JPS605559A - Electrode structure of semiconductor element - Google Patents

Electrode structure of semiconductor element

Info

Publication number
JPS605559A
JPS605559A JP58113158A JP11315883A JPS605559A JP S605559 A JPS605559 A JP S605559A JP 58113158 A JP58113158 A JP 58113158A JP 11315883 A JP11315883 A JP 11315883A JP S605559 A JPS605559 A JP S605559A
Authority
JP
Japan
Prior art keywords
metal
layer
type
semiconductor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58113158A
Other languages
Japanese (ja)
Inventor
Toshio Uji
俊男 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58113158A priority Critical patent/JPS605559A/en
Publication of JPS605559A publication Critical patent/JPS605559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor element having high reliability and high yield by employing electrodes formed of metal layers which contains a metal to become a P type impurity filled in a semiconductor and a high melting point metal. CONSTITUTION:An N type InP layer 12, an N type InGaAsP layer 13 to become an active layer, a P type InP layer 14, and a P type InGaAsP layer 15 are sequentially formed on an N type InP substrate 11. After an SiO2 film 16 is then formed by a CVD on the surface of the layer 15, a pattern is formed of photoresist, and the SiO2 is removed in a circular shape having 30mum of diameter. Zn, Ti, Pt are sequentially deposited on the surfaces of the layers 15, 16 to form a metal layer 17, and heat treated in H2 or N2 atmosphere as a P type ohmic electrode 17. An Au deposited film 18 is formed on the film 17. Subsequently, after the substrate 11 is polished, an AuGeNi deposited film 19 is formed on the surface.

Description

【発明の詳細な説明】 本発明は、発光ダイオード(以下I、EDと呼ぶ)や、
半導体レーザ等の半導体素子の電極構造の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention provides light emitting diodes (hereinafter referred to as I and ED),
This invention relates to improvements in the electrode structure of semiconductor devices such as semiconductor lasers.

LEDや、半導体レーザは、光通信システムの光源とし
て研究開発が進んでいる。これらの半導体素子にとりて
、長寿命であることは、実用上極めて重要である。素子
劣化の原因はいくつかあるが、中でも電極に起因するも
のが大きな比重を占めて〜・る。電極に起因した半導体
素子劣化は、特に活性部に近い側の電極金属と、半導体
の反応によるところが太きい。例えばAu合金のような
半導体と合金化反応をする金属より、TiPtのような
半導体との反応の小さい高融点金属の方が電極金属とし
て信頼性が高い可能性を有して(・る。
Research and development is progressing on LEDs and semiconductor lasers as light sources for optical communication systems. For these semiconductor devices, it is extremely important for practical use that they have a long life. There are several causes of element deterioration, but among them, those caused by electrodes account for a large percentage. Semiconductor element deterioration caused by electrodes is largely due to the reaction between the electrode metal near the active region and the semiconductor. For example, a high melting point metal such as TiPt, which has a small reaction with a semiconductor, may be more reliable as an electrode metal than a metal such as an Au alloy, which undergoes an alloying reaction with a semiconductor.

そこで従来、信頼性上電極金属の選択に重点が置かれお
り、種々の試みがなされている。しかしながら、電極金
属を、例えばAu合金系からTjPtに変えるだけでは
必ずしも素子の信頼性改善に結びつかなかった。高融点
金属電極を用いた半導体素子は、半導体と合金化反応す
る金属電極を用いた素子より劣化の小さいものもあるが
、信F性の改善のみられない場合も多く、歩留りが高く
なかった0 本発明の目的は、従来の半導体素子に係るこのような欠
点を除いた、信頼性が高くかつ捷留りの高い半導体素子
が得られる電極の提供にある。本発明者は、半導体と反
応の小さい金属を電4:J(に用いることは、@頼性の
高い半導体素子なJ、?’iる一つの条件であるが、そ
れだけでは充分ではな(、電極金属と半導体界面近傍で
のエネルギー消費な減らすことが、半導体素子の動作時
における金属と半導体の反応の進行を抑えイ6頼性を高
めるとの考えで種々の実験を行なった結果、ZnやBe
なと、半導体に入りP型不純物となる金属と’rt、w
、pt。
Therefore, conventionally, emphasis has been placed on the selection of electrode metals from the viewpoint of reliability, and various attempts have been made. However, simply changing the electrode metal from, for example, an Au alloy system to TjPt does not necessarily lead to an improvement in the reliability of the device. Semiconductor devices using high melting point metal electrodes may have less deterioration than devices using metal electrodes that undergo an alloying reaction with the semiconductor, but in many cases there is no improvement in reliability and the yield is not high. An object of the present invention is to provide an electrode that eliminates the above-mentioned drawbacks of conventional semiconductor devices and allows a semiconductor device to be obtained with high reliability and high retention. The present inventor believes that using a metal that has a low reaction with semiconductors for electric current is one of the conditions for achieving highly reliable semiconductor devices, but it is not sufficient on its own. As a result of various experiments, we have conducted various experiments with the idea that reducing energy consumption near the interface between the electrode metal and the semiconductor will suppress the progress of the reaction between the metal and the semiconductor during the operation of the semiconductor element, and will improve reliability. Be
The metal that enters the semiconductor and becomes a P-type impurity and 'rt,w
, pt.

