JPS6052A - Non-aqueous electrolytic solution battery - Google Patents

Non-aqueous electrolytic solution battery

Info

Publication number
JPS6052A
JPS6052A JP58105650A JP10565083A JPS6052A JP S6052 A JPS6052 A JP S6052A JP 58105650 A JP58105650 A JP 58105650A JP 10565083 A JP10565083 A JP 10565083A JP S6052 A JPS6052 A JP S6052A
Authority
JP
Japan
Prior art keywords
battery
separator
short
circuit current
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58105650A
Other languages
Japanese (ja)
Other versions
JPH0516139B2 (en
Inventor
Kohei Yamamoto
浩平 山本
Toshio Mizuno
水野 利男
Yasuhiro Ishiguro
康裕 石黒
Masanori Nakanishi
正典 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP58105650A priority Critical patent/JPS6052A/en
Publication of JPS6052A publication Critical patent/JPS6052A/en
Publication of JPH0516139B2 publication Critical patent/JPH0516139B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To prevent the heating and explosion in case of a short-circuit without injuring the battery performance, by bonding previously pulverized polyethylene powder onto the separator of the captioned battery which uses non-aqueous electrolytic solution. CONSTITUTION:A separator is made of non-woven polypropylene cloth or non- woven polypropylene cloth mixed with glass fiber. About 5-40% of pulverized polypropylene powder is previously bonded onto the separator. When short-circuit occurs across both electrodes in this battery, the inside of this battery is heated by the short-circuit current. When the inside temperature the battery reaches about 110-120 deg.C, the pulverized polypropylene powder bonded onto the separator is melted and the conductivity of the separator is injured. Consequently, the internal resistance of the battery suddenly increases and the short-circuit current thereof suddenly decreases. Also, the battery temperature is lowered in proportion to the decrease of the short-circuit current and the possibility of explosion is eliminated.

Description

【発明の詳細な説明】 この発明は非水電解液電池に関し、特に、電池短絡時の
安全性についての改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to non-aqueous electrolyte batteries, and particularly to improvements in safety in the event of battery short circuit.

非水電解液電池は、リチウム、ナトリウム、カリウム、
カルシウム、マグネシウムあるいはアルミニウム等の軽
金属を負極活物質として用いるとともに、電解液として
非水の有機溶媒にイオン導電性をもたせるために、アル
カリ金属塩を溶かした有機電解質を使用することを特徴
としており、高いエネルギー密度、広い作動温度範囲お
よび長期にわたる保存性が理論的に示され、小型かつ高
性能な電池どして脚光を浴びている。
Nonaqueous electrolyte batteries include lithium, sodium, potassium,
It is characterized by using a light metal such as calcium, magnesium or aluminum as the negative electrode active material, and using an organic electrolyte in which an alkali metal salt is dissolved in order to impart ionic conductivity to a non-aqueous organic solvent as the electrolyte. Theoretically, they have high energy density, wide operating temperature range, and long-term storage properties, and are attracting attention as small, high-performance batteries.

リチウム等の金属は極めて化学的な活性が強く、水と激
しく反応して水素を発生するため、通常の水溶性電解液
は使用することができない。そこで、この種の電池では
、非水の電解液として、プロピレン・カーボネイト(P
C)、γ−ブチロラク1〜ン(BL)あるいはジメチル
ボルムアマイド(DMF)等の非水の有機溶媒にイオン
導電性をもたせるためのアルカリ金属塩を溶かした有機
電解質が広く用いられるようになり、この種の非水電解
液電池の実用化が促進されている。
Metals such as lithium have extremely strong chemical activity and react violently with water to generate hydrogen, so ordinary water-soluble electrolytes cannot be used. Therefore, in this type of battery, propylene carbonate (P) is used as the non-aqueous electrolyte.
C) Organic electrolytes prepared by dissolving alkali metal salts in non-aqueous organic solvents such as γ-butyrolactone (BL) or dimethylboramide (DMF) to impart ionic conductivity have become widely used. The practical application of this type of non-aqueous electrolyte battery is being promoted.

