TW442447B - Method for producing zirconia suspension and high density sintered body - Google Patents

Method for producing zirconia suspension and high density sintered body Download PDF

Info

Publication number
TW442447B
TW442447B TW87115720A TW87115720A TW442447B TW 442447 B TW442447 B TW 442447B TW 87115720 A TW87115720 A TW 87115720A TW 87115720 A TW87115720 A TW 87115720A TW 442447 B TW442447 B TW 442447B
Authority
TW
Taiwan
Prior art keywords
suspension
scope
patent application
powder
item
Prior art date
Application number
TW87115720A
Other languages
Chinese (zh)
Inventor
Wen-Cheng Wei
Fang-Yuan He
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW87115720A priority Critical patent/TW442447B/en
Application granted granted Critical
Publication of TW442447B publication Critical patent/TW442447B/en

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The present invention discloses a well-dispersed neutral or weak alkaline suspension containing sub-micron zirconia powder, and a method for making the same. The sub-micron zirconia powder contains 2 to 5 mole % of yttrium oxide. The suspension contains a neutral to weak alkaline aqueous solution. A ultrasonic or ball milling process is used to mix the abovementioned powder and solution, thereby obtaining a solid volume fraction of 0.1 vol% to 45 vol% (solid weight fraction of 5.7 wt% to 83.1 wt%) of a dispersed suspension liquid. The present invention also discloses a forming method of using the abovementioned stable dispersed suspension, through sedimentation, centrifugation or gas pressure filtration, to produce a high density ceramic blank which is used to be sintered into a ceramic with high density, high strength and good strength reproducibility.

Description

442447442447

五、發明說明α) 本發明1有關種含有次微米氧化錯 :驗性分散良好之懸浮⑯…製作此種懸·浮⑨之=成 本發明並揭不使用上述穩定分散之懸浮液, :或氣體壓濾之成形法’製作高密度陶究生链,二: 生堪燒結出高密度、高強度,以及強度 製作方法。 1艮好之陶免 於社Hi有间強度及良好之韌性’過去已廣範的應用 於m構及耐磨方面之用途,例如光纖接頭、刀具、人工典 骼及伸線眼模等,這些應用均使用此項材料之相變韌化二 特性,對外來之應力破壞有相當優良之吸收能力,所以室 溫之下耐磨應用或高強度結構之應用氧化銼材料較高純度 為達到氧化錯相變勒化之效果,在氧化錯中添加氧化 鎂' 氧化鈣、氧化铈' 氧化釔,或是這些氧化物之混合, 以便將氧化錯之正方晶相保留到室溫’雖然此時之正方相 為介穩定狀態’只有在應力作用或熱觸發之狀態下產生所 謂的「麻田散鐵」相變,亦即由正方晶轉變為單斜晶相, 但是所產生之相變韌化’已能使氧化锆具有非常高的韌性 質[Readey, Heuer and Steinbrech, J· Am. Ceram.V. Description of the invention α) The present invention 1 relates to a suspension containing submicron oxidation errors: a suspension with good hygienic dispersion ... making such a suspension and floating suspension = cost invention and does not use the above-mentioned stable dispersion suspension, or gas The filter press forming method 'produces high-density ceramic research chains, two: raw sintering produces high density, high strength, and strength manufacturing methods. 1 Good pottery is free from the company's strength and good toughness. 'It has been widely used in m structure and abrasion resistance in the past, such as fiber optic connectors, knives, artificial bones, and stretch eye molds. The application uses the material's phase transformation and toughening properties. It has a very good absorption capacity for external stress damage, so wear-resistant applications at room temperature or applications with high-strength structures. The higher purity of the oxide file material is to achieve oxidation errors. The effect of phase transformation is to add magnesia, calcium oxide, cerium oxide, yttrium oxide, or a mixture of these oxides to the oxide to maintain the tetragonal phase of the oxide to room temperature. The phase is a metastable state 'only under the action of stress or thermally triggered, the so-called "Matian loose iron" phase transition occurs, that is, the tetragonal phase is transformed into a monoclinic phase, but the resulting phase is toughened.' Make zirconia have very high toughness [Readey, Heuer and Steinbrech, J. Am. Ceram.

Soc,’ 71[1], C-2,(1988)],此一類之氧化錯以添加氧 化鎂之部份安定化氧化锆(partial ly Stabi lizedSoc, ’71 [1], C-2, (1988)], this type of oxidation is partially stabilized zirconia with the addition of magnesium oxide.

Zirconia,簡稱為psz)為代表。 另一系列之氧化锆是以含有氧化釔成分之正方晶相氧 化結為代表,稱之為Tetragonal Zirconia PolycrystalsZirconia (abbreviated as psz). Another series of zirconia is represented by a tetragonal phase oxide junction containing yttrium oxide, which is called Tetragonal Zirconia Polycrystals

C:\Progratn Files\Patent\〇231-3853-E.ptd第 4 頁 442447 五'發明說明(2) (簡稱為TZP),具有高強度的特徵,其微結構是由次微米 之正方晶粒所組成’其中的氧化釔含量若是分布不均勻, 常會形成大晶粒之立方晶粒,TZP的強度會因而降低。 Y· Imanshi, M. Matsui在其專利中[US patent 4’610, 967]採用兩種相穩定劑,一是氧化釔,一是氧化 飾’以4到高比率之正方晶相。Dransfield及King [US Patent 5, 336, 521]採用液相鍍層之方式,將氧化釔,鹼 土族金屬氧化物’或是稀土族氧化物等相穩定成分沉積在 粉體表面,燒結後並未經表面拋光之氧化锆樣品的強度高 於其他種類氧化鍅。 以次微米陶瓷粉末作為製程原料時可得到較細小的晶 粒,但是相對的其粉粒表面積很高,表面作用力亦隨之増 加,因此聚結的現象更加嚴重。比較各種不同的陶瓷製程 技術’發現利用膠體製程所得之精密陶瓷可得較高的強度 [Neil and Pasto, Advanced Ceram. Mat., 3[3]225-230 (1988)],這可歸因於此種製程方式可有效的去除顆粒之 間形成的聚結(agglomerates) [Halloran,pp. 40 7-417 in U1trasructure Processing of Ceramics, Glass and composites,1984]。泥漿中粉粒的聚結往往造成坯體堆積 不良’對於後續的製程與結果有顯著的負面影響[Aks ay et al.t Am. Ceram. Soc., 66[10] C190-C192 (1983)],例如孔隙率高、收縮不均、強度偏低等,進而 影響到燒結體的微結構與機械性質。因此,如何有效的去 除聚結粉團,得到均勻的生坯,將是膠粒製程(c〇 i 1 〇丨da 1C: \ Progratn Files \ Patent \ 〇231-3853-E.ptd page 4 442447 5 'Invention Description (2) (referred to as TZP), with high strength features, its microstructure is composed of sub-micron square grains If the yttrium oxide content in the composition is unevenly distributed, cubic grains of large grains will often be formed, and the strength of TZP will be reduced accordingly. Y. Imanshi, M. Matsui in his patent [US patent 4'610, 967] uses two phase stabilizers, one is yttrium oxide, and the other is oxide 'with a tetragonal phase with a high ratio of 4 to. Dransfield and King [US Patent 5, 336, 521] use liquid phase plating to deposit phase-stabilizing components such as yttrium oxide, alkaline earth metal oxides or rare earth oxides on the surface of the powder. Surface-polished zirconia samples are stronger than other types of hafnium oxide. When submicron ceramic powder is used as the raw material for the process, finer particles can be obtained, but the relative surface area of the powder is high, and the surface force is also increased, so the phenomenon of agglomeration is more serious. Comparing various ceramic process technologies' found that the high-strength ceramics obtained with the gel process can obtain higher strength [Neil and Pasto, Advanced Ceram. Mat., 3 [3] 225-230 (1988)], which can be attributed to This process can effectively remove agglomerates formed between particles [Halloran, pp. 40 7-417 in U1trasructure Processing of Ceramics, Glass and composites, 1984]. The agglomeration of powder particles in the mud often causes poor accumulation of the green body, which has a significant negative impact on subsequent processes and results [Aks ay et al.t Am. Ceram. Soc., 66 [10] C190-C192 (1983)] For example, the porosity is high, the shrinkage is uneven, and the strength is low, which further affects the microstructure and mechanical properties of the sintered body. Therefore, how to effectively remove the agglomerated powder and obtain a uniform green body will be a colloidal particle process (c0 1 〇 da 1

