JPS6055459B2 - alumina porcelain - Google Patents

alumina porcelain

Info

Publication number
JPS6055459B2
JPS6055459B2 JP54144763A JP14476379A JPS6055459B2 JP S6055459 B2 JPS6055459 B2 JP S6055459B2 JP 54144763 A JP54144763 A JP 54144763A JP 14476379 A JP14476379 A JP 14476379A JP S6055459 B2 JPS6055459 B2 JP S6055459B2
Authority
JP
Japan
Prior art keywords
alumina
alumina porcelain
component
porcelain
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54144763A
Other languages
Japanese (ja)
Other versions
JPS5669270A (en
Inventor
汀 安藤
茂春 太田
清成 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP54144763A priority Critical patent/JPS6055459B2/en
Publication of JPS5669270A publication Critical patent/JPS5669270A/en
Publication of JPS6055459B2 publication Critical patent/JPS6055459B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は切削工具やメカニカルシール材やバタフライバ
ルブ等に好適な機械的強度の向上したアルミナ磁器に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to alumina porcelain with improved mechanical strength suitable for cutting tools, mechanical seals, butterfly valves, and the like.

従来より、高純度の微細アルミナに、結晶生長制御剤と
なるMgOを少量加えたり、あるいはMgOと1220
0あるいは、Y203を加えたアルミナ磁器があつた。
Conventionally, a small amount of MgO as a crystal growth control agent has been added to high-purity fine alumina, or MgO and 1220
0 or alumina porcelain with Y203 added.

これらの磁器は、もつぱら耐蝕あるいは送先材料として
用いられているのみで機械的強度に劣り、機械構造部品
としての使用には限界があつた。従来の高純度アルミナ
磁器の機械強度が強くない主たる原因は、従来から用い
られているMgOが、微細で反応性に富んだ高純度アル
ミナの焼結を、最早や充分にコントロール出来なくなつ
てきたことである。
These porcelains were only used for corrosion resistance or as shipping materials, and their mechanical strength was poor, so there was a limit to their use as mechanical structural parts. The main reason why the mechanical strength of conventional high-purity alumina porcelain is not strong is that the MgO used in the past is no longer able to sufficiently control the sintering of high-purity alumina, which is fine and highly reactive. That's true.

本発明は、以上の問題点を解決するためになされたもの
であり、従来の高純度アルミナの焼結制御の研究が原子
拡散機構を主体とした仮定のもとで、いろいろの添加物
が検討されてきたのに対して、本発明は、アルミナの焼
結を、液相焼結を主体とした機構に基礎を置き、結晶生
長を、アルミナの液相への溶解、析出過程で達成させた
ものである。
The present invention has been made to solve the above problems, and the conventional research on sintering control of high-purity alumina has been based on the assumption that the atomic diffusion mechanism is the main one, and various additives have been investigated. In contrast, the present invention bases the sintering of alumina on a mechanism mainly based on liquid phase sintering, and achieves crystal growth through the dissolution and precipitation process of alumina in the liquid phase. It is something.

セラミックの焼結に於ける緻密化は、どうしても結晶生
長を伴ない易く小さい結晶寸法で高密度の焼結体を得る
ことはなかなか困難である。特に反応性の高い微細アル
ミナほど、急激な結晶生長が起り、気孔が粒界で排除さ
れるいとまもないまゝ、結晶粒内に閉じ込められ、結晶
の大きくて不揃いな、然かも低密度のものしか得られず
、従つて強度も低いものとなつた。この問題を解決する
一つの方法として、結晶のフ生長速度を出来る限り遅く
することが考えられる。
Densification during sintering of ceramic tends to involve crystal growth, and it is quite difficult to obtain a high-density sintered body with small crystal size. In particular, the more reactive fine alumina is, the more rapid crystal growth occurs, and as soon as the pores are eliminated at the grain boundaries, they become trapped within the crystal grains, resulting in large, irregular, and low-density crystals. However, the strength was also low. One way to solve this problem is to slow down the crystal growth rate as much as possible.

