JPS60145965A - Manufacture of silicon nitride sintered body - Google Patents

Manufacture of silicon nitride sintered body

Info

Publication number
JPS60145965A
JPS60145965A JP59000254A JP25484A JPS60145965A JP S60145965 A JPS60145965 A JP S60145965A JP 59000254 A JP59000254 A JP 59000254A JP 25484 A JP25484 A JP 25484A JP S60145965 A JPS60145965 A JP S60145965A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
powder
magnesium oxide
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59000254A
Other languages
Japanese (ja)
Other versions
JPS6348829B2 (en
Inventor
吉田 孝三郎
哲夫 山田
敦彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP59000254A priority Critical patent/JPS60145965A/en
Publication of JPS60145965A publication Critical patent/JPS60145965A/en
Publication of JPS6348829B2 publication Critical patent/JPS6348829B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は窒化珪素質焼結体の製法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a silicon nitride sintered body.

窒化珪素質焼結体は、機械的強度、耐クリープ性、耐熱
性、耐熱衝撃性、耐蝕性などの種々の熱的及び機械的性
質が優れているため、近年、高温機械部品、高温構造材
料、耐摩耗材料、耐蝕月料への用途が期待されている。
Silicon nitride sintered bodies have excellent thermal and mechanical properties such as mechanical strength, creep resistance, heat resistance, thermal shock resistance, and corrosion resistance, so they have recently been used as high-temperature mechanical parts and high-temperature structural materials. It is expected to be used as wear-resistant materials and corrosion-resistant materials.

ところが、窒化珪素は極めて難焼結性の物質であり、そ
れ単独を焼結して高密度焼結体をfiることは困難であ
る。そこで、窒化珪素粉末に社々の酸化物粉末を添加し
て焼結することにより高密度焼結体を製造する方法が提
案されている。上記酸化物粉末としては、たとえば、マ
グネシウム、アルミニウム、イツトリウムなどの酸化物
が使用されている。
However, silicon nitride is a substance that is extremely difficult to sinter, and it is difficult to sinter it alone to form a high-density sintered body. Therefore, a method has been proposed in which a high-density sintered body is manufactured by adding oxide powder of various companies to silicon nitride powder and sintering the mixture. As the oxide powder, for example, oxides of magnesium, aluminum, yttrium, etc. are used.

特開昭58−(i4279号公報には、窒化珪素粉末に
粒径 500Å以下の酸化マグネシウムを添加して焼結
する方法が開示されている。しかし、この方法で得られ
る窒化珪素質焼結体の強度は実用上未だ充分とは言い難
い。
Japanese Unexamined Patent Publication No. Sho 58-(i4279) discloses a method of adding magnesium oxide with a particle size of 500 Å or less to silicon nitride powder and sintering it. However, the silicon nitride sintered body obtained by this method Its strength is still far from sufficient for practical use.

本発明者らは、特定の比表面積及び粒子構造を有する窒
化珪素と酸化マグネシウムとの混合物を焼結することに
より、優れた熟的性質及びa核的性質を有する窒化珪素
質焼結体が得られることを見いだし本発明を完成した。
The present inventors have discovered that by sintering a mixture of silicon nitride and magnesium oxide having a specific specific surface area and particle structure, a silicon nitride sintered body having excellent grain properties and a-nuclear properties can be obtained. The present invention was completed based on the discovery that this can be done.

即ち、本発明は、比表面積30rd/g以上の等軸形の
一次粒子からなる酸化マグネシウム粉末1〜30重量%
と、残部が比表面積3 rd / g以上の粒状窒化珪
素粉末とからなる混合物を、50〜1000kg/−の
加圧下に1500〜2000℃の温度で焼結することを
特徴とする窒化珪素質焼結体の製法である。
That is, the present invention uses 1 to 30% by weight of magnesium oxide powder consisting of equiaxed primary particles with a specific surface area of 30rd/g or more.
and the remainder is granular silicon nitride powder with a specific surface area of 3 rd/g or more, which is sintered at a temperature of 1500 to 2000°C under a pressure of 50 to 1000 kg/-. This is the method for producing solids.