従来の非水電解液電池においては、正極活物質どして二
酸化マンガンあるいは銀等が用いられ、また、非水電解
液を含浸するセパレータとして、ポリプロピレン不織布
あるいはこれにガラスli耗を混入したもの等、イオン
透過度が大きく適度な機械的強度を持つ多孔性の絶縁体
が使用されている。これら負極活物質、正極活物質およ
び非水電解液を含むセパレータが電池ケース内に密封さ
れている。
In conventional nonaqueous electrolyte batteries, manganese dioxide or silver is used as the positive electrode active material, and polypropylene nonwoven fabric or a material with glass lithium mixed therein is used as the separator to impregnate the nonaqueous electrolyte. , a porous insulator with high ion permeability and moderate mechanical strength is used. A separator containing the negative electrode active material, positive electrode active material, and non-aqueous electrolyte is sealed inside the battery case.

この種の非水電解液電池では、従来、次のような問題が
指摘されていた。つまり、電池の両極を誤って短絡する
と、非常に大ぎな短絡電流が流れ、この短絡電流によっ
て電池内部が加熱して、異常な高温となり、非水の電解
液を用いていることから、短絡時間が長いど電池が爆発
してしまうことがあった。
Conventionally, the following problems have been pointed out in this type of non-aqueous electrolyte battery. In other words, if you accidentally short-circuit the two poles of a battery, a very large short-circuit current will flow, and this short-circuit current will heat up the inside of the battery, resulting in an abnormally high temperature.Since a non-aqueous electrolyte is used, the short-circuit time will increase. The battery sometimes exploded after being used for a long time.

この加熱・爆発の危険性は、内部抵抗が低くて、取出し
得る電流容量の大きな電池、すなわち、負荷性能の優れ
た電池程人きい。
The risk of heating and explosion is greater for batteries with lower internal resistance and higher current capacity, that is, batteries with better load performance.

このように、非水電解液電池は、高い電気的エネルギー
を取出し得るが、これと相反する問題として、電池短絡
時の加熱・爆発という危険性を伴うものであった。
As described above, non-aqueous electrolyte batteries can extract high electrical energy, but this is accompanied by the risk of overheating and explosion when the battery is short-circuited.

この発明は上述した従来の問題点に鑑みてなされたもの
であり、その目的は、電池性能を損なうことなく、かつ
簡単な構成で、短絡時の加熱・爆発の危険性を防止でき
るようにした非水電解液電池を提供することにある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to prevent the risk of heating and explosion in the event of a short circuit with a simple structure and without impairing battery performance. An object of the present invention is to provide a non-aqueous electrolyte battery.

上記の目的を達成するために、この発明は、ポリプロピ
レン不織イb等からなるセパレータに、ポリエチレン微
粉末を予め定着してa3き、大きな短絡電流によって電
池内がある程度J:で高温になると、上記ポリエチレン
微粉末が溶解してセパレータのイオン導電性を大きく低
下させ、その結果短絡電流が急激に低下してそれ以上の
温度土性どそれに伴う爆発を防ぐようにしたことを特徴
とする。
In order to achieve the above object, this invention preliminarily fixes polyethylene fine powder to a separator made of non-woven polypropylene etc., and when the inside of the battery becomes high temperature to a certain degree J: due to a large short circuit current, It is characterized in that the above-mentioned fine polyethylene powder melts and greatly reduces the ionic conductivity of the separator, resulting in a sudden drop in short circuit current to prevent explosions caused by higher temperatures.

以下、この発明の一実施例を図面に基づいて計則に説明
する。
Hereinafter, one embodiment of the present invention will be explained in detail based on the drawings.

図に示す電池は、負極化1と正極端子板3 iJ5よび
ガスケット4からなる電池ケース内に正極6とセパレー
タ5および負極7からなる発電要素2が非水電解液9と
ともに絶縁板8を介在させて密封入されている。セパレ
ータ5.正極6.負極7はそれぞれ帯状に形成されてお
り、これらはセパレータ5を挾んで交互に正極6.負極
7が配置されるように重ね合わされ、渦巻状に巻かれて
いる。
In the battery shown in the figure, a power generation element 2 consisting of a positive electrode 6, a separator 5, and a negative electrode 7 is placed in a battery case consisting of a negative electrode 1, a positive terminal plate 3 iJ5, and a gasket 4, with an insulating plate 8 interposed together with a non-aqueous electrolyte 9. It is sealed. Separator 5. Positive electrode6. Each of the negative electrodes 7 is formed into a band shape, and these are alternately connected to the positive electrodes 6, 6, 7, with the separator 5 in between. They are stacked one on top of the other so that the negative electrode 7 is arranged and are spirally wound.