この様にすれば気孔の排除が充分出来てしかも結晶が小
さいので大きな強度が期特出来る。本発明は、従来から
使用されているCa0.Si0。、MgO以外にLa、
Os、Ta2O5、Y、0.を所定量5A1、0.に加
えることにより、従来の焼結温度でアルミナを溶解する
ことのできる液相を生じる様にしたものであり、即ちM
gOを0.15〜0.64モル%含み、(X)成分(C
aOとレ。0、のモル比が1.5〜4であるCaO.(
5La203との混合物)−(Y)成分(SlO2とY
2O3のモル比が1.5〜4であるSiO2とY2O3
との混合物)−(Z)成分(Ta2O5)で表される三
成分系組成図においてを結ぶ線分によつて形成された三
角形A,B,Cの面積内(辺上は含む)の成分と前記M
gOとの合量を0.4〜0.9モル%を含み残部がAl
2O3と不可避不純物によりなることを特徴とするアル
ミナ磁器を提供する。
In this way, pores can be sufficiently eliminated and the crystals are small, so great strength can be achieved. The present invention is based on the conventionally used Ca0. Si0. , In addition to MgO, La,
Os, Ta2O5, Y, 0. A predetermined amount of 5A1, 0. By adding M
Contains 0.15 to 0.64 mol% gO, and contains component (X) (C
aO and Le. 0, the molar ratio of CaO. (
5La203 mixture) - (Y) component (SlO2 and Y
SiO2 and Y2O3 with a molar ratio of 2O3 of 1.5 to 4
In the ternary composition diagram represented by the (Z) component (Ta2O5), the components within the area (including on the sides) of triangles A, B, and C formed by the line segments connecting Said M
The total amount with gO is 0.4 to 0.9 mol%, and the balance is Al.
To provide alumina porcelain characterized by being made of 2O3 and inevitable impurities.

本発明によれば化学ポテンシアルの大きな微細結晶表面
あるいは、2結晶粒子の相互圧接面でアルミナの溶解が
起り、液相を通つて化学ポテンシアルの小さな負曲率面
あるいは、大粒径面に析出する。この過程の速度は、溶
質の拡散速度あるいは、溶解析出速度のいずれかで決定
されるが、現在ではどれが速度を律するのか明らかでな
いが、結晶生長速度を本発明添加物の配合て遅く出来た
。MgO,CaOとLa2O3,SlO2とY2O3は
アルミナ磁器の強度が高い範囲から決定し、また、(X
)成分CaOとLa2O3のモル比が1.5〜4である
CaOとLl2O3との混合物)−(Y)成分(SiO
2とY2O3のモル比が1.5〜4であるSjO2とY
2O3との混合物)一(Z)成分(Ta2O.)の三成
分系組成図てある第1図のA(X=0.7,Y=0.1
5,Z=0.15の点)とB(X=0.45,Y=0.
5,Z=0.05の点)C(X=0.2,Y=0.2,
Z=0.6の点)とを結ぶ線分によ;つて囲まれた領域
はアルミナを溶解できる液相の形成範囲として決定した
According to the present invention, alumina is dissolved on the fine crystal surface with a large chemical potential or on the mutual pressure contact surface of two crystal grains, passes through the liquid phase, and is precipitated on the negative curvature surface with a small chemical potential or the large grain size surface. The rate of this process is determined by either the solute diffusion rate or the solution precipitation rate, but it is currently unclear which one controls the rate, but the crystal growth rate could be slowed down by incorporating the additive of the present invention. . MgO, CaO, La2O3, SlO2 and Y2O3 are determined from the range where the strength of alumina porcelain is high, and (X
)-(Y) component (SiO
SjO2 and Y in which the molar ratio of 2 and Y2O3 is 1.5 to 4
A (X=0.7, Y=0.1 in Figure 1, which shows the ternary system composition of the (Z) component (Ta2O.)
5, Z=0.15) and B (X=0.45, Y=0.
5, Z=0.05 point)C(X=0.2, Y=0.2,
The area surrounded by the line segment connecting the point Z=0.6 was determined as the area where a liquid phase capable of dissolving alumina could be formed.