MOlPdなとの高融点金属とを含む金属層により形成
された電極を用いることにより信頼性の高い半導体素子
が得られるという実験結果を得、それに基づいて本発明
がなされたものである。
The present invention was developed based on experimental results showing that a highly reliable semiconductor device can be obtained by using an electrode formed of a metal layer containing a high melting point metal such as MOIPd.

P型不純物となる金属を含んだ場合に高い歩留りで信頼
性の高い半導体素子が得られる理由として、オーミック
電極形成の熱処理工程によって、半導体中にP型不純物
として導入され表面濃度が高くなることにより電極金属
との界面近傍の半導体層の空乏層幅が小さくなり金属か
ら半導体へのトンネリングが容易になることや、半導体
層での拡がり抵抗が小さくなることにより、電極金属と
半導体層との界面近傍での電位勾配が小さくなり、発熱
が低減し、電極金属の電界による移動や、熱による金属
の拡散、界面付近に存在する欠陥の移動等が抑えられる
ためと考えられる。
The reason why semiconductor devices with high yield and high reliability can be obtained when metals that serve as P-type impurities are included is that they are introduced as P-type impurities into the semiconductor during the heat treatment process for forming ohmic electrodes, increasing the surface concentration. The width of the depletion layer in the semiconductor layer near the interface with the electrode metal becomes smaller, making tunneling from the metal to the semiconductor easier, and the spreading resistance in the semiconductor layer becomes smaller. This is thought to be because the potential gradient at the interface becomes smaller, heat generation is reduced, and movement of the electrode metal due to the electric field, diffusion of the metal due to heat, movement of defects near the interface, etc. are suppressed.

さらに、P型不純物となる金属を含むことの利点として
は、次の様な点がある。半導体表面濃度を高くする目的
では結晶成長時にドーピング量を大きくしたり、不純物
拡散をすること等が考えられる。しかし、結晶成長時に
ドーピング量を大きくすると、高温での結晶成長工程に
、不純物が他の成長層に入り易く、又、局所的な高濃度
領域の形成が困難といった欠点がある。72又、拡散に
よる場合も、高温熱処理を含む複雑な工程を要するとい
った欠点がある。これらに対し、P型不純物となる金属
を電極金属として含む本発明の構造は例えば真空蒸着の
ような簡単な工程でP型不純物金属層を形成することが
でき、又、例えば適当なマスクをすることにより局所的
な高濃度領域の形成が容易に出来るといった利点もある
Furthermore, there are the following advantages of including a metal serving as a P-type impurity. In order to increase the semiconductor surface concentration, it is possible to increase the amount of doping during crystal growth or to diffuse impurities. However, if the doping amount is increased during crystal growth, impurities tend to enter other growth layers during the crystal growth process at high temperatures, and it is difficult to form localized high concentration regions. 72 Furthermore, the method using diffusion also has the drawback of requiring complicated steps including high-temperature heat treatment. In contrast, the structure of the present invention, which includes a metal serving as a P-type impurity as an electrode metal, allows a P-type impurity metal layer to be formed by a simple process such as vacuum evaporation. This also has the advantage that local high concentration regions can be easily formed.

即ち、本発明は半導体中でP型不純物となる金属と高融
点金属とを少なくとも含む金属層により形成されたこと
を特徴とする半導体素子の電極構造である。
That is, the present invention is an electrode structure for a semiconductor device, characterized in that it is formed of a metal layer containing at least a metal that becomes a P-type impurity in a semiconductor and a high melting point metal.

次に、InGaAaP 、InPダブルへテロ構造面発
光型LEDの実施例に基づき詳細に説明する。
Next, a detailed explanation will be given based on an example of an InGaAaP, InP double heterostructure surface-emitting LED.