本発明で使用される酸化マグネシウムは、比表面積が3
0rtr/g以上であり、等軸形の一次粒子からなる酸
化マグネシウム粉末である。
The magnesium oxide used in the present invention has a specific surface area of 3
0 rtr/g or more, and is a magnesium oxide powder consisting of equiaxed primary particles.

上記酸化マグネシウム粉末は、例えば、本願出願人の出
願になる特願昭58−88889号明1.■書に記載の
方法に従って製造することができざ。
The above-mentioned magnesium oxide powder can be used, for example, in Japanese Patent Application No. 1988-88889 filed by the present applicant. ■It cannot be manufactured according to the method described in the book.

上記方法は、マグネシウム蒸気と酸素含有気体とを、マ
グネシウム蒸気分圧0.09気圧以下、酸素含有気体の
酸素分圧がマグネシウム蒸気分圧の1/2以上、及び反
応温度が800〜16oo℃の条件で並流にて互いに接
触させて、マグネシウムを酸化させる方法である。
In the above method, magnesium vapor and oxygen-containing gas are mixed at a magnesium vapor partial pressure of 0.09 atm or less, an oxygen partial pressure of the oxygen-containing gas of 1/2 or more of the magnesium vapor partial pressure, and a reaction temperature of 800 to 16 oo C. This is a method of oxidizing magnesium by bringing them into contact with each other in parallel current conditions.

通常、酸化マグネシウム粉末は、水酸化物、酢酸塩、塩
基性炭酸塩、しゅう酸塩などの熱分解により製造されて
いる。ところが、これらの塩分間により合成された酸化
マグネシララム粉末は、二次凝集性が強く、さらに二次
粒子径が大きいことが知られている。この凝集粒子は、
窒化珪素粉末と混合した後も残存しており、−次粒子レ
ベルでの分散性が悪くて、焼結後も、粒界に大きなケイ
酸塩の塊又は気孔を残す原因となっている。粒界にこの
ような析出相又は気孔が存在すると、その個所が破壊の
起点となるため、高強度な焼結体が得られない。
Magnesium oxide powder is usually produced by thermal decomposition of hydroxide, acetate, basic carbonate, oxalate, etc. However, it is known that the magnesillarum oxide powder synthesized by these salt separations has strong secondary agglomeration and also has a large secondary particle size. These aggregated particles are
It remains even after mixing with silicon nitride powder, has poor dispersibility at the secondary particle level, and is the cause of large silicate lumps or pores remaining at grain boundaries even after sintering. If such precipitated phases or pores are present at the grain boundaries, the locations become points of origin for fracture, making it impossible to obtain a high-strength sintered body.

これに対して、上記したマグネシウム蒸気と酸素含有気
体との反応により得られる酸化マグネシウムわ〕末は、
等軸形の一次粒子より構成されており、二次凝集がほと
んどないという長所を有している。従って、窒化珪素粉
末と混合した場合、−次粒子しヘルでの均一な分散が容
易に実現でき、焼結後には、窒化珪素粒子を厚さ数百人
のマグネシウムシリケート層が覆った構造の均一な組織
の焼結体が得られる。このような均一な微細構造を有す
る焼結体は、高強度であることが知られている。
On the other hand, the magnesium oxide powder obtained by the reaction of the above-mentioned magnesium vapor and oxygen-containing gas is
It is composed of equiaxed primary particles and has the advantage of almost no secondary aggregation. Therefore, when mixed with silicon nitride powder, uniform dispersion of primary particles can be easily achieved, and after sintering, a uniform structure in which silicon nitride particles are covered with a magnesium silicate layer several hundred thick is obtained. A sintered body with a fine structure can be obtained. It is known that a sintered body having such a uniform microstructure has high strength.

このように、本発明で使用される酸化マグネシウムは、
比表面積が30rd/g以上であるという条件と、粒子
構造が等軸形の一次粒子からなるという条件とを同時に
満足する必要があり、いずれかを満足しない場合には、
窒化珪素との混合に際して、−次粒子レベルでの均で分
散が実現できず、得られる焼結体の強度が低下する。
Thus, the magnesium oxide used in the present invention is
It is necessary to simultaneously satisfy the condition that the specific surface area is 30rd/g or more and the condition that the particle structure consists of equiaxed primary particles, and if either is not satisfied,
When mixed with silicon nitride, uniform dispersion at the secondary particle level cannot be achieved, resulting in a decrease in the strength of the resulting sintered body.