以下実施例により説明する。実施例1 平均粒径0.2μのアルミナ(大明化学(株)製タイ3
ミクロンAGl純度99.9%)1000gに対してM
gOO.25wt%、CaOO.O23Wt%、La2
O3O.O58Wt%、SlO2BO.O25Wt%、
Y2O3O・04Wt%〜Ta2O5O.23wt%を
加え、水1.5eと共に容積6eのアルミナ磁器ボール
ミルに入れ、径30φのアル4ミナ球石4k9て招時間
混合した後、噴霧乾燥し、1500k9/clの圧力で
寸法10×30×5tTm1rLのテストピースを作り
、1500〜1600℃の温度にて電気炉焼成した。
This will be explained below using examples. Example 1 Alumina with an average particle size of 0.2μ (Tie 3 manufactured by Daimei Chemical Co., Ltd.)
Micron AGl purity 99.9%) M per 1000g
gOO. 25 wt%, CaOO. O23Wt%, La2
O3O. O58Wt%, SlO2BO. O25Wt%,
Y2O3O.04Wt%~Ta2O5O. 23 wt% was added and put into an alumina porcelain ball mill with a capacity of 6 e along with 1.5 e of water, mixed for a certain period of time using an alumina ball 4 k9 with a diameter of 30 φ, and then spray-dried to form a powder with dimensions 10 x 30 x under a pressure of 1500 k9/cl. A test piece of 5tTm1rL was made and fired in an electric furnace at a temperature of 1500 to 1600°C.

得られたアルミナ磁器は密度3.92g/dで、抗折力
は5800kg/Cltであつた。
The obtained alumina porcelain had a density of 3.92 g/d and a transverse rupture strength of 5800 kg/Clt.

実施例2 平均粒径0.3pのアルミナ(住友化学工業(株)製N
卯−2へ純度99.99%)700gと平均粒径0.2
μのアルミナ(大明化学(株)製 タイミクロンAGl
純度99.9%)300gに対して、MgOO.2wt
%、CaOO.l4Wt%、La2O3O.35Wt%
、SiO2BO.O49wt%、Y2O3O.O8Wt
%、Ta2O5O.36Wt%を加え水1.5)eポリ
ビニルアルコールKg(イ).5Wt%)と共に容積6
eのアルミナ磁器ボールミルに入れ径30φのアルミナ
球石4k9で招時間混合した後、噴霧乾燥し、1500
kg/C7lfの圧力で寸法10×30×5tWSのテ
ストピースを作り、1500〜1650℃の温度で電気
炉焼門成した。
Example 2 Alumina (manufactured by Sumitomo Chemical Co., Ltd.) with an average particle size of 0.3p
Purity 99.99% to U-2) 700g and average particle size 0.2
μ alumina (Taimicron AGl manufactured by Daimei Chemical Co., Ltd.)
Purity 99.9%) 300g, MgOO. 2wt
%, CaOO. l4Wt%, La2O3O. 35Wt%
, SiO2BO. O49wt%, Y2O3O. O8Wt
%, Ta2O5O. Add 36 wt% of water and 1.5) e polyvinyl alcohol Kg (a). 5Wt%) and volume 6
After putting it into an alumina porcelain ball mill (e) and mixing with a 4k9 alumina ball with a diameter of 30φ for a while, it was spray-dried and heated to 1500
A test piece with dimensions of 10 x 30 x 5 tWS was made at a pressure of kg/C7lf, and fired in an electric furnace at a temperature of 1500 to 1650°C.

得られたアルミナ磁器は密度3.91g/alで、抗折
力は5300k9/Cliであった。
The obtained alumina porcelain had a density of 3.91 g/al and a transverse rupture strength of 5300 k9/Cli.