in I C:\Program Files\Patent\0231-3853-E.ptd第 5 頁 44244 7 五、發明說明(3) ' processing)最主要的一個課題。一般而言,藉由分散劑 的添加或pH值的控制,能使膠粒間產生靜電斥力、立體阻 礙或兩種效應的綜合效果,進而達到分散良好的泥漿。 氧化#在水溶液中因表面化學反應產生電雙層,其等 電位點(iso-electric point ’簡稱iep)根據不同之報導 約在酸驗度(pH) 4-8之間。在申性之水溶液中,由於氧化 錯表面所帶電荷很少或接近電荷平衡,所以顆粒間之電位 能太小,無法提供足夠靜電斥力,達到穩定分散粉粒之效 果。所以在過去之文獻中[Obitsu et al.,US patent 5, 223,176, 1993][ Kaga et al. US patent 5,643 497 1 997 ]採用強酸性或高鹼性之水溶液,作為分散超細(5 ^ IHQ)氧化锆粉體之載體,其採用之基本原理即是遠離“卩, 使得氧化銼膠粒表面產生高電位能’能在溶液中產生穩定 分散之效果。 ~ 在文獻中除了使用無機酸或無機鹼用於調製強酸或強 驗性質之水溶液外’也可以使用有機酸或有機鹼[〇bitsu e,al.,US patent 5’2 23,176,1 9 93 ],或是採用有機酸 單分子,再合成高分子酸劑[Bogan, US patent 5’380’782’ and US patent 5,532,307],這些酸驗劑之 用量可高達5-50% ’但使用強酸或強鹼溶液在工程應用上 會有腐蝕問題*而且強酸溶液會因氧化鍅中加舲 之相穩定劑,例如氧化鎮,氧化纪,或氧化飾, 漸漸偏離’最後使氧化錯·懸浮液内顆粒之穩定性變差,最 後氧化錯粉體產生聚結,這對許多後續之應用都有負面之 ΙΪΜ1ΗΗ C:\Prc^ram Files\Patent\0231-3853-E. ptd第 6 ϊ " " 442 44 7 五、發明說明(4) 影響。 不同固含量的氧化锆懸浮液之表面電位會受pH值改 變,此現象與大多數的氧化物相類似,水溶液中的氧化锯 膠粒在酸性溶液(pHCiep)中為帶正電的表面,在鹼性溶液 (pH>iep)中為呈現帶負電荷表面。然而由過去之研究報 導,氧化錯懸浮液的i e p值約在5 . 4,但添加氧化紀之氧化 錯粉體之iep會上升至8.1,而且改變的駿驗量會受到懸浮 液中氧化#粉體之含量所影響。Yasrebi等人[J. Am.in I C: \ Program Files \ Patent \ 0231-3853-E.ptd page 5 44244 7 V. Description of the invention (3) 'processing) is the most important subject. Generally speaking, by adding a dispersant or controlling the pH value, electrostatic repulsion, steric hindrance, or a combination of the two effects can be produced between the colloidal particles, thereby achieving a well-dispersed slurry. Oxidation # produces an electrical double layer due to surface chemical reactions in an aqueous solution, and its iso-electric point (iep) is approximately between 4-8 according to different reports. In the declarative aqueous solution, because the surface of the oxidized surface has little or close charge balance, the potential between the particles can be too small to provide sufficient electrostatic repulsion to achieve stable dispersion of the particles. Therefore, in the past literature [Obitsu et al., US patent 5, 223,176, 1993] [Kaga et al. US patent 5,643 497 1 997] uses strong acidic or highly alkaline aqueous solution as the dispersion ultrafine (5 ^ IHQ ) The carrier of zirconia powder is based on the principle that it is far away from "卩", so that the surface of the oxidized rubber particles has a high potential energy, which can produce a stable dispersion effect in the solution. In addition to the use of inorganic acids or Alkali is used for the preparation of strong acid or strong aqueous solution '. Organic acids or organic bases can also be used [〇bitsu e, al., US patent 5'2 23,176, 1 93], or a single molecule of organic acid is used. And resynthesize polymer acid agents [Bogan, US patent 5'380'782 'and US patent 5,532,307]. The amount of these acid testers can be as high as 5-50%.' However, the use of strong acid or strong alkali solution will have engineering applications. Corrosion problem * And strong acid solution will gradually deviate due to the addition of tritium phase stabilizers, such as oxidation ball, oxidized period, or oxidized decoration. Finally, the stability of the particles in the suspension will be deteriorated. The powder agglomerates, this Many follow-up applications have negative effects: ΙΜΜ1ΗΗ C: \ Prc ^ ram Files \ Patent \ 0231-3853-E. Ptd No. 6 ϊ " " 442 44 7 V. Description of the invention (4) Impact. Oxidation with different solid content The surface potential of the zirconium suspension will be changed by the pH value. This phenomenon is similar to most oxides. The oxidized sawdust particles in aqueous solution are positively charged surface in acidic solution (pHCiep), and in alkaline solution (pH >; iep) presents a negatively charged surface. However, according to past research reports, the iep value of the oxidized oxide suspension is about 5.4, but the added oxidized oxide powder will increase to 8.1, and the changed The measurement will be affected by the content of the oxidized powder in the suspension. Yasrebi et al. [J. Am.

Ceram. Soc., 79[5] 1 2 23-27 ( 1 996)]曾研究提出,氧化 釔在鹼性的水溶液中會解離出帶正電的離子γ3+、y2(oh)2 4+、Y(0H)2+ ’使得水中的氫氧根減少,因此相對於低固含 量的氧化锆懸浮液,若要使較高固含量的懸浮液達到i ep 點’需要提供額外的氫氧根,故iep點會往較高的pH值移 動。 氧化锆懸浮液目前已開始用於化學拋光(chemi cal polishing)之領域,所用之氧化锆主要由氣相反應生成, 或是溶液化學溶解再析出的技術製作出微粒粉體,這些粉 體之特徵是具有單斜晶相,很高之表面積(可高達2 0 0m2 /gm),粒徑很小(可小至l〇nm),所製成之懸浮液多為酸性 (pH<6) ’懸浮液中所含之顆粒固含量均少於50 wt%(約等 於14¾體積含量)。此種細粒氧化锆顆粒由於太細,曾有研 究採用電泳動(e 1 e t rophore s is)技術在一般基材上製作薄 膜或是薄片複合材料[Sarkar and Nicholson, J. Am.Ceram. Soc., 79 [5] 1 2 23-27 (1 996)] has previously proposed that yttrium oxide will dissociate positively charged ions γ3 +, y2 (oh) 2 4+, Y in alkaline aqueous solution. (0H) 2+ 'reduces the hydroxide in water, so compared to the low solid content zirconia suspension, if you want the higher solid content suspension to reach the i ep point', you need to provide additional hydroxide, so The iep point moves towards higher pH values. Zirconia suspensions have begun to be used in the field of chemical polishing (chemi cal polishing). The zirconia used is mainly produced by gas-phase reaction or the technology of solution chemical dissolution and precipitation to produce fine particles. The characteristics of these powders It has a monoclinic phase, high surface area (up to 200m2 / gm), small particle size (down to 10nm), and the suspensions made are mostly acidic (pH < 6) 'suspension The solid content of the particles in the liquid is less than 50 wt% (about equal to 14¾ volume content). Because such fine-grained zirconia particles are too fine, there has been research on the use of electrophoresis (e 1 e t rophore s is) technology to make thin films or thin film composites on general substrates [Sarkar and Nicholson, J. Am.