負極7としてはリヂウム等の軽金属が使用され、これと
負極化1が負極リード線11で結線されている。正極6
としては二酸化マンガン等が使用され、これと正4F1
.端子板3が正極リード線10で結線されている。また
、非水電解液9としては、前述した非水の有機溶媒にア
ルカリ金属塩を溶かした有機電解質が使用されている。
A light metal such as lithium is used as the negative electrode 7 , and the negative electrode 1 is connected to the negative electrode 1 by a negative electrode lead wire 11 . positive electrode 6
Manganese dioxide etc. are used as the material, and this and positive 4F1
.. The terminal plate 3 is connected with a positive electrode lead wire 10. Further, as the non-aqueous electrolyte 9, an organic electrolyte in which an alkali metal salt is dissolved in the aforementioned non-aqueous organic solvent is used.

セパレータ5はイオン導電性が大きく適度な機械的強度
を持つ多孔性の絶縁体、例えばポリプロピレン不織布あ
るいはガラス繊維゛を混入したポリプロピレン不織布か
らなる。ここで注目すべきことは、この発明の非水電解
液電池にあっては、セパレータ5にポリエチレン微粉末
を予め添着しである点である。
The separator 5 is made of a porous insulator having high ionic conductivity and appropriate mechanical strength, such as a polypropylene nonwoven fabric or a polypropylene nonwoven fabric mixed with glass fiber. What should be noted here is that in the nonaqueous electrolyte battery of the present invention, polyethylene fine powder is attached to the separator 5 in advance.

ポリエチレン微粉末は次のようにしてセパレータ5に添
着される。つまり、ポリエチレンの水性系エマルジョン
にセパレータ5を浸漬し、その後これを取出し乾燥する
ことにより、セパレータ5に数ミクロン程度の粒径のポ
リエチレン微粉末が添着する。ポリエチレン微粉末の添
着mとしては、重量比で5〜40%程度が好ましい。
The polyethylene fine powder is attached to the separator 5 in the following manner. That is, by immersing the separator 5 in an aqueous polyethylene emulsion and then taking it out and drying it, polyethylene fine powder with a particle size of about several microns is attached to the separator 5. The impregnated amount m of polyethylene fine powder is preferably about 5 to 40% by weight.

上述のようにセパレータ5にポリエチレン微粉末が添着
された非水電解液電池にあっては、その両極を短絡した
時、先ず従来と同様に人さ゛なγ、(1絡電流が流れ、
その短絡電流によって電池内部が発熱し、除々に高温と
なる。電池の内部温度が110〜120℃程度の一定温
度に達するとセパレータ5に添着されているポリエチレ
ン微粉末が溶解する。ポリエチレン微粉末が溶解づるこ
とにより、セパレータ5の導電性が著しく損われセパレ
ータ5ば殆ど導電性のないフィルムとなる。その結果、
電池の内部抵抗が急激に増加し、従って電池のりAi絡
雷電流急激に減少し、さらに電池温度が上界することが
なくなり、むしろ電池温度は短絡電流の減少にともなっ
て低下し、従来のような爆発の危険性が全くなくなる。
As mentioned above, in a non-aqueous electrolyte battery in which fine polyethylene powder is attached to the separator 5, when the two electrodes are short-circuited, first, as in the conventional case, an insignificant γ, (1-circuit current flows,
The short-circuit current generates heat inside the battery, gradually increasing the temperature. When the internal temperature of the battery reaches a certain temperature of about 110 to 120°C, the fine polyethylene powder attached to the separator 5 dissolves. As the polyethylene fine powder dissolves, the electrical conductivity of the separator 5 is significantly impaired, and the separator 5 becomes a film with almost no electrical conductivity. the result,
The internal resistance of the battery increases rapidly, and as a result, the battery current suddenly decreases, and the battery temperature no longer reaches an upper limit.In fact, the battery temperature decreases as the short-circuit current decreases, and the battery temperature decreases as the short-circuit current decreases. There is no danger of explosion.