実施例3 平均粒径0.3μのアルミナ(住友化学工業(株)製A
KP−20、純度99.99%)1000gに対して、
MgOO.l2Wt%、CacO3O.O38Wt%、
La2O.O.O34Wt%、SlO2BO.Ol6W
t%、Y2O3O.O35Wt%、Ta2O5O.47
V/t%を加え、水1.5e1ポリエチレングリコール
6g(0.6Wt%)と共に攪拌乳化機で1時間攪拌混
合した後、噴霧乾燥し、1500k9/dの圧力で寸法
10×30×5twr!nのテストピースを作り、14
70〜1550℃の温度で水素雰囲気にて焼成した。
Example 3 Alumina (manufactured by Sumitomo Chemical Co., Ltd. A) with an average particle size of 0.3μ
KP-20, purity 99.99%) for 1000g,
MgOO. l2Wt%, CacO3O. O38Wt%,
La2O. O. O34Wt%, SlO2BO. Ol6W
t%, Y2O3O. O35Wt%, Ta2O5O. 47
After adding V/t% and stirring and mixing with water 1.5e1 polyethylene glycol 6g (0.6Wt%) in a stirring emulsifier for 1 hour, spray drying was carried out and the dimensions were 10 x 30 x 5 twr at a pressure of 1500k9/d! Make a test piece of n, 14
It was fired in a hydrogen atmosphere at a temperature of 70 to 1550°C.

得られたアルミナ磁器は密度3.93g/C7lで抗折
力は5300kg/Cltであつた。実施例4 平均粒径0.3μのアルミナ(レイノルズ(株)製RC
−HP−DBMl純度99.99%)1000gに対し
てMgOO.O67wt%、CacO3O.O82Wt
%、La2O3O.l4Wt%、SlO2O.O6lW
t%、Y2O3O.O6lWt%、Ta2O5O.O9
lW%を加え、水1.5e1ポリビニールアルコール3
g(0.3wt%)とポリエチレングリコール2g(0
.2wt%)と共に攪拌乳化機で4紛間混合した後、噴
霧乾燥し、1500k9/dの圧力て寸法10×30×
5t7mのテストピースを作り、1500〜1600℃
の温度にてブタン燃焼ガス炉で焼成した。
The obtained alumina porcelain had a density of 3.93 g/C7l and a transverse rupture strength of 5300 kg/Clt. Example 4 Alumina (manufactured by Reynolds Co., Ltd. RC) with an average particle size of 0.3μ
-HP-DBMl purity 99.99%) MgOO. O67wt%, CacO3O. O82Wt
%, La2O3O. l4Wt%, SlO2O. O6lW
t%, Y2O3O. O6lWt%, Ta2O5O. O9
Add lW%, water 1.5e1 polyvinyl alcohol 3
g (0.3wt%) and polyethylene glycol 2g (0.
.. 2wt%) in a stirring emulsifier, spray-drying, and applying a pressure of 1500 k9/d to a powder with dimensions 10 x 30 x
Make a 5t7m test piece and heat it to 1500-1600℃
It was fired in a butane-fired gas furnace at a temperature of .

得られたアルミナ磁器は密度3.93g/CTlて抗折
力は5700k9/dてあつた。以上の実施例1〜4を
三成分系組成図の第1図にイ,口,ハ,二にて示し、下
記第1表に実施例1〜4をわかりやすく表示した。
The obtained alumina porcelain had a density of 3.93 g/CTl and a transverse rupture strength of 5700 k9/d. The above Examples 1 to 4 are shown in Figure 1 of the ternary composition diagram as A, C, C, and 2, and Examples 1 to 4 are shown in Table 1 below for easy understanding.