Ceram. Soc.,79[8] 1 9 87-2002,1 996 ],但並不適合製Ceram. Soc., 79 [8] 1 9 87-2002, 1 996], but not suitable for manufacturing

C:\ProgramFUes\Patent\0231-3853-E.ptd第 7 頁 442447 五、發明說明(5) 做作塊狀’高密度之氧化锆燒結體。 有鑑於此,本發明的主要目的就是提供一種製備分散 良好氧化錯懸浮液之方法,其中尤其適用於含有氧化釔之 氧化锆粉體製成高粉體固含量(50wt% )之懸浮液的情 况’以及使用此種穩定分散之氧化锆懸浮液,製作高密度 陶瓷生坯,再利用此生坯燒結出高密度,高強度,以及強 度重現性良好之陶瓷材料之製作方法。 在上述中,氧化錯次微米粉末含有2至$莫耳百分率之 氧化釔成分,懸浮液之酸鹼度為中至弱鹼性(pH 6 9)。調 ,此種分散液之方法是使用有效之分散劑,在水溶液中少 里(0. 1~5. 0%)加入此種分散劑,維持水溶液在中性至弱鹼 ,之間。經過球磨(或超音波)混合溶液與 侍到固體體積分率由0·卜45. 0% (固體重量分 # 1 1%)之分散懸浮液,其中較佳之固體體積分-^ 3 . (固體重量分率為66176,W。 ” 製作高密度 高強度及強度 本發明另外揭示一系列之成形及燒結方 穩定分散之氧化錘懸浮液,經過自然沉降,、^ 氣體壓濾(gas pressure filtrati〇n)步驟"、一 均勻之生述體,並用此生坯燒結出高密度, 重現性之陶瓷塊材之方法。 採用本製程之優點包括 1·使用高純度氧化锆粉末,由於具有高表 结 速率較快’容易獲得較高之密度及較細之 』 值亦會較高; 強度C: \ ProgramFUes \ Patent \ 0231-3853-E.ptd page 7 442447 V. Description of the invention (5) Made of sintered body of high density zirconia. In view of this, the main object of the present invention is to provide a method for preparing a well-dispersed oxidation suspension, which is particularly suitable for the case where a zirconia powder containing yttria is made into a suspension with a high powder solid content (50% by weight). 'And a method for manufacturing a high-density ceramic green body by using such a stably dispersed zirconia suspension, and then sintering the green body to produce a ceramic material with high density, high strength, and good reproducibility of strength. In the above, the oxidized sub-micron powder contains a yttrium oxide component in the range of 2 to $ mole, and the pH of the suspension is medium to weakly alkaline (pH 6 9). Adjust, the method of this dispersion is to use an effective dispersant, add this dispersant in the aqueous solution (0.1 to 5.0%), to maintain the aqueous solution between neutral to weak base. After ball milling (or ultrasound), the mixed solution and the solid volume fraction of the waiting solid are dispersed from 0. 45% (solid weight fraction # 1 1%), and the solid volume fraction is preferably-^ 3. (Solid The weight fraction is 66176, W. "Production of high density, high strength and strength. The present invention also discloses a series of stable and dispersed oxidized hammer suspensions that are shaped and sintered. After natural settlement, gas pressure filtrati ) Step " A method of uniformly producing the body and sintering the green body to produce a high-density, reproducible ceramic block. The advantages of using this process include: 1. The use of high-purity zirconia powder, due to its high surface texture Faster speed 'easy to obtain higher density and thinner' value will also be higher; intensity

442447 五、發明說明(6) 2 ‘採用適當之中性或弱鹼性分散劑,可以得到分散良 好之YTZP氧化锆懸浮液’所得到的沉降密度及以離心方式 得到的生胚链體密度均較諸其他樣品為高; 3.經由懸洋液之固含量及分散劑添加量之最佳化可 以得到具有最高生坯密度與燒結密度的氧化锆材料; 4·採用尚壓氣體壓濾製作氧化锆生坯體,除了減少壓 濾所需之時間,尚可減少壓濾期間泥漿漿液產生之粒度分 離之缺點; 5. 使用壓濾成形製程,可以製作形狀較為複雜,質地 均勻之胚體; '6. 可在1 40 0 °C〜 1 500 °c間溫度燒結出高密度(>99, 5% T. D.)、高強度之YTZP氧化锆材料。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易僅’下文特舉出較佳實施例,並配合所附圖式,作詳 細說明如下: 圖式之簡單說明 第1圖繪·示含有25~33%體積固含量及添加1. 〇至4. 〇wt% A6分散劑之氧化锆泥漿做成之生坯所呈現之生坯密度值。 第2圖繪示YTZP氧化錯經膠粒製程或乾壓製程,並經 過1 4 0 0 °C〜1 6 0 0 °C燒結後所呈現之燒結密度及晶粒粒徑。 較佳具體實施例之詳細說明 在本發明之下列實施例與比較例中,係使用日本 Tosoh公司生產的TZ-3Y氧化锆粉末陶瓷粉末(簡稱YTZP粉 末)’其比表面積(BET surface area)為15.7 raVg,結晶442447 V. Description of the invention (6) 2 Both the settlement density obtained from the well-dispersed YTZP zirconia suspension using appropriate neutral or weakly basic dispersants and the density of the raw embryonic chain bodies obtained by centrifugation It is higher than other samples; 3. The zirconia material with the highest green density and sintered density can be obtained by optimizing the solid content of the suspension liquid and the amount of dispersant added; In addition to reducing the time required for filter press, the zirconium green body can also reduce the disadvantages of particle size separation produced by mud slurry during filter press; 5. Using the filter press forming process, it is possible to produce embryos with more complex shapes and uniform texture; 6. It can sinter high temperature (> 99, 5% TD), high-strength YTZP zirconia material at a temperature between 1 400 ° C and 1 500 ° c. In order to make the above and other objects, features, and advantages of the present invention more obvious and easy, only the preferred embodiments are described below, and in conjunction with the accompanying drawings, the detailed description is as follows: Brief description of the drawings FIG. 1 · Shows the green density value of a green body made of zirconia slurry containing 25 ~ 33% volume solids content and adding 1.0 to 4.0 wt% A6 dispersant. Figure 2 shows the sintered density and grain size of YTZP after being oxidized by the colloidal granulation process or dry pressing process and sintered at 1400 ° C ~ 16 0 ° C. Detailed description of preferred embodiments In the following examples and comparative examples of the present invention, TZ-3Y zirconia powder ceramic powder (YTZP powder) produced by Japan Tosoh Company is used. Its specific surface area (BET surface area) is 15.7 raVg, crystal

C:\Program Files\Patent\0231-3853-E.ptd第 9 頁C: \ Program Files \ Patent \ 0231-3853-E.ptd page 9