本発明で使用される窒化珪素は、比表面積が5rd/g
以上であり、その粒子構造が粒状の窒1じ珪素粉末であ
る。
The silicon nitride used in the present invention has a specific surface area of 5rd/g
The above is a nitride-silicon powder whose particle structure is granular.

上記窒化珪素粉末は、例えば、四塩化珪素とアンモニア
とを液相で反応させて得られるシリコンジイミド、又は
シリコンテトラミドを熱分解させることにより製造する
ことができる。
The silicon nitride powder can be produced, for example, by thermally decomposing silicon diimide or silicon tetraamide obtained by reacting silicon tetrachloride and ammonia in a liquid phase.

本発明で使用される窒化珪素は、比表面積が5rd/g
以上であるという条件と粒子構造が粒状であるという条
件とを同時に満足する必要があり、いずれかを満足しな
い場合には、得られる焼結体の強度が低下する。
The silicon nitride used in the present invention has a specific surface area of 5rd/g
It is necessary to simultaneously satisfy the above condition and the condition that the particle structure is granular. If either of these conditions is not satisfied, the strength of the obtained sintered body will decrease.

酸化マグネシウムI5)末と窒化珪素粉末との量比は、
両者の混合物に対して、酸化マグネシウム粉1+ 末”l’oH%yr、7、好マシ<ハ1.5〜l 0重
量%である。酸化マグネシウム粉末の使用量が30重量
%より多いと、得られる焼結体の高温強度が低下し、そ
の使用量が過度に少ないと、焼結促進効果が認められず
、高密度の焼結体が得られない。
The quantitative ratio of magnesium oxide I5) powder and silicon nitride powder is:
For the mixture of both, magnesium oxide powder 1+ powder is 7% by weight, preferably 1.5 to 0% by weight. If the amount of magnesium oxide powder used is more than 30% by weight, The high-temperature strength of the resulting sintered body decreases, and if the amount used is too small, the sintering promotion effect will not be observed and a high-density sintered body will not be obtained.

酸化マグネシウムわ〕末と窒化珪素粉末とを混合する方
法については特に制限はなく、それ自体公知の方法、例
えば、両者を乾式混合する方法、又は側石をメタノール
、エタノールなどの有機溶媒中で湿式混合した後、有機
溶媒を除去する方法などを採用することができる。
There are no particular restrictions on the method of mixing magnesium oxide powder and silicon nitride powder, and methods known per se may be used, for example, dry mixing of the two, or wet mixing of side stones in an organic solvent such as methanol or ethanol. A method of removing the organic solvent after mixing can be adopted.

本発明においては、酸化マグネシウム粉末と窒化珪素粉
末との混合物を加圧下に焼結する。
In the present invention, a mixture of magnesium oxide powder and silicon nitride powder is sintered under pressure.

焼結圧力は50〜1000 kg/cれ焼結温度は15
00〜2000℃、好ましくは1600〜1800℃で
ある。焼結温度が下限より低いと高密度の焼結体を得る
ことができず、焼結温度が上限より高いと窒化珪素自体
の分解が起こる。
The sintering pressure is 50-1000 kg/c and the sintering temperature is 15
00-2000°C, preferably 1600-1800°C. If the sintering temperature is lower than the lower limit, a high-density sintered body cannot be obtained, and if the sintering temperature is higher than the upper limit, silicon nitride itself will decompose.

焼結は、窒素ガス、アルゴンガス、窒素/水素混合ガス
、窒素/−酸化炭素混合ガスなどの非酸化性雰囲気中で
行われる。
Sintering is performed in a non-oxidizing atmosphere such as nitrogen gas, argon gas, nitrogen/hydrogen mixed gas, nitrogen/carbon oxide mixed gas.

特定の比表面積及び粒子構造を有する酸化マグネシウム
と窒化珪素との混合物を使用する本発明によれば、後述
する実施例の結果かられかる。1−うに、イブれた物性
を有する窒化珪素質焼結体を(7るごとかできる。
According to the present invention, which uses a mixture of magnesium oxide and silicon nitride having a specific specific surface area and particle structure, it can be seen from the results of the examples described below. 1- A silicon nitride sintered body with excellent physical properties can be produced.