また、実施例1〜4の得られた測定結果につき、第2図
にて焼結密度と抗折力との関係を従来のアルミナ磁器(
MgOO.25wt%)との比較において示し、また、
焼結密度と平均粒径との関係を従来のアルミナ磁器との
比較にて第3図に示した。
In addition, regarding the measurement results obtained in Examples 1 to 4, the relationship between sintered density and transverse rupture strength is shown in Fig. 2 for conventional alumina porcelain (
MgOO. 25 wt%), and
Figure 3 shows the relationship between sintered density and average grain size in comparison with conventional alumina porcelain.

この第2図、第3図より明らかな様に、本発明のアルミ
ナ磁器は、各焼結密度3.89〜3.95/CTlにお
ける抗折力および平均粒径との関係は実施例1のイにお
いては、5100〜5800k9/c#fおよび1.1
〜1.7μを示し、実施例2の口においては4600〜
5300kg/C7llおよび1.3〜20μを示し、
実施例3のハにおいては、4700〜5300k9/C
rlおよび1.4〜1.8μを示し、実施例4の二にお
いては、5000〜5700kg/clおよび1.2〜
1.5μを示し従来のアルミナ磁器のMgOO.25W
t%を添加した比較品は、抗折力2800〜3900k
9/C7llで平均粒径は1.75〜2.75μを示し
て、明らかに本発明のアルミナ磁器が従来のものより最
低で6割強の抗折力の強度向上が確認出来た。
As is clear from FIGS. 2 and 3, in the alumina porcelain of the present invention, the relationship between transverse rupture strength and average grain size at each sintered density of 3.89 to 3.95/CTl is the same as in Example 1. 5100-5800k9/c#f and 1.1
~1.7μ, and in the mouth of Example 2 it was 4600~
5300kg/C7ll and 1.3-20μ,
In Example 3 C, 4700 to 5300k9/C
rl and 1.4 to 1.8 μ, and in Example 4-2, 5000 to 5700 kg/cl and 1.2 to 1.8 μ
1.5μ and conventional alumina porcelain MgOO. 25W
Comparative products with added t% have transverse rupture strength of 2800 to 3900k.
9/C7ll, the average particle diameter was 1.75 to 2.75μ, and it was clearly confirmed that the alumina porcelain of the present invention had improved transverse rupture strength by at least 60% over the conventional alumina porcelain.

また、これらの強度向上は焼結の平均粒径と大きく関係
していることは明らかである。以上の様に本発明のアル
ミナ磁器は強度的にすぐれたものであり、切削工具材や
機械構造部品等の多種類に巾広く活用出来るものである
Furthermore, it is clear that these improvements in strength are largely related to the average grain size of the sintered particles. As described above, the alumina porcelain of the present invention has excellent strength and can be used in a wide variety of applications such as cutting tool materials and mechanical structural parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の組成物を示す組成図、第2図は、焼
結密度と抗折力の関係を本発明と従来品との測定値比較
を示した図であり、第3図は、焼結密度と平均粒径とめ
関係を本発明と従来品との比較を示した図である。
Figure 1 is a composition diagram showing the composition of the present invention, Figure 2 is a diagram showing a comparison of measured values of the relationship between sintered density and transverse rupture strength between the present invention and conventional products, and Figure 3 is a diagram showing the relationship between sintered density and transverse rupture strength. 1 is a diagram showing a comparison of the relationship between sintered density and average grain size between the present invention and a conventional product.

Claims (1)