I 442447 五、發明說明(7) 大小2 7. 5 nm ’平均粒徑〇. 3 /z m,含有之氧化釔(Υ2〇3)相 穩定成分為5.07wt% ’其他的雜質包括氡化鋁(Α 1203) < 0.005wt% ’ 氧化矽(SiO2)<0.002wt%,氡化鐵(Fe203 ) <〇. 0 0 2wt% ’ 氧化鈉(Na20)為0. 023wt%。 比較例一 使用電阻值大於1 5 moh m - cm之純水,以試藥級NaO Η或 HC1化學液,調整水溶液之ΡΗ值,分別是ΡΗ為10. 1 + 0. 1, 6.8 + 0.1及3.3 + 0.1’稱為1^,再將前述之¥72?粉末依 0.03,0.1,1.0三個體積百分率(ν〇ι%)加入酸或鹼性液 中’使用熱壓之氧化鍅磨球,球磨2小時,再老化3 〇分鐘 後,測量懸浮液之pH值,稱為pHf。 在酸性的水溶液中ρ Η值變化不大,但在鹼性 (口11=10.10)與強酸(1)11二3.23)的水溶液中,添加丫72?會使 得溶液的pH值趨向中性,並隨著3Υ-ΤΖΡ粉末的增加,溶液 的pH值有更明顯的變化,而上述酸化之現象與氧化鍅中所 含氧化紀發生解離有關係,在pH值遠離氧化錯之等電位點 -(約為pH=6.5) ’由於氧化锆粉之加入,會使溶液酸鹼值產 生變化’相對的也會使氧化锆的表面化學性質改變。I 442447 V. Description of the invention (7) Size 2 7. 5 nm 'Average particle size 0.3 / zm, containing yttrium oxide (Υ203) phase stabilizing component 5.07wt%' Other impurities include aluminum halide ( Α 1203) < 0.005wt% 'silicon oxide (SiO2) < 0.002wt%, iron halide (Fe203) < 0.02 0wt%' sodium oxide (Na20) is 0.023wt%. Comparative example one uses pure water with a resistance value greater than 15 moh m-cm, and adjusts the pH value of the aqueous solution with reagent-grade NaO Η or HC1 chemical solution. The ρ is 10. 1 + 0.1, 6.8 + 0.1 and 3.3 + 0.1 'is called 1 ^, and then the aforementioned ¥ 72? Powder is added to the acid or alkaline solution in three volume percentages (ν〇ι%) of 0.03, 0.1, and 1.0.' Using hot-pressed oxidized honing balls, After ball milling for 2 hours and aging for 30 minutes, the pH of the suspension was measured and called pHf. In the acidic aqueous solution, the value of ρ , does not change much, but in the aqueous solution of alkali (mouth 11 = 10.10) and strong acid (1) 11-2 3.23), the addition of γ 72? Will make the pH of the solution tend to be neutral, and With the increase of 3Υ-ΤΤΡ powder, the pH value of the solution changes more significantly, and the above-mentioned phenomenon of acidification is related to the dissociation of the oxidized period contained in hafnium oxide. (PH = 6.5) 'Because of the addition of zirconia powder, the pH value of the solution will change' Relatively, the surface chemical properties of zirconia will also change.

C:\Program Files\Patent\0231-3853-E.ptd第 10 頁 442447 五、發明說明(8) 表1添加不同量之3Y-TZP粉末之溶液之酸鹼度(ΔρΗ)的變化 vol% pH* . PH£ ApHt-〇.l) 0.03 3.23 3.26 0.03 0.1 3.23 3.47 0.24 〜 1.0 3.23 4.80 1.57 0.03 6.76 6.84 0.08 0.1 6.76 7.22 0.42 〜 1.0 6.76 7.11 0.35 — 0.03 10.13 9.83 -0.3 〜 0.1 10.13 8.88 -1.25 1.0 10.13 8.08 -2.05 ~ 比較例二 採用比較例一中之ΥΤΖΡ氧化锆粉末,使用表2中五種 化學分散劑,分別加入氧化锆之懸浮液中’化學分散劑之 添加量以ΥΤΖΡ粉末之質量為基準’加入0.25 ’0.5,1.0, 2.0或4.0重量百分率(wt%)。調製好之氧化锆懸浮液加入 氧化锆磨球,經過18小時之研磨,以150目之篩網過篩, 過篩之泥漿緩缓的倒入25ml的量筒中’封口靜置沈降40 天。量測在三個調製階段液體之酸鹼度’包括加入化學劑 之水溶液,添加粉末並經過研磨及過篩之懸浮液’以及靜 置40天之懸浮液,結果示於表3。其中以A5試劑在添加 YTZP粉末前後水溶液之酸鹼度變化最大,會由弱驗(PH = 8. 4)變為弱酸性(pH=5.48 or 6.47) ’其他四種化學劑之酸 驗度之改變(ΔρΗ)都在+ 0.2之間’變化量不大。C: \ Program Files \ Patent \ 0231-3853-E.ptd page 10 442447 V. Description of the invention (8) Table 1 Changes in pH value (ΔρΗ) of the solution with different amounts of 3Y-TZP powder added vol% pH *. PH £ ApHt-〇.l) 0.03 3.23 3.26 0.03 0.1 3.23 3.47 0.24 to 1.0 3.23 4.80 1.57 0.03 6.76 6.84 0.08 0.1 6.76 7.22 0.42 to 1.0 6.76 7.11 0.35 — 0.03 10.13 9.83 -0.3 to 0.1 10.13 8.88 -1.25 1.0 10.13 8.08- 2.05 ~ Comparative Example 2 The TZZP zirconia powder in Comparative Example 1 was used. Five chemical dispersants in Table 2 were used, and the zirconia suspension was added to the 'chemical dispersant addition amount based on the quality of TZZP powder'. 0.25 '0.5, 1.0, 2.0 or 4.0 weight percent (wt%). The prepared zirconia suspension was added to a zirconia grinding ball, and after 18 hours of grinding, it was sieved with a 150-mesh sieve. The sieved mud was slowly poured into a 25ml graduated cylinder, and the seal was left to stand for 40 days. The pH of the liquid in the three preparation stages was measured including an aqueous solution containing a chemical agent, a suspension containing powder and ground and sieved, and a suspension standing for 40 days. The results are shown in Table 3. Among them, A5 reagent has the largest change in the pH value of the aqueous solution before and after adding YTZP powder, which will change from weak test (PH = 8. 4) to weak acidity (pH = 5.48 or 6.47). ΔρΗ) are all between + 0.2 ', the change is not large.

C:\Program Files\Patent\023卜3853-E.ptd第 11 頁 442447 五、發明說明(9) 表2五種化學分散劑 代號 功能鍵 (organofunctionality) 溶質 2%水溶 液之Ph值 製造公司及產品規格 A1 氨基(amino group) 2-butoxyethanol/ ethylene glycol 5.0 Chartwell Intemation, Inc·,USA,515.1 A2 氨基(amino group) 乙二醇 (ethylene glycol) 8.5 Chartwell Intemation, Inc·,USA,515.4 A3 氧碳基(carboxyl group) 2-butoxyethanol/ ethylene glycol 5.0 Chartwell Intemation, Inc., USA, 525.1 A4* 碳氫基(hydrocarbon group) 2-butoxyethanol/ ethylene glycol 4.6 Chartwell Intemation, Inc.,USA,535.1 A5** 酸基(carboxylic acid) 水 8.0 R. T. Vanderbilt Comp·,Inc· USA, Darvan C • A4 *被當作氧化铭/氧化錄複合粉想的分散劑[R Yoshimatsu^ A. Osaka, T.C: \ Program Files \ Patent \ 023 Bu 3853-E.ptd Page 11 442447 V. Description of the invention (9) Table 2 Five chemical dispersant codes Function keys (organofunctionality) Solute 2% aqueous solution Ph value Manufacturing companies and products Specifications A1 amino group 2-butoxyethanol / ethylene glycol 5.0 Chartwell Intemation, Inc., USA, 515.1 A2 amino group ethylene glycol 8.5 Chartwell Intemation, Inc., USA, 515.4 A3 oxygen carbon group (Carboxyl group) 2-butoxyethanol / ethylene glycol 5.0 Chartwell Intemation, Inc., USA, 525.1 A4 * Hydrocarbon group 2-butoxyethanol / ethylene glycol 4.6 Chartwell Intemation, Inc., USA, 535.1 A5 ** acid group (carboxylic acid) Water 8.0 RT Vanderbilt Comp., Inc. USA, Darvan C • A4 * Used as a dispersant for oxidized oxide / oxidized composite powder [R Yoshimatsu ^ A. Osaka, T.