第2図は上述した本発明による非水電解液電池の作用を
従来のものと比較・して示1グラフである。
FIG. 2 is a graph showing the operation of the non-aqueous electrolyte battery according to the present invention described above in comparison with a conventional one.

同図において、横軸は電池を短絡してからの経過時間で
あり、縦軸は電池温度を示している。特性Aは従来の非
水電解液電池のものであり、これでは電池温度が除々に
上昇し、180℃以上になると爆発を起こすことが多く
なる。これに対し、特性Bが本発明の非水電解液電池で
あり、図のように本発明による電池では、電池温度が1
20℃近くになると、前)ホしたにうにセパレータ5に
添着されていた微粉末が溶解′丈ることから、温度はそ
れ以上上昇せずむしろ下降する。これによって電池の爆
発の危険性はなくなる。
In the figure, the horizontal axis represents the elapsed time after the battery was short-circuited, and the vertical axis represents the battery temperature. Characteristic A is that of conventional non-aqueous electrolyte batteries, in which the battery temperature gradually rises, and when it reaches 180° C. or higher, explosions often occur. On the other hand, characteristic B is the nonaqueous electrolyte battery of the present invention, and as shown in the figure, in the battery of the present invention, the battery temperature is 1
When the temperature approaches 20.degree. C., the fine powder attached to the separator 5 as in the previous step is dissolved, so the temperature does not rise any further but rather falls. This eliminates the risk of battery explosion.

なd5、この発明は第1図に示したような発電要素が渦
巻状に形成された非水電解液電池に限らず、伯の構造の
非水電解液電池にも適用でき、上記と同様な作用効果を
奏する。
d5. The present invention is applicable not only to a non-aqueous electrolyte battery in which the power generation element is formed in a spiral shape as shown in FIG. It has an effect.

以上、詳細°に説明したように、この発明に係る非水電
解液電池にあっては、セパレータにボリエチレン微粉末
を添着するという極簡単な構成により、電池性能を損な
うことなく、電池短絡時の加熱・爆発の危険性を防止す
ることができ、高負荷性能と安全性を両立さぼることが
できる。
As explained above in detail, the non-aqueous electrolyte battery according to the present invention has an extremely simple structure in which fine polyethylene powder is attached to the separator, so that the non-aqueous electrolyte battery can be easily used in the event of a short circuit without impairing the battery performance. It is possible to prevent the risk of overheating and explosion, and it is possible to achieve both high load performance and safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による非水電解液電池の一実施例を示
ず断面図、第2図はこの発明による非水電解液電池の作
用効果を従来のものと比較して示ずグラフである。 1・・・・・・・・・・・・・・・負極色2・・・・・
・・・・・・・・・・発電要素3・・・・・・・・・・
・・・・・正極端子板5・・・・・・・・・・・・・・
・セパレータ6・・・・・・・・・・・・・・・正極7
・・・・・・・・・・・・・・・負極特許出願人 富士
電気化学株式会着 代 理 人 弁理上 −色健輔 第2図 第1図
Fig. 1 is a cross-sectional view of an embodiment of the non-aqueous electrolyte battery according to the present invention, and Fig. 2 is a graph showing the effects of the non-aqueous electrolyte battery according to the present invention in comparison with conventional ones. . 1・・・・・・・・・・・・Negative electrode color 2・・・・・・
・・・・・・・・・Power generation element 3・・・・・・・・・・
・・・・・・Positive terminal plate 5・・・・・・・・・・・・・・・
・Separator 6・・・・・・・・・・・・Positive electrode 7
・・・・・・・・・・・・Negative electrode patent applicant Fuji Electrochemical Co., Ltd. Attorney Attorney - Kensuke Shiro Figure 2 Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1〉軽金属よりなる負極、非水電解液が含浸されたセ
パレータ、および正極で構成される非水電解液電池にお
いて、上記セパレータにポリエチレン微粉末が予め添着
されていることを特徴とする非水電解液電池。
(1) A non-aqueous electrolyte battery composed of a negative electrode made of a light metal, a separator impregnated with a non-aqueous electrolyte, and a positive electrode, characterized in that the separator is preliminarily attached with polyethylene fine powder. electrolyte battery.
JP58105650A 1983-06-15 1983-06-15 Non-aqueous electrolytic solution battery Granted JPS6052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105650A JPS6052A (en) 1983-06-15 1983-06-15 Non-aqueous electrolytic solution battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105650A JPS6052A (en) 1983-06-15 1983-06-15 Non-aqueous electrolytic solution battery