第1図は、 InGaA′¥InPダブルへテロ構造面
発光型LEDの一実施例を示す「メ「面図である。
FIG. 1 is a "front view" showing an embodiment of an InGaA'\InP double heterostructure surface-emitting LED.

n型InP基板上11の上に、n型InP層、12(n
−1X 10” ct、”厚さ1〜5μ風)、活性層と
なるn型 InGaAsP 層13 (n〜3X10′
7cri’、厚さ1〜2 μm) 、Pg InP N
414 (P〜3X16gcm、厚さ1〜2μTn)、
P型InGaAsP層15(P〜lX10aIt、厚さ
〜1μm)をIllに形成する。次に、P型InGaA
sP層15の表面にCVDによりSiO*膜16膜形6
した後、フォトレジストによりパターン形成し直径30
μ簿の円形状に5insを除去する。P型InGaAs
P層15及びSiO*膜16膜形6上にZn、Ti、P
tを順に蒸着し金属膜17を形成した後、N2又はN、
雰囲気で熱処理しP型オーミック電極17とする。この
実施例ではZn、Ti、Ptを順にl’1fliしたが
ZnやTi、Ptを含む合金を蒸着してもよい。この金
属膜17の上にAu蒸着膜18を形成する。続いてn型
InP基板11を研■して約100μ鶏の厚さにした後
、との表面に、A u G e N i蒸着膜19を形
成する。
On the n-type InP substrate 11, an n-type InP layer, 12 (n
-1X 10" ct, "thickness 1~5μ), n-type InGaAsP layer 13 (n~3X10') serving as the active layer
7cri', thickness 1-2 μm), PgInPN
414 (P~3X16gcm, thickness 1~2μTn),
A P-type InGaAsP layer 15 (P~1X10aIt, thickness ~1 μm) is formed on Ill. Next, P-type InGaA
A SiO* film 16 film type 6 is formed on the surface of the sP layer 15 by CVD.
After that, a pattern was formed using photoresist and the diameter was 30 mm.
Remove 5ins in the circular shape of the μ book. P-type InGaAs
Zn, Ti, P on the P layer 15 and SiO* film 16 film type 6.
After forming the metal film 17 by sequentially evaporating t, N2 or N,
Heat treatment is performed in an atmosphere to form a P-type ohmic electrode 17. In this embodiment, Zn, Ti, and Pt were deposited in this order, but an alloy containing Zn, Ti, and Pt may be deposited. An Au vapor deposition film 18 is formed on this metal film 17. Subsequently, the n-type InP substrate 11 is polished to a thickness of approximately 100 μm, and then an AuGeNi vapor deposited film 19 is formed on the surface thereof.

stow膜16の円形パターンと同心状にAuGeNi
膜19上に膜片9上ジストによりパターン形成し直径1
20μ落の円形状にA u G e N iを除去し、
光取出し窓20を形成する。最後にH,又はN2 雰囲
気中で熱処理し、n型オーミック霜、極19とする。
AuGeNi is placed concentrically with the circular pattern of the stow film 16.
A pattern is formed on the film 19 by a resist on the film piece 9 to form a pattern with a diameter of 1
Remove A u G e N i in a circular shape with a thickness of 20μ,
A light extraction window 20 is formed. Finally, heat treatment is performed in an H or N2 atmosphere to form n-type ohmic frost, pole 19.

第2図は、従来のAu召合金系金属らなる電極、T i
 P t ’[i極、本発明の一実施例のZn−Ti−
Pt電極の3種の電極構造の通電試駆結果、即ち、光出
力の時間変化、ダークスポット欠陥の発生数の時間変化
を示した図である。図に示されている様に本発明の電極
構造によりLEDのイド頼性が著しく改善された。
Figure 2 shows a conventional electrode made of Au-alloy metal, Ti
P t ' [i-pole, Zn-Ti- of one embodiment of the present invention
FIG. 4 is a diagram showing the results of current test driving of three types of electrode structures of Pt electrodes, that is, the time change in optical output and the time change in the number of dark spot defects. As shown in the figure, the electrode structure of the present invention significantly improves the LED reliability.

本発明の! ’?RIn造はLEI)のみならずレーザ
ダイオード、フォトダイオード、トランジスタ等にも適
用でき、InP−InGaAsP系の他にGaAs−A
lGaAs系をはじへ他のi−v族化合物半導体材料か
らなる半導体素子にも同様に適用することができる。
The invention! '? RIn structure can be applied not only to LEI) but also to laser diodes, photodiodes, transistors, etc. In addition to InP-InGaAsP, GaAs-A
The present invention can be similarly applied to semiconductor devices made of other IV group compound semiconductor materials as well as lGaAs-based materials.