Yabuki and H. Kawasaki, Materials Letters, Vol. 4, no. 10,426-428(1986)] ° • A5 曾被用於分散 3Y-TZP 的分散劑[W. Huisman, T. Graule and L. J. Gauckler, ^Centrifugal slip casting of zirconia (TZP), J. Europ. Ceram. Soc., 13(1994) 33-39] C:\ProgramFiles\Patent\0231-3853-E.ptd第 12 頁Yabuki and H. Kawasaki, Materials Letters, Vol. 4, no. 10,426-428 (1986)] ° • A5 has been used as a dispersant for dispersing 3Y-TZP [W. Huisman, T. Graule and LJ Gauckler, ^ Centrifugal slip casting of zirconia (TZP), J. Europ. Ceram. Soc., 13 (1994) 33-39] C: \ ProgramFiles \ Patent \ 0231-3853-E.ptd page 12

442447 五、發明說明α〇) 表3添加不同化學分散劑之氧化鍅懸浮體之三個調製階段酸鹼度變化值 分 分 散劑量 散 劑 步驟 0.25wt% 0.5wt% lwt% 2wt% 4wt% 未加粉末 4.74 4.68 4.55 4.51 4.46 A1 添加粉末 5.15 4.84 4.81 4.51 4.39 沈降40天後 5.11 5.06 4.99 4.81 4.65 未加粉末 6.53 6.51 6.44 6.52 6.73 A2 添加粉末 5.31 5.42 5.76 6.33 6.77 沈降40天後 5.27 5.15 5.65 6.44 6.71 未加粉末 4.93 4.81 4.60 4.47 4.34 A3 添加粉末 5.07 5.04 4.80 4.37 4.21 沈降40天後 5.09 4.99 4.84 4.58 4.51 未加粉末 5.04 4.97 4.62 4.43 4.22 A4 添加粉末 4.88 4.96 4.83 4.78 4.63 沈降40天後 5.18 5.24 5.03 4.82 4.59 未加粉末 8.40 8.42 - - A5 添加粉末 5.48 6.47 - - - 沈降40天後 5.97 6.50 - -442447 V. Description of the invention α〇) Table 3 The three modulation stages of the rhenium oxide suspension with different chemical dispersants are added. The change in pH value is divided into dispersive dose powder steps. 0.25% by weight 0.5% by weight 1% by weight 2% by weight 4% by weight 4.74 4.68 4.55 4.51 4.46 A1 with added powder 5.15 4.84 4.81 4.51 4.39 after settling for 40 days 5.11 5.06 4.99 4.81 4.65 without added powder 6.53 6.51 6.44 6.52 6.73 A2 with added powder 5.31 5.42 5.76 6.33 6.77 after settling for 40 days 5.27 5.15 5.65 6.44 6.71 without powder 4.93 4.81 4.60 4.47 4.34 A3 powder added 5.07 5.04 4.80 4.37 4.21 after settling for 40 days 5.09 4.99 4.84 4.58 4.51 without powder added 5.04 4.97 4.62 4.43 4.22 A4 added for powder 4.88 4.96 4.83 4.78 4.63 40 days after settled 5.18 5.24 5.03 4.82 4.59 without powder 8.40 8.42 --A5 added powder 5.48 6.47---5.97 6.50 after 40 days sedimentation--

C:\ProgramFiles\Patent\0231-3853-E, ptd第 13 頁 p 442447 五、發明說明(11) 前述沉降4 0天之樣品’測量沉降管下方之沈降泥塊的 堆積高度(Hf)與沈降前泥漿高度(H。)之比值(Hf/H。),所得 之結果示於表4,其中A5及A2之沉降高度比值明顯較其他 三種藥劑為高,A5及A2在水t對YTZP之分散效果不佳,其 他三種均有分散之效果。 表4添加不同化學分散劑之氧化锆粉體(γτζρ)沉降比值 分散劑 分散劑量 〔wt%,以粉J K質量計) 0.25 wt% 0.5 wt% 1.0 wt% 2.0 wt% 4,0 wt% A1 0.12 0.104 0.1 0.112 0.12 A2 0.096 0.096 0.28 0.456 0.32 A3 0.096 0.112 0.12 0.112 0.12 A4 0.14 0.128 0.136 0.136 0.128 A5 0.52 0.52 - - - 實施例一 採用比較例二中的懸浮液調製方法,增加粉體在懸浮 液中之固含量’25至35體積百分率,此外,使用弱鹼性高 分子分散劑,稱為A6分散劑(Dai-Ichi Kogyo Seiyaku Co.,Ltd.,Japan,產品規格D-134,功能鍵為酸基,屬 氨鹽類電解質分散劑)》首先將化學分散劑依YTZP粉末重 量百分比率加入純水中,加入氧化锆磨球,經過4至2 4小 時研磨,以粒徑測定儀(SALD-2001,Shimadzu,Japan), 分析懸浮液中粉粒之有效平均粒徑,所得之結果示於表C: \ ProgramFiles \ Patent \ 0231-3853-E, ptd page 13 p 442447 V. Description of the invention (11) The aforementioned sample of 40 days of sedimentation 'measures the accumulation height (Hf) and sedimentation of sedimentary sludge below the sedimentation tube. The former mud height (H.) ratio (Hf / H.), The results obtained are shown in Table 4, where the ratio of the settlement height of A5 and A2 is significantly higher than the other three agents, and the dispersion of A5 and A2 in YTZP at t The effect is not good, the other three have scattered effects. Table 4 Settling ratio of zirconia powder (γτζρ) with different chemical dispersants Dispersant dispersant dosage (wt%, based on powder JK mass) 0.25 wt% 0.5 wt% 1.0 wt% 2.0 wt% 4, 0 wt% A1 0.12 0.104 0.1 0.112 0.12 A2 0.096 0.096 0.28 0.456 0.32 A3 0.096 0.112 0.12 0.112 0.12 A4 0.14 0.128 0.136 0.136 0.128 A5 0.52 0.52---Example 1 uses the suspension preparation method in Comparative Example 2 to increase the amount of powder in the suspension. The solid content is '25 to 35 volume percent. In addition, a weakly basic polymer dispersant, called A6 dispersant (Dai-Ichi Kogyo Seiyaku Co., Ltd., Japan, product specification D-134, functional bond is acid group "Ammonia salt electrolyte dispersant)" First, add the chemical dispersant to pure water in accordance with the weight percentage of YTZP powder, add zirconia grinding balls, and grind it for 4 to 24 hours. Shimadzu, Japan), the effective average particle size of the particles in the suspension was analyzed, and the results obtained are shown in the table