【特許請求の範囲】[Claims] 1 MgOを0.15〜0.64モル%含み、(X)成
分(CaOとLa_2O_3のモル比が1.5〜4であ
るCaOとLa_2O_3との混合物)−(Y)成分(
SiO_2とY_2O_3のモル比が1.5〜4である
SiO_2とY_2O_3との混合物)−(Z)成分(
Ta_2O_5)で表される三成分系組成図においてX
=0.7Y=0.15Z=0.15の点AX=0.45
Y=0.5Z=0.05の点BX=0.2Y=0.2Z
=0.6の点Cを結ぶ線分によつて形成された三角形A
、B、Cの面積内(辺上は含む)の成分と前記MgOと
の合量を0.4〜0.9モル%を含み残部がAl_2O
_3と不可避不純物とよりなることを特徴とするアルミ
ナ磁器。
1 Contains 0.15 to 0.64 mol% of MgO, component (X) (a mixture of CaO and La_2O_3 in which the molar ratio of CaO and La_2O_3 is 1.5 to 4) - component (Y)
A mixture of SiO_2 and Y_2O_3 in which the molar ratio of SiO_2 and Y_2O_3 is 1.5 to 4) - (Z) component (
In the ternary composition diagram represented by Ta_2O_5),
=0.7Y=0.15Z=0.15 point AX=0.45
Y=0.5Z=0.05 point BX=0.2Y=0.2Z
Triangle A formed by line segments connecting point C with =0.6
The total amount of the components within the areas of , B, and C (including on the sides) and the MgO is 0.4 to 0.9 mol%, and the remainder is Al_2O.
Alumina porcelain characterized by consisting of _3 and inevitable impurities.
JP54144763A 1979-11-08 1979-11-08 alumina porcelain Expired JPS6055459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54144763A JPS6055459B2 (en) 1979-11-08 1979-11-08 alumina porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54144763A JPS6055459B2 (en) 1979-11-08 1979-11-08 alumina porcelain

Publications (2)

Publication Number Publication Date
JPS5669270A JPS5669270A (en) 1981-06-10
JPS6055459B2 true JPS6055459B2 (en) 1985-12-05

Family

ID=15369830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54144763A Expired JPS6055459B2 (en) 1979-11-08 1979-11-08 alumina porcelain

Country Status (1)

Country Link
JP (1) JPS6055459B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9249043B2 (en) 2012-01-11 2016-02-02 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9714185B2 (en) 2011-03-11 2017-07-25 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9796630B2 (en) 2011-03-30 2017-10-24 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9249043B2 (en) 2012-01-11 2016-02-02 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US9902653B2 (en) 2012-01-11 2018-02-27 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US10590041B2 (en) 2012-01-11 2020-03-17 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Also Published As

Publication number Publication date
JPS5669270A (en) 1981-06-10

Similar Documents

Publication Publication Date Title
US5622551A (en) Chemically derived leucite
JPS61205621A (en) Stabilized zirconia, manufacture and use for ceramic composition
WO1995004701A1 (en) Composite metal oxide powder and process for producing the same
JPS63139060A (en) Aluminum nitride ceramic composite body
JPH0573712B2 (en)
JPH0383813A (en) Production of fine alpha-alumina powder
ES425029A1 (en) Pigments of substantially ternary system having oxides of columbium and transitional elements
JPS6055459B2 (en) alumina porcelain
US5261930A (en) Polycrystalline, sintered abrasive granules based on α-Al2 O.sub.
JPS63260856A (en) Semitransparent ceramic material, manufacture of products therefrom and high voltage discharge lamp
JPS6156184B2 (en)
JPS61275163A (en) Manufacture of high temperature strength alumina silica baseceramic sintered body
CN106278308B (en) A method of addition magnesium-rich spinel micro mist prepares zirconium oxide metering nozzle
US4774068A (en) Method for production of mullite of high purity
JPS60141671A (en) Manufacture of zirconia sintered body
JPS61214424A (en) Heat-resisting jig and its manufacture
JPH04280860A (en) Highly corrosion-resistant zircon porcelain and its production
CN106636712B (en) A kind of plastic deformation is combined Fine Grain Alumina Ceramics and the preparation method and application thereof
JP2616772B2 (en) Method for producing proton conductive ceramics
JPS60145965A (en) Manufacture of silicon nitride sintered body
JP2616773B2 (en) Method for producing zirconia ceramics
JP2607517B2 (en) Method for producing zirconia ceramics
JPS63285146A (en) Production of perovskite ceramic
TW442447B (en) Method for producing zirconia suspension and high density sintered body
JPS62143810A (en) Production of heat-resistant oxide complex powder