以下に実施例及び比較例を示す。Examples and comparative examples are shown below.

実施例及び比較例において、焼結体の;t71密度はア
ルキメデス法によって測定し、理論密度に対する百分率
で示した。焼結体の曲げ強度は、JISRIGOIに従
い、焼結体から3*4*40龍の棒状試験片を切り出し
、表面をダ・イヤ゛Lン1゜ホイールにて艮軸方向に研
暦した後、スパン30mm、クロスヘッドスピード0.
5mm/分の条件で室温及び1200°Cで3点曲げ試
験を行なうことにより測定した。試験片の個数は室温用
に30本、1200°C用に10本とし、値はそれらの
平均値で示した。
In the Examples and Comparative Examples, the t71 density of the sintered body was measured by the Archimedes method and expressed as a percentage of the theoretical density. The bending strength of the sintered body was determined by cutting out a 3 * 4 * 40 dragon rod-shaped test piece from the sintered body, grinding the surface in the axial direction with a diamond wheel, and then Span 30mm, crosshead speed 0.
It was measured by performing a three-point bending test at room temperature and 1200°C at a speed of 5 mm/min. The number of test pieces was 30 for room temperature and 10 for 1200°C, and the values are shown as their average values.

以下の記載において「%」はすべて「重量%」を示す。In the following description, all "%" indicates "% by weight".

実施例1〜4 特願昭58−88889月明’tUI M:に記載の方
法に従って合成した比表面積63m/gの等軸形の一次
粒子からなる酸化マグネシウムわ〕末とシリコンジイミ
ドの熱分解により合成した比表面積12゜3 n(/ 
gの粒状窒化珪素粉末とを、第1表に記載の割合でアル
ミナ製ボールミルに仕込み、エフノル中で湿式混合した
後、乾燥して、イブ〕未混合物をえた。
Examples 1 to 4 By thermal decomposition of magnesium oxide powder consisting of equiaxed primary particles with a specific surface area of 63 m/g and silicon diimide synthesized according to the method described in Japanese Patent Application No. 1988-88889. The synthesized specific surface area is 12゜3n(/
g of granular silicon nitride powder were charged into an alumina ball mill in the proportions shown in Table 1, wet mixed in an Efnol, and dried to obtain an unmixed mixture.

粉末混合物150gを直径100龍の黒鉛製ダイスに充
填し、窒素/−・酸化炭素混合雰囲気下、第1表に記載
の条件でホットプレスすることにより、成型と焼結とを
同時に行い、窒化珪素質焼結体を得た。
150 g of the powder mixture was filled into a graphite die with a diameter of 100 mm, and hot pressed under the conditions listed in Table 1 in a mixed atmosphere of nitrogen/carbon oxide to perform molding and sintering at the same time. A quality sintered body was obtained.

結果を第1表に示す。The results are shown in Table 1.

比較例1 酸化マグネシウムとして、比表面積15m/gの酸化マ
グネシウム粉末(キシダ化学製、二次粒子径:2.5μ
m)を使用した以外は実施例1と同様の方法を繰り返し
た。
Comparative Example 1 As magnesium oxide, magnesium oxide powder with a specific surface area of 15 m/g (manufactured by Kishida Chemical Co., Ltd., secondary particle size: 2.5 μ
The same method as in Example 1 was repeated except that m) was used.

結果を第1表に示す。The results are shown in Table 1.

比較例2 窒化珪素として、比表面積が10+n/gであり、粒子
構造が直径0,2μ、長さ10〜20μのt1状構造で
ある窒化珪素わ)末を使用した以外は実施例1と同様の
方法を繰り返した。
Comparative Example 2 Same as Example 1 except that silicon nitride powder having a specific surface area of 10+n/g and a particle structure having a T1-like structure with a diameter of 0.2 μ and a length of 10 to 20 μ was used as the silicon nitride. The method was repeated.

結果を第1表に示す。The results are shown in Table 1.