C:\ProgramFiles\Patent\023卜3853-E.ptd第 14 頁 442447 五、發明說明(12) 5。結果顯示,研磨混合1 8小時以上可以將YTZP内之粉粒 聚結有效分散’所以顯示之平均粒徑可以達到一穩定值。 表5不同固含量之懸浮液經過不同時間之研磨分散後所顯示之粒徑及其分布 固含量 25 vol % 28 vol % 30 vol % 35 vol % 粒徑(;um) dso d9〇-dlO ^50 d9〇-di〇 ^50 d9〇-di〇 d$〇 dgo-dio 4小時研磨 0.95 2.03 0.97 2.5 0.87 1.81 0.97 2.36 8小時研磨 0.78 1.74 0.80 1.8 0.84 1.88 0.86 1.64 12小時研磨 0.69 1.38 0.69 1.71 0.81 1.68 0.73 1.81 16小時研磨 0.69 1.38 0.63 1.45 0.71 1.52 0.66 1.61 20小時研磨 0.56 1.2 0.58 1.29 0.65 1.22 24小時研磨 0.43 1.08 - - - - _ 實施例二 採用實施例一中的懸浮液調製方法,使用兩種化學分 散劑,一者為實施例一中使用),另一為比較例二中所用 之酸性有機金屬分散劑(A1分散劑)^首先將化學分散劑依 YTZP粉末重量百分比率的2wt%分散於純水中,再將粉末以 3 v ο 1 %的固液比混入’並加入氧化锆磨球,經過丨8小時研 磨及過篩,過篩之懸浮液於沉降管中沉降4〇天,以及使用 懸淨液,以尚速離心機(Z380,HERMLE, Germany), 轉速5000 rpm,其相對離心力約為4500G,共離心13分 鐘,顆粒之沉降距離相當於靜置40天的沈降,測定底層堆 積之生坯密度。 經沈降與離心後的堆積生坯以1 0 5 °C烘乾一天,完成C: \ ProgramFiles \ Patent \ 023 Bu3853-E.ptd page 14 442447 V. Description of the invention (12) 5. The results show that grinding and mixing for more than 18 hours can effectively disperse the particles in YTZP, so the average particle size displayed can reach a stable value. Table 5 Particle size and distribution of suspensions with different solid contents after grinding and dispersing at different times Solid content 25 vol% 28 vol% 30 vol% 35 vol% Particle size (; um) dso d90-dlO ^ 50 d9〇-di〇 ^ 50 d9〇-di〇d $ 〇dgo-dio 4-hour grinding 0.95 2.03 0.97 2.5 0.87 1.81 0.97 2.36 8-hour grinding 0.78 1.74 0.80 1.8 0.84 1.88 0.86 1.64 12-hour grinding 0.69 1.38 0.69 1.71 0.81 1.68 0.73 1.81 16-hour grinding 0.69 1.38 0.63 1.45 0.71 1.52 0.66 1.61 20-hour grinding 0.56 1.2 0.58 1.29 0.65 1.22 24-hour grinding 0.43 1.08----_ Example 2 uses the suspension preparation method in Example 1, using two chemical dispersions One is used in Example 1), and the other is the acidic organometallic dispersant (A1 dispersant) used in Comparative Example 2. First, the chemical dispersant is dispersed in pure water at 2% by weight of the YTZP powder weight percentage. Then, the powder is mixed into a solid-liquid ratio of 3 v ο 1%, and zirconia grinding balls are added, and after 8 hours of grinding and sieving, the sieved suspension is settled in a sedimentation tube for 40 days, and the suspension is used. Neat liquid, Shang-speed centrifuge (Z380, HERMLE, Germany), the rotational speed of 5000 rpm, a relative centrifugal force of about 4500G, were centrifuged 13 minutes, settling of the particles from settling equivalent to stand for 40 days, measured green density plot of the underlying stack. The stacked green body after sedimentation and centrifugation is dried at 105 ° C for one day to complete

C:\ProgramFiles\Paten1A023卜3853~E.ptd第 15 頁 442447 五、發明說明(13) 乾燥的步驟。乾燥後的生链在其表面塗上一層防水膜,利 用阿基米德法計算生述的視密度(apparent density),結 果不於表6。 表6添加兩種化學分散劑之沉降比值及其生坯密度值 添加之化學 分散劑種類 Hf/H0 沉降後之生坯 相對密度* (%) 離心後之生坯 相對密度*(%) A1 13.2% 41.8 43.7 A6 5.6% 42.8 46.4 *YTZP之理論密度採用6.03g/cm3 經40天沈降與離心後的濕坯其沈降高度比值及 生链相對密度的變化差別明顯。添加2wt%的46分散劑懸浮 液中粉末間分散良好,沈降量筒上端仍呈混濁狀,使得沈 降胚體厚度相對較薄(5 6%),而八〗添加分散劑的分散效果 則較差,其厚度相對較厚(1 3. 2%)。無論經自然沈降或離 心沈降,添加A6分散劑的生坯密度均皆較A1為佳,這也證 明A6可達較佳的分散效果,因此沈降速度緩慢,胚體較為 緻密。此外,以離心法製備的生坯體的沈降速度較快,其 生坯密度較高。 ' ’ 實施例三 使用實施例二中兩種不同化學分散劑^及“,調配不 同分散劑含量之氧化銼懸浮液,以及不用化學分散劑,直 接將YTZP氧化锫粉放入兩種水溶液中,此兩種水溶液乃採 用試藥級NaOΗ或HC 1化學液,調整純水之酸檢度至丨〇 〇或C: \ ProgramFiles \ Paten1A023 Bu 3853 ~ E.ptd page 15 442447 V. Description of the invention (13) Drying steps. The dried raw chain was coated with a waterproof film on its surface, and the apparent density was calculated using Archimedes' method. The results are not shown in Table 6. Table 6 Settling ratio of two kinds of chemical dispersants and green density value Type of chemical dispersant added Hf / H0 Relative density of green body after sedimentation * (%) Relative density of green body after centrifugation * (%) A1 13.2 % 41.8 43.7 A6 5.6% 42.8 46.4 * The theoretical density of YTZP is 6.03g / cm3. After 40 days of sedimentation and centrifugation, the wet billet has a significant difference in sedimentation height ratio and relative density of raw chains. Adding 2wt% of 46 dispersant in the suspension has good dispersion between the powders, and the upper end of the sedimentation cylinder is still turbid, making the thickness of the sedimentary embryo relatively thin (5 6%). The thickness is relatively thick (13.2%). Regardless of natural settlement or centrifugal settlement, the green density of the A6 dispersant is better than that of A1, which also proves that A6 can achieve better dispersion effect, so the sedimentation rate is slow and the embryo body is more dense. In addition, the green body prepared by the centrifugation method has a faster settling speed and a higher green body density. '' Example 3 uses two different chemical dispersants in Example 2 ^ and ", formulating suspensions of oxide files with different dispersant contents, and directly placing YTZP osmium oxide powder into two aqueous solutions without chemical dispersants, These two aqueous solutions use reagent-grade NaOΗ or HC 1 chemical liquid, and adjust the acidity of pure water to 〇〇〇 or

C:\Program Files\Patent\0231-3853-E.ptd第 16 頁 442447 五、發明說明(14) 2.0。上述六種懸浮液以氣體壓慮的方法製作生链。其步 驟先將泥漿倒入中空圓管狀的壓克力模具争,模具下方為 多孔銅基的過濾銅網’銅網上方置有一般濾紙,加以密封 後,以1 0 kg/cm2的氣壓壓濾成形。經過一段時間後,可 得直徑2.5 cm ’厚度約為0.5 cm的泥餅。將壓克力模具連 同泥餅一同置於石膏板上’使其自然乾燥,乾燥後會略為 收縮。陰乾一天後’以105C供乾一天,得到的生场用於 生链密度的量測。 上述乾燥後之生坯放入高溫燒結爐中,以每分鐘 之升溫速率到1 4 8 0 °C,持溫一小時,爐冷後取出樣品,以 阿基米德法量測燒結密度,所得之結果示於表7。表7中以 添加A6分散劑之懸浮液所製成之生坯體及燒結體的密度為 最高,分別是53. 4%及99. 7%。 表7不同分散劑及添加量之YTZP氧化鍅生坯及燒結體之密度 分散劑及用量 生坯密度(g/cm2) 燒結密度(%) A6,1·0 wt% 50.7 99.6 A6, 2.0 wt% 53.4 99.7 Al’l.Owt% 48.9 98.8 Al,2.0 wt% 34.7 98.0 pH 10 water 48.9 99.2 pH 2 water 49.7 98.9 *ΥΤΖΡ之理論密度採用6.03 g/cm3C: \ Program Files \ Patent \ 0231-3853-E.ptd page 16 442447 V. Description of the invention (14) 2.0. The above six suspensions are made into a raw chain by a gas pressure method. The first step is to pour the mud into a hollow circular acrylic mold. The bottom of the mold is a porous copper-based filter copper mesh. The general filter paper is placed on the copper mesh, sealed, and then pressure-filtered at a pressure of 10 kg / cm2. Forming. After a period of time, a mud cake having a diameter of 2.5 cm 'and a thickness of about 0.5 cm can be obtained. Put the acrylic mold on the gypsum board together with the mud cake and let it dry naturally. After drying, it will shrink slightly. After one day of dry in the shade, it was dried at 105C for one day, and the obtained field was used to measure the density of the green chain. The dried green body is placed in a high-temperature sintering furnace, and the temperature is increased to 1480 ° C per minute, and the temperature is maintained for one hour. After the furnace is cooled, the sample is taken out, and the sintering density is measured by the Archimedes method. The results are shown in Table 7. In Table 7, the density of the green body and sintered body made by adding the suspension of A6 dispersant was the highest, which were 53.4% and 99.7%, respectively. Table 7 Density dispersant and dosage of YTZP oxide sintered green body and sintered body with different dispersants and added amounts Green density (g / cm2) Sintered density (%) A6, 1.0 wt% 50.7 99.6 A6, 2.0 wt% 53.4 99.7 Al'l.Owt% 48.9 98.8 Al, 2.0 wt% 34.7 98.0 pH 10 water 48.9 99.2 pH 2 water 49.7 98.9 * The theoretical density of ΥTZP is 6.03 g / cm3