Publications (2)

Publication Number Publication Date
JPS6052A true JPS6052A (en) 1985-01-05
JPH0516139B2 JPH0516139B2 (en) 1993-03-03

Family

ID=14413321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105650A Granted JPS6052A (en) 1983-06-15 1983-06-15 Non-aqueous electrolytic solution battery

Country Status (1)

Country Link
JP (1) JPS6052A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201875A2 (en) * 1985-05-16 1986-11-20 W.R. Grace & Co.-Conn. Battery separator
JPS63259961A (en) * 1987-04-16 1988-10-27 Sanyo Electric Co Ltd Cell case
JPS63308866A (en) * 1987-06-10 1988-12-16 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery
JPH01186751A (en) * 1988-01-16 1989-07-26 Nitto Denko Corp Separator for cell
US4949051A (en) * 1989-09-01 1990-08-14 General Electric Company Phase lock clock recovery with aided frequency aquisition
EP0391694A2 (en) * 1989-04-05 1990-10-10 Hoechst Celanese Corporation Battery separator with integral thermal fuse
WO1991006984A1 (en) * 1989-11-07 1991-05-16 Minnesota Mining And Manufacturing Company Electrochemical cell separator assembly
EP0432501A2 (en) * 1989-11-15 1991-06-19 Matsushita Electric Industrial Co., Ltd. Non-aqueous inorganic electrolyte cell
US5132189A (en) * 1989-09-07 1992-07-21 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5158848A (en) * 1990-01-17 1992-10-27 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5178981A (en) * 1990-03-08 1993-01-12 Fuji Electric Co., Ltd. Photoconductor for electrophotography with a charge generating substance comprising a polycyclic and azo compound
EP1047145A1 (en) * 1999-04-22 2000-10-25 NBT GmbH Process for making secondary lithium element with heat-sensitive protective element
US6447958B1 (en) 1998-04-27 2002-09-10 Sumitomo Chemical Co., Ltd. Non-aqueous electrolyte battery separator
JP2006286311A (en) * 2005-03-31 2006-10-19 Asahi Kasei Chemicals Corp Composite porous film
US7407702B2 (en) 1999-09-13 2008-08-05 Teijin Limited Polymetaphenylene isophthalamide-based polymer porous film, process for its production and battery separator
WO2011055596A1 (en) 2009-11-09 2011-05-12 東レ株式会社 Porous film and electricity storage device
WO2012023348A1 (en) 2010-08-18 2012-02-23 積水化学工業株式会社 Propylene resin micropore film, battery separator, battery and method of manufacturing propylene resin micropore film
JP2012064556A (en) * 2010-08-18 2012-03-29 Sekisui Chem Co Ltd Propylene resin micropore film, battery separator, battery and method of manufacturing propylene resin micropore film
US20120202104A1 (en) * 2011-02-03 2012-08-09 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
US9023534B2 (en) 2005-07-29 2015-05-05 Toyo Boseki Kabushiki Kaisha Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component
US10916752B2 (en) 2018-04-30 2021-02-09 Hyundai Motor Company Lithium secondary battery and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875763A (en) * 1981-10-30 1983-05-07 Toshiba Battery Co Ltd Organic solvent battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875763A (en) * 1981-10-30 1983-05-07 Toshiba Battery Co Ltd Organic solvent battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201875A2 (en) * 1985-05-16 1986-11-20 W.R. Grace & Co.-Conn. Battery separator
JPS63259961A (en) * 1987-04-16 1988-10-27 Sanyo Electric Co Ltd Cell case
JPS63308866A (en) * 1987-06-10 1988-12-16 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery
JPH01186751A (en) * 1988-01-16 1989-07-26 Nitto Denko Corp Separator for cell
EP0391694A2 (en) * 1989-04-05 1990-10-10 Hoechst Celanese Corporation Battery separator with integral thermal fuse
US4973532A (en) * 1989-04-05 1990-11-27 Hoechst Celanese Corporation Battery separator with integral thermal fuse