憚 填Filled with hesitation

Claims (1)

【特許請求の範囲】[Claims] 比表面積30rd/g以上の等軸形の=−・欠粒子から
なる酸化マグネシウム粉末1〜30重量%と、残部が比
表面積5n(/g以上の粒状窒化珪素粉末とからなる混
合物を、50〜1000 kg/cdの加圧下に1−5
00〜2000℃の温度で焼結することを特徴とする窒
化珪素質焼結体の製法。
A mixture consisting of 1 to 30% by weight of magnesium oxide powder consisting of equiaxed =- missing particles with a specific surface area of 30rd/g or more, and the balance consisting of granular silicon nitride powder with a specific surface area of 5n(/g or more), 1-5 under pressure of 1000 kg/cd
A method for producing a silicon nitride sintered body, characterized by sintering at a temperature of 00 to 2000°C.
JP59000254A 1984-01-06 1984-01-06 Manufacture of silicon nitride sintered body Granted JPS60145965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000254A JPS60145965A (en) 1984-01-06 1984-01-06 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000254A JPS60145965A (en) 1984-01-06 1984-01-06 Manufacture of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS60145965A true JPS60145965A (en) 1985-08-01
JPS6348829B2 JPS6348829B2 (en) 1988-09-30

Family

ID=11468790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000254A Granted JPS60145965A (en) 1984-01-06 1984-01-06 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS60145965A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110069A (en) * 1984-06-21 1986-01-17 京セラ株式会社 High strength minute silicon nitride sintered body and manufacture
US5238884A (en) * 1990-01-23 1993-08-24 Ngk Insulators, Ltd. Silicon nitride bodies and a process for producing the same
EP3395780A1 (en) 2017-04-24 2018-10-31 Kyocera Corporation Ceramic substrate and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104975A (en) * 1979-02-02 1980-08-11 Asahi Glass Co Ltd Manufacture of silicon nitride sintered body
JPS5864279A (en) * 1981-10-12 1983-04-16 住友電気工業株式会社 Non-oxide ceramics sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104975A (en) * 1979-02-02 1980-08-11 Asahi Glass Co Ltd Manufacture of silicon nitride sintered body
JPS5864279A (en) * 1981-10-12 1983-04-16 住友電気工業株式会社 Non-oxide ceramics sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110069A (en) * 1984-06-21 1986-01-17 京セラ株式会社 High strength minute silicon nitride sintered body and manufacture
US5238884A (en) * 1990-01-23 1993-08-24 Ngk Insulators, Ltd. Silicon nitride bodies and a process for producing the same
EP3395780A1 (en) 2017-04-24 2018-10-31 Kyocera Corporation Ceramic substrate and electronic device
US10462899B2 (en) 2017-04-24 2019-10-29 Kyocera Corporation Ceramic substrate and electronic device

Also Published As

Publication number Publication date
JPS6348829B2 (en) 1988-09-30

Similar Documents

Publication Publication Date Title
JP5578784B2 (en) Alpha-aluminum oxide-based nanocrystal sintered body, method for producing the same, and use thereof
JPH0475190B2 (en)
JPS5855377A (en) Manufacture of aluminum nitride sintered body
US3531245A (en) Magnesium-aluminum nitrides
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPS59169983A (en) Refractory metal boride product and manufacture
Yamamoto et al. Preparation and oxidation of Al4SiC4
WO2021200830A1 (en) Silicon nitride powder, and method for producing silicon nitride sintered body
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
JPS60176910A (en) Production of aluminum nitride powder
TWI288121B (en) Process for producing zirconia powder
JP2001080967A (en) Si3N4 CERAMIC, Si-BASED COMPOSITION FOR PRODUCING THE SAME AND PRODUCTION OF THE CERAMIC AND THE COMPOSITION
JPS60145965A (en) Manufacture of silicon nitride sintered body
JP2010524838A (en) Materials based on boron suboxide
US7314593B2 (en) Process for preparing improved silicon carbide powder
US4487734A (en) Method for the preparation of a high density sintered body of silicon carbide
JP3640432B2 (en) Method for producing fluid tungsten / copper composite powder
JP4442214B2 (en) Method for producing fine α-alumina
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS59190268A (en) Silicon carbide sintered body
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPH02271919A (en) Production of fine powder of titanium carbide
JPS638265A (en) Manufacture of composite sintered body
JPS62100405A (en) Aluminium nitride powder and production thereof
JPS58217469A (en) Manufacture of silicon nitride-silicon carbide composition