C:\ProgramFUes\Patent\023卜3853-E,ptd第 17 頁 442447 五、發明說明(15) 實施例四 採用實施例三之調製YTZP氧化锆懸浮液之方法,改變 粉體固含量’由25¾至33%體積固含量,以及以粉體之質 量為計算基礎’加入1.0至4.0重量百分率Α6分散劑,共得 到十種氧化锆之懸浮液,這些懸浮液以氣體壓濾法製得生 坯,以4述之阿基米德法量測生坯密度,得到的結果示於 第1圖。由生链密度的分布來比較,配方中固含量為 28ν〇1%、添加Α6分散劑2wt%的懸浮液可製得最高的生述密 度(53. 4%),較諸類似之膠粒製程所報導之生坯密度 4 0-48%為高。另外,生坯密度隨著固相承載量及分散劑量 的不同而改變,增加分散劑,例如第1圖中固含量 3(^〇1%’分散劑2以%的生胚坯體只有約51.8%密度,並無 法再提高生坯密度。 實施例五 採用實施例四之膠粒製程方法,製作配方中固含量為 28vol%並添加A6分散劑2wt%的懸浮液,使用氣壓壓濾法製 作生达體;另一組樣品採用同樣之γτΖρ粉末,使用12〇MPa 單轴乾壓法製作長矩形之試片,尺寸為6x7x5 Omm3。兩種 試片再經過1 40 0 °C至1 60 0 °C燒結一小時,所得到之燒結體 量測其體密度’樣品之晶粒粒徑則量自拋光表面之掃描式 電子顯微鏡(SEM)照片,所得到之體密度及粒徑結果示於 第2圖。 第2圖中乾壓成形之樣品之燒結密度在同一燒结溫度 下均低於膠粒製程之樣品密度,晶粒則是膠粒製程之樣品C: \ ProgramFUes \ Patent \ 023 Bu 3853-E, ptd page 17 442447 V. Description of the invention (15) Example 4 The method of preparing YTZP zirconia suspension in Example 3 was used to change the solid content of the powder 'from 25¾ To 33% volume solids content, and based on the mass of the powder ', adding 1.0 to 4.0% by weight of A6 dispersant, a total of ten suspensions of zirconia were obtained. These suspensions were prepared by gas pressure filtration to produce green bodies. The Archimedes method described in 4 measures the green density, and the results are shown in FIG. 1. By comparing the distribution of raw chain density, the suspension with a solid content of 28ν〇1% and the addition of A6 dispersant 2wt% can obtain the highest density (53. 4%), compared to similar colloidal processes The reported green density of 40-48% is high. In addition, the density of the green body varies with different solid-phase loadings and dispersing doses. Increase the dispersant. For example, the solid content of 3 (^ 〇1% 'dispersant 2 in% of the green body in Figure 1 has only about 51.8 % Density, which can no longer increase the density of the green body. Example 5 Using the colloidal granulation process method of Example 4, a suspension with a solid content of 28 vol% and 2% by weight of A6 dispersant was added. The other group of samples was made of the same γτZρ powder, and the long rectangular test piece was made by 120 MPa uniaxial dry pressing method with a size of 6x7x5 Omm3. The two test pieces passed through 1 40 0 ° C to 1 60 0 ° The sintered body was sintered for one hour. The bulk density of the sintered body was measured. The grain size of the sample was measured from a scanning electron microscope (SEM) photograph of the polished surface. The results of the bulk density and particle size are shown in Figure 2 Figure 2. The sintered density of the dry-formed samples in the second figure is lower than the sample density of the rubber pellet process at the same sintering temperature, and the grains are the samples of the rubber pellet process.

C:\ProgramFiles\Patent\0231-3853-E.ptd第 18 頁 4ΔΡΔΔ7_____ 五、發明說明(16) 較小,約在0 . 3至0 8mm ’膠粒製程之樣品優於乾壓樣品。 第2圖中以1 4 8 0 °C燒結一小時之樣品,其密度高於9 9. 5 % T. D.,經過研磨拋光’再經熱侵蝕將粒界顯示後,以sEm 觀察,所得到之微結構示於附件1,其晶粒平均粒徑為 〇‘ 38 mm。 採用移粒製程(colloidal processing)或是乾壓製程 (d i e-p res s i ng )之氧化锆經過1 4 8 0 t:燒結一個小時的試 片’刖者膝體製程之試片共有兩種,一是採用325mesh錢 石磨輪作表面平整度之加工,研磨平臺之速度一者採用6 m/sec ’另一是2. lm/sec,樣品名稱分別為CP(I )及 CP(II)。試片以動態試驗機(m〇del 810, MTS Co., USA) ’遵照J IS 1 6 0 7標準,測試試片之四點破壞強度,測 得之結果示於表8,由強度測量結果比較,膠體製程之樣 品強度較佳。 表8採用乾壓成形或是膠粒製程氧化锆燒結體之四點破壞平均強度(〇f) 製作法 試片數 乾壓製程樣品 544 MPa 30 膠粒製程樣品,CP(I) 661 MPa 5 膠粒製程樣品,CP(II) 748 MPa 5 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明’任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護C: \ ProgramFiles \ Patent \ 0231-3853-E.ptd page 18 4ΔΡΔΔ7 _____ V. Description of the invention (16) is small, about 0.3 to 0.8 mm. The sample of the rubber particle process is better than the dry pressed sample. In Figure 2, the sample sintered at 1480 ° C for one hour has a density higher than 99.5% TD. After grinding and polishing, and then displaying the grain boundary by thermal erosion, the result is observed by sEm. The structure is shown in Annex 1, and its average grain size is 0 '38 mm. Zirconium oxide that has undergone a colloidal processing or a dry pressing process (di ep res sing ng) undergoes 148 t: a test piece sintered for one hour. There are two types of test pieces for the stern knee system, one It is a 325mesh money stone grinding wheel for surface flatness processing. The speed of the grinding platform is 6 m / sec 'and the other is 2. lm / sec. The sample names are CP (I) and CP (II). The test piece was tested with a dynamic tester (m0del 810, MTS Co., USA) 'in accordance with the J IS 16 0 7 standard, and the four-point breaking strength of the test piece was tested. The measured results are shown in Table 8. From the strength measurement results, In comparison, the sample strength of the gel system is better. Table 8 Mean four-point failure average strength (0f) of zirconia sintered body by dry pressing or colloidal pellet production method Number of test pieces Dry compaction sample 544 MPa 30 Colloidal pellet sample, CP (I) 661 MPa 5 Granular process sample, CP (II) 748 MPa 5 Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. 'Any person skilled in the art, without departing from the spirit and scope of the present invention, Various modifications and retouching can be made, so the protection of the present invention

C:\PrograroFiles\Patent\0231-3853-E_ptd第 19 頁C: \ PrograroFiles \ Patent \ 0231-3853-E_ptd page 19