US4949051A (en) * 1989-09-01 1990-08-14 General Electric Company Phase lock clock recovery with aided frequency aquisition
US5132189A (en) * 1989-09-07 1992-07-21 Fuji Electric Co., Ltd. Photoconductor for electrophotography
WO1991006984A1 (en) * 1989-11-07 1991-05-16 Minnesota Mining And Manufacturing Company Electrochemical cell separator assembly
US5273843A (en) * 1989-11-15 1993-12-28 Matsushita Electric Industrial Co., Ltd. Non-aqueous inorganic electrolyte cell
EP0432501A2 (en) * 1989-11-15 1991-06-19 Matsushita Electric Industrial Co., Ltd. Non-aqueous inorganic electrolyte cell
US5158848A (en) * 1990-01-17 1992-10-27 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5178981A (en) * 1990-03-08 1993-01-12 Fuji Electric Co., Ltd. Photoconductor for electrophotography with a charge generating substance comprising a polycyclic and azo compound
US6447958B1 (en) 1998-04-27 2002-09-10 Sumitomo Chemical Co., Ltd. Non-aqueous electrolyte battery separator
EP1047145A1 (en) * 1999-04-22 2000-10-25 NBT GmbH Process for making secondary lithium element with heat-sensitive protective element
US6511517B1 (en) 1999-04-22 2003-01-28 Nbt Gmbh Method for producing a secondary lithium cell comprising a heat-sensitive protective mechanism
US7407702B2 (en) 1999-09-13 2008-08-05 Teijin Limited Polymetaphenylene isophthalamide-based polymer porous film, process for its production and battery separator
JP2006286311A (en) * 2005-03-31 2006-10-19 Asahi Kasei Chemicals Corp Composite porous film
US9023534B2 (en) 2005-07-29 2015-05-05 Toyo Boseki Kabushiki Kaisha Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component
WO2011055596A1 (en) 2009-11-09 2011-05-12 東レ株式会社 Porous film and electricity storage device
JP2012064556A (en) * 2010-08-18 2012-03-29 Sekisui Chem Co Ltd Propylene resin micropore film, battery separator, battery and method of manufacturing propylene resin micropore film
WO2012023348A1 (en) 2010-08-18 2012-02-23 積水化学工業株式会社 Propylene resin micropore film, battery separator, battery and method of manufacturing propylene resin micropore film
US20120202104A1 (en) * 2011-02-03 2012-08-09 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
US8980461B2 (en) * 2011-02-03 2015-03-17 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
EP2485297A3 (en) * 2011-02-03 2015-06-03 Samsung SDI Co., Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
US10916752B2 (en) 2018-04-30 2021-02-09 Hyundai Motor Company Lithium secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0516139B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
JPS6052A (en) Non-aqueous electrolytic solution battery
JPS59191273A (en) Nonaqueous solvent cell
JP2001084984A (en) Battery
JPH0516140B2 (en)
JP2006100164A (en) Lithium/iron disulfide primary battery
JPH0311806Y2 (en)
JP5376622B2 (en) Electrochemical element separator and electrochemical element
JPH07192753A (en) Lithium secondary battery
JPS63308866A (en) Nonaqueous electrolytic solution battery
JPS6394556A (en) Nonaqueous electrolyte cell
JPH0548209U (en) Non-aqueous electrolyte battery
JP2001076732A (en) Flexible electrode and electrochemical element using it
JP3486694B2 (en) Thin battery
JPH01161671A (en) Nonaqueous electrolyte battery
JPH10233339A (en) Electrochemical device
JPH067483B2 (en) Non-aqueous electrolyte battery
JPH0887995A (en) Organic electrolyte battery
JPS58158856A (en) Nonaqueous electrolytic battery
JPS63205048A (en) Nonaqueous electrolyte battery
JPS61232560A (en) Lithium battery
JPH02304863A (en) Nonaqueous electrolyte battery
JP2792859B2 (en) Non-aqueous electrolyte battery
JPS58209068A (en) Battery
JPH1050293A (en) Electrochemical device
JPS5987771A (en) Nonaqueous solvent battery