上記実施例では高融点金属としてTi、Ptを用いたが
、この他W、 Mo、 Pd、笠の金属でも実施例と同
様の結果が得られる。
Although Ti and Pt were used as high-melting point metals in the above embodiments, the same results as in the embodiments can be obtained using other metals such as W, Mo, Pd, and Kasa.

以上、い′−シク述べてきた様に、本発明により、信頼
性が高くかつ歩留りの高い半導体素子を得ることができ
た。
As described above, according to the present invention, a semiconductor device with high reliability and high yield can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の一実施例を示す図である
。図中11から15は半導体層を、17は電極金属層を
示して〜・る。 Qフ人弁理士 内1県 晋 オ 1 図
FIG. 1 and FIG. 2 are diagrams showing one embodiment of the present invention. In the figure, 11 to 15 indicate semiconductor layers, and 17 indicates an electrode metal layer. Q Japanese patent attorney 1 prefecture Shino 1 Figure

Claims (1)

【特許請求の範囲】[Claims] 半導体中でP型不純物となる金属と、高融点金属とを少
なくとも含む金属層により形成されたことを特徴とする
半導体素子の電極構造。
An electrode structure for a semiconductor device, characterized in that it is formed of a metal layer containing at least a metal that becomes a P-type impurity in a semiconductor and a high melting point metal.
JP58113158A 1983-06-23 1983-06-23 Electrode structure of semiconductor element Pending JPS605559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58113158A JPS605559A (en) 1983-06-23 1983-06-23 Electrode structure of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113158A JPS605559A (en) 1983-06-23 1983-06-23 Electrode structure of semiconductor element

Publications (1)

Publication Number Publication Date
JPS605559A true JPS605559A (en) 1985-01-12

Family

ID=14605024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113158A Pending JPS605559A (en) 1983-06-23 1983-06-23 Electrode structure of semiconductor element

Country Status (1)

Country Link
JP (1) JPS605559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077599A (en) * 1989-06-16 1991-12-31 Sumitomo Electric Industries, Ltd. Electrode structure for iii-v compound semiconductor element and method of manufacturing the same
US5179041A (en) * 1989-06-16 1993-01-12 Sumitomo Electric Industries, Ltd. Method for manufacturing an electrode structure for III-V compound semiconductor element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042786A (en) * 1973-05-18 1975-04-18
JPS523383A (en) * 1975-06-24 1977-01-11 Nec Corp Manufacturing method of semiconductor device electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042786A (en) * 1973-05-18 1975-04-18
JPS523383A (en) * 1975-06-24 1977-01-11 Nec Corp Manufacturing method of semiconductor device electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077599A (en) * 1989-06-16 1991-12-31 Sumitomo Electric Industries, Ltd. Electrode structure for iii-v compound semiconductor element and method of manufacturing the same
US5179041A (en) * 1989-06-16 1993-01-12 Sumitomo Electric Industries, Ltd. Method for manufacturing an electrode structure for III-V compound semiconductor element

Similar Documents

Publication Publication Date Title
JP2663048B2 (en) Method of manufacturing electroluminescent silicon structure
US6555457B1 (en) Method of forming a laser circuit having low penetration ohmic contact providing impurity gettering and the resultant laser circuit
JPH0139206B2 (en)
JPS605559A (en) Electrode structure of semiconductor element
JPS60253283A (en) Semiconductor light-emitting element
JP2706072B2 (en) pn junction diode
JP2002083993A (en) Optical semiconductor light receiving element and its manufacturing method
JPH042119A (en) Diffusion of impurity
JP2697904B2 (en) Method for manufacturing photoelectric device
JPH02114675A (en) Semiconductor light emitting element and manufacture thereof
JPS635519A (en) Formation of semiconductor electrode
JPH077233A (en) Semiconductor element, especially preparation of directly buried ridge laser and element prepared by the method
JPS6215876A (en) Manufacture of semiconductor light emitting device
JPS61228684A (en) Semiconductor light emitting element
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
JPS6173388A (en) Semiconductor light-emitting element
JPS6048915B2 (en) Injection type light emitting semiconductor device and its manufacturing method
JPS6021587A (en) Semiconductor laser device
JPH07235731A (en) Manufacture of compound semiconductor device
JPH04246867A (en) Semiconductor photodetector
JP2006040929A (en) Semiconductor element and its manufacturing method
JPS63278383A (en) Light emitting diode
JPS62234369A (en) Electrode structure of iii-v compound semiconductor device
JPS6222545B2 (en)
JPH07211982A (en) Semiconductor light emitting device