442447442447

C:\ProgramFiles\Patent\0231-3853-E. ptd第 20 頁C: \ ProgramFiles \ Patent \ 0231-3853-E. Ptd page 20

Claims (1)

442 4 pT7-- 六、申請專今 U ^範圍 IB ,i 修本 1. 一種製備氧化鍅懸浮液之方法,包括下列步驟: (a) 將氧化鍅次微米粉末加入一含有分散刺之水溶液 中,其中該氧化锆次微米粉末含有2〜5莫耳%氧化釔;以及 (b) 以球磨法,將上述加有粉體之水溶液充分混合’ 使之成中至弱鹼性懸浮液。 2. 如申請專利範圍第丨項所述之方法,其中該懸浮液 所含粉體之固體體積分率(v〇l%)為0.1〜45.0%。 3. 如申請專利範圍第2項所述之方法,其中該懸浮液 所含粉體之固體體積分率為25~35%。 4. 如申請專利範圍第1項所述之方法,其中該懸浮液 之pH值範圍為6〜9。 5. 如申請專利範圍第1項所述之方法,其中該分散劑 為含有有機酸功能基之氨鹽化合物。 6. 如申請專利範圍第5項所述之方法,其中該懸浮液 中所含之分散劑,以懸浮液中所含之氧化锆粉末質量為計 算基礎,含量為0.1〜5.0 %質量百分率。 7+ 一種氧化鍅懸浮液,包含有: 一氧化鍅次微米粉末,其含有2〜5莫耳%氧化釔;以及 一含有分散劑之水溶液,其中該分散劑為含有有機酸 功能基之氨鹽化合物; 其中該氧化锆次微来粉末係與該含有分散劑之水溶液 充分混合’成為中至弱鹼性懸浮液。 —種製造高密度燒結體之方法’係使用如申請專利 範圍第1項之方法所製得之氡化锆懸浮液,以陶瓷泥漿成 开i m製作成一陶瓷生坯,經予燒結而得—陶瓷燒結體442 4 pT7-- VI. Application for U Scope IB, i Revision 1. A method for preparing holmium oxide suspensions, including the following steps: (a) adding yttrium oxide submicron powder to an aqueous solution containing dispersed spines Wherein the zirconia submicron powder contains 2 to 5 mol% yttrium oxide; and (b) the above-mentioned powdered aqueous solution is thoroughly mixed by a ball milling method to form a medium to weakly alkaline suspension. 2. The method according to item 丨 of the scope of patent application, wherein the solid volume fraction (v0l%) of the powder contained in the suspension is 0.1 to 45.0%. 3. The method according to item 2 of the scope of patent application, wherein the solid volume fraction of the powder contained in the suspension is 25 to 35%. 4. The method according to item 1 of the scope of patent application, wherein the pH value of the suspension ranges from 6 to 9. 5. The method according to item 1 of the scope of patent application, wherein the dispersant is an ammonium salt compound containing an organic acid functional group. 6. The method according to item 5 of the scope of patent application, wherein the dispersant contained in the suspension is based on the mass of the zirconia powder contained in the suspension, and the content is 0.1 to 5.0% by mass. 7+ A hafnium oxide suspension comprising: a hafnium oxide submicron powder containing 2 to 5 mole% yttrium oxide; and an aqueous solution containing a dispersant, wherein the dispersant is an ammonia salt containing an organic acid functional group Compound; wherein the zirconia submicron powder is thoroughly mixed with the dispersant-containing aqueous solution to become a medium to weakly alkaline suspension. —A method for manufacturing a high-density sintered body 'refers to the use of a zirconium halide suspension prepared by the method described in the first item of the scope of patent application, using ceramic slurry to form a ceramic green body, and obtained by pre-sintering—ceramic Sintered body ' 442447 _案號87115720_年月日 佟正_ 六、申請專利範圍 而成。 9.如申請專利範圍第8項所述之方法,其中上述之泥 漿成形方法係由自然沉降,高速離心,或是氣體壓濾選出 一種,或綜和任意兩種以上之成形方法而成。 1 0.如申請專利範圍第8項所述之方法,其中該氧化锆 懸浮液所含的氧化銼粉體之固體體積分率(vo i %)為 25〜45°/〇。 11.如申請專利範圍第8項所述之方法,其中該生坯之 燒結溫度由1 400 °01600 °C。 1 2.如申請專利範圍第8項所述之方法,其中該燒結體 之相對體密度超過99. 5%者。'442447 _ case number 87115720_ year month day 日 Zheng _ VI. Scope of patent application. 9. The method according to item 8 of the scope of patent application, wherein the above-mentioned slurry forming method is formed by natural sedimentation, high-speed centrifugation, or gas pressure filtration, or a combination of any two or more forming methods. 10. The method according to item 8 of the scope of the patent application, wherein the solid volume fraction (vo i%) of the oxidized file powder contained in the zirconia suspension is 25 ~ 45 ° / 〇. 11. The method according to item 8 of the scope of patent application, wherein the sintering temperature of the green body is from 1 400 ° 01600 ° C. 1 2. The method as described in item 8 of the scope of patent application, wherein the relative bulk density of the sintered body exceeds 99.5%. 0231-3853-EFl-ptc 第22頁0231-3853-EFl-ptc Page 22
TW87115720A 1998-09-21 1998-09-21 Method for producing zirconia suspension and high density sintered body TW442447B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87115720A TW442447B (en) 1998-09-21 1998-09-21 Method for producing zirconia suspension and high density sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87115720A TW442447B (en) 1998-09-21 1998-09-21 Method for producing zirconia suspension and high density sintered body

Publications (1)

Publication Number Publication Date
TW442447B true TW442447B (en) 2001-06-23

Family

ID=21631428

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87115720A TW442447B (en) 1998-09-21 1998-09-21 Method for producing zirconia suspension and high density sintered body

Country Status (1)

Country Link
TW (1) TW442447B (en)

Similar Documents

Publication Publication Date Title
EP2674408B1 (en) Translucent zirconia sintered body and use of the same
US20070179041A1 (en) Zirconia Ceramic
KR101323697B1 (en) Zirconium oxide and method for the production thereof
KR930004556B1 (en) Process for durable sol-gel produced alumina-based ceramics abrasive grain and abrasive products
JPH11509241A (en) Alumina based abrasives containing silica and iron oxide
JP2009269812A (en) Light-transmitting sintered zirconia compact, method for producing the same, and use thereof
JP2008024555A (en) Zirconia fine powder, its manufacturing method and its use
JP2005306635A (en) Coated alumina particle, alumina formed body, alumina sintered compact and method of manufacturing them
JP2976226B2 (en) Manufacturing method of alumina-zirconia sintered body
JP2008019144A (en) Manufacturing method of ceramic composite material containing zirconia
JP2860953B2 (en) Components for zirconia dispersing and crushing machines
TW442447B (en) Method for producing zirconia suspension and high density sintered body
JP2013091585A (en) Zirconia powder, method for producing the same, and its application
JP2002154873A (en) Zirconia sintered compact excellent in durability
JP2006248858A (en) Yttria-stabilized zirconia sintered compact and its manufacturing method
JP2001302345A (en) Zirconia sintered body excellent in durability and manufacturing method thereof
JP2004075425A (en) Partially stabilized zirconia sintered compact
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JP2021127285A (en) Zirconia sintered body and zirconia sintered powder
JP2008150220A (en) Alumina-zirconia composite powder and method for manufacturing the same
KR101238666B1 (en) High hardness abrasive grains and manufacturing method of the same
JPH0789759A (en) Alumina for tape cast, alumina composition, alumina green sheet, alumina sintered plate and its production
JP2003128461A (en) Highly durable sintered zirconia and crusher/disperser member using the same
WO2023042893A1 (en) Powder composition, calcined body, sintered body, and method for producing same
JP2003246623A (en) Method of producing zirconia powder

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees