱量変化にかかわらず、安定
して良好な熱効率を得る運転が可能である。
According to the present invention, stable operation with good thermal efficiency is possible regardless of changes in heat input.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は直接式熱交換器を用いた低沸点媒体利
用発電プラントの系統図、第2図は従来の制御装
置を示す系統図、第3図は高温流体及び低温流体
の溶解特性図、第4図は本発明の実施例になる制
御装置を用いた場合の系統図を示す。 3……高温流体、4……直接式熱交換器、6…
…低温流体、7……タービン、9……凝縮器、1
1……凝縮液ポンプ、12……流量制御弁、13
……凝縮液面水位、14……水位検出器、21…
…水位設定器、22……低温流体流量制御装置。
Figure 1 is a system diagram of a power generation plant using a low boiling point medium using a direct heat exchanger, Figure 2 is a system diagram showing a conventional control device, Figure 3 is a diagram of dissolution characteristics of high temperature fluid and low temperature fluid, FIG. 4 shows a system diagram when a control device according to an embodiment of the present invention is used. 3...High temperature fluid, 4...Direct heat exchanger, 6...
...Cryogenic fluid, 7...Turbine, 9...Condenser, 1
1...Condensate pump, 12...Flow control valve, 13
...Condensate liquid level, 14...Water level detector, 21...
...Water level setting device, 22...Cryogenic fluid flow rate control device.

Claims (1)

【特許請求の範囲】 1 高温流体と低温流体を直接式熱交換器内で接
触させ、低沸点媒体でなる低温流体を蒸発させて
この蒸気によつてタービンを駆動するようにした
低沸点媒体利用発電プラントにおいて、前記ター
ビン駆動後の蒸気を凝縮する凝縮器内の凝縮液面
水位を検出し、この液面水位に基づいて、前記直
接式熱交換器に循環する凝縮液量を制御すること
を特徴とする低沸点媒体利用発電プラントの運転
制御方法。 2 加熱源となる高温流体とタービン作動媒体と
なる低温流体を直接接触させ、低沸点媒体でなる
低温流体を蒸発させる直接式熱交換器と、前記低
温流体蒸気によつて駆動されるタービンと、ター
ビン駆動後の蒸気を凝縮させる凝縮器と、凝縮液
を加圧するポンプと、この凝縮液の直接式熱交換
器への供給流量を制御する流量制御弁とを含んで
構成される低沸点媒体利用発電プラントにおい
て、前記凝縮器内の凝縮液面水位を検出する検出
器と、予じめ凝縮液面水位の所定の値に設定する
設定器と、前記検出器および設定器の両方より発
せられる信号に基づいて、前記流量制御弁の開度
を決定する低温流体流量制御装置よりなることを
特徴とする低沸点媒体利用発電プラントの運転制
御装置。
[Claims] 1. Utilization of a low-boiling point medium in which a high-temperature fluid and a low-temperature fluid are brought into contact in a direct heat exchanger, the low-temperature fluid consisting of a low-boiling point medium is evaporated, and the steam is used to drive a turbine. In a power generation plant, a condensate level in a condenser that condenses steam after the turbine is driven is detected, and an amount of condensed liquid circulating to the direct heat exchanger is controlled based on this liquid level. A method for controlling the operation of a power generation plant using low boiling point media. 2. A direct heat exchanger that brings a high-temperature fluid serving as a heating source into direct contact with a low-temperature fluid serving as a turbine working medium to evaporate the low-temperature fluid made of a low-boiling point medium, and a turbine driven by the low-temperature fluid vapor; A low-boiling point medium that uses a condenser that condenses steam after the turbine is driven, a pump that pressurizes the condensate, and a flow control valve that controls the flow rate of the condensate supplied to the direct heat exchanger. In a power generation plant, a detector for detecting a condensate level in the condenser, a setting device for setting the condensate level to a predetermined value in advance, and a signal emitted from both the detector and the setting device. An operation control device for a power generation plant using a low boiling point medium, comprising a low temperature fluid flow rate control device that determines the opening degree of the flow rate control valve based on the following.
JP8814979A 1979-07-13 1979-07-13 Method and apparatus for controlling operation of low-boiling medium utilizing power plant Granted JPS5614812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8814979A JPS5614812A (en) 1979-07-13 1979-07-13 Method and apparatus for controlling operation of low-boiling medium utilizing power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8814979A JPS5614812A (en) 1979-07-13 1979-07-13 Method and apparatus for controlling operation of low-boiling medium utilizing power plant

Publications (2)

Publication Number Publication Date
JPS5614812A JPS5614812A (en) 1981-02-13
JPS6115247B2 true JPS6115247B2 (en) 1986-04-23

Family

ID=13934869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8814979A Granted JPS5614812A (en) 1979-07-13 1979-07-13 Method and apparatus for controlling operation of low-boiling medium utilizing power plant

Country Status (1)

Country Link
JP (1) JPS5614812A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686831A (en) * 1984-12-18 1987-08-18 Silva Robert E System and method of delivering low/pressure/low temperature fluids into high pressure/high temperature heat exchangers by means of alternate pressure equalization
JPH0672418B2 (en) * 1985-05-09 1994-09-14 日本鋼管株式会社 Continuous underground wall

Also Published As

Publication number Publication date
JPS5614812A (en) 1981-02-13

Similar Documents

Publication Publication Date Title
US4593527A (en) Power plant
US4341202A (en) Phase-change heat transfer system
US9031705B2 (en) Adjustable systems and methods for increasing the efficiency of a kalina cycle
EP0086768A1 (en) Absorption heat pump system
WO2020110473A1 (en) Boiler system, power generation plant, and boiler system operation method
KR860002042B1 (en) Control method of absorption type cold and warm water system
US4301650A (en) Pressure regulating apparatus for a closed water circuit
JPH0742844B2 (en) Hot water turbine plant
JPS6115247B2 (en)
CN1193201C (en) Double effect absorption cold or hot water generating machine
US4275563A (en) Power-generating plant having increased circulating force of working fluid
JP2002156493A (en) Site heat supply equipment of nuclear power station
CA1126115A (en) Phase-change heat transfer system
CN108870503A (en) To the intermittent waste heat comprehensive utilization system with vapour user steam supply industrial over long distances
CA2612787A1 (en) Heating apparatus
JPS6027317Y2 (en) Solar thermal steam generator
CA1146035A (en) Phase-change heat transfer system
JPS5813968A (en) Absorption refrigerator
JPS62182593A (en) Separate type heat pipe heat exchanger
CN116464947A (en) Energy storage type steam generation system
JPS6088878A (en) Geothermal binary cycle plant
EP2912285A1 (en) Adjustable systems and methods for increasing the efficiency of a kalina cycle
JPS6151646B2 (en)
JPS6059406B2 (en) Control method and device for power plant using low boiling point medium steam
JPS6157445B2 (en)