JPS63205048A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS63205048A
JPS63205048A JP62038167A JP3816787A JPS63205048A JP S63205048 A JPS63205048 A JP S63205048A JP 62038167 A JP62038167 A JP 62038167A JP 3816787 A JP3816787 A JP 3816787A JP S63205048 A JPS63205048 A JP S63205048A
Authority
JP
Japan
Prior art keywords
separator
battery
aqueous electrolyte
electrolyte battery
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62038167A
Other languages
Japanese (ja)
Inventor
Satoshi Ubukawa
生川 訓
Minoru Fujimoto
実 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62038167A priority Critical patent/JPS63205048A/en
Publication of JPS63205048A publication Critical patent/JPS63205048A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To prevent the breakage of a separator by forming the separator with a crosslinked polyethylene microporous film. CONSTITUTION:A separator 4 is formed with a crosslinked polyethylene microporous film. Since the microporous film has networks, mechanical strength is increased. Even if the vertical force is applied to the plane surface of the separator 4, the separator 4 is difficult to be broken and short circuit between electrodes can be prevented. Even if external short circuit arises, Joule heat caused by short circuit increases the temperature of a battery 1 and polyethylene melts to close the micropores of the polyethylene. Accordingly, the transfer of ions between positive and negative electrodes is obstructed, current flow is discontinued, and an increase in battery temperature is retarded.

Description

【発明の詳細な説明】 皇叉上■■朋分立 本発明は非水電解液電池に関し、殊にそのセパレータに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nonaqueous electrolyte battery, and particularly to a separator thereof.

l米■孜玉 非水電解液電池は高エネルギー密度で、且つ自己放電が
少ないという利点を有しており、近年特に大電流用の電
池として注目されている。
Nonaqueous electrolyte batteries have the advantages of high energy density and low self-discharge, and have recently attracted attention as batteries for large currents.

ところで、この非水電解液電池は非水電解液の電導度が
低く、大電流を取り出すためには正負両極の対向面積を
太き(する必要があるが、対向面積を大きくすると、電
池自身が大型化してしまうという欠点があった。この欠
点を解消するために上記非水電解液電池は、金属化合物
を活物質とする正極と軽金属を活物質とする負極との間
にポリエチレンやポリプロピレン等からなる不織布で形
成されたセパレータを介挿して、これら正穫、セパレー
タ、負極の3者を巻回してなる渦巻式電極を採用してい
た。しかし、この電池を外部短絡させた場合、短絡電流
によるジュール熱のために電池の温度上昇が起こり、セ
パレータであるところの不織布が軟化溶融し、正負両極
が接触して内部短絡が起こり、一層の温度上昇を招来す
ると共に、前記非水電解液の分解によりガスが発生し、
電池の発火、爆発等が起こる虞があるという問題点があ
った。
By the way, in this non-aqueous electrolyte battery, the conductivity of the non-aqueous electrolyte is low, and in order to extract a large current, it is necessary to increase the facing area of the positive and negative electrodes, but if the facing area is increased, the battery itself will It had the disadvantage of being large in size.In order to overcome this disadvantage, the above-mentioned non-aqueous electrolyte battery uses polyethylene, polypropylene, etc. A spiral electrode was used in which the positive electrode, the separator, and the negative electrode were wound around a separator made of nonwoven fabric.However, when this battery was short-circuited externally, the short-circuit current caused The temperature of the battery rises due to Joule heat, and the nonwoven fabric that serves as a separator softens and melts, causing the positive and negative electrodes to come into contact and causing an internal short circuit, causing a further temperature rise and decomposition of the non-aqueous electrolyte. Gas is generated by
There is a problem that there is a risk that the battery may catch fire or explode.

そこで、出願人はセパレータとしてポリエチレンやポリ
プロピレンの微多孔膜を使用することによって、上述の
ような問題点を解消すべく非水電解法電池を既に提案し
ている(特開昭60−23954号公報、PTC: H
OIM 6/16)。即ち、該非水電解液電池はセパレ
ータにポリエチレンやポリプロピレンの微多孔膜を使用
したので、外部短絡が起こって短絡電流によるジュール
熱のために電池の温度上昇が生じても、上記微多孔膜が
溶融して微多孔を閉塞し、正負両極間のイオンの移動が
阻止され、電流が流れなくなる。つまり、電池の温度上
昇が抑制され、電池の発火、爆発等が起こる危険性が生
じなくなり、安全性もある程度改善されたものとなった
Therefore, the applicant has already proposed a non-aqueous electrolysis battery using a microporous membrane of polyethylene or polypropylene as a separator to solve the above-mentioned problems (Japanese Patent Laid-Open No. 60-23954, PTC:H
OIM 6/16). That is, since the non-aqueous electrolyte battery uses a microporous membrane made of polyethylene or polypropylene for the separator, even if an external short circuit occurs and the temperature of the battery rises due to Joule heat caused by the short circuit current, the microporous membrane will not melt. This blocks the micropores and prevents the movement of ions between the positive and negative electrodes, preventing current from flowing. In other words, the temperature rise of the battery is suppressed, and the risk of battery ignition, explosion, etc. is eliminated, and safety is improved to some extent.

、Oが解ゞ しようとする5 屯 ところで、非水電解液電池において、渦巻式電極を形成
するセパレータは正負両電極間の距離を短(して電極の
占める割合を小さくするためにできるだけ薄型のもの(
膜厚50μm以下)が望ましい。しかし、正極は活物質
として使用される金属化合物の電導性が悪いために、電
導性の良い黒鉛やアセチレンブラック等の粉末及び四フ
ッ化エチレンや四フッ化エチレンと六フッ化プロピレン
との共重合体を正極活物質に加えて正極活物質の電導性
及び結着性を上げ、さらにこの混合物に水を加えてペー
スト状とし、ステンレスの芯体に塗布して後乾燥させて
形成している。従って、正極の端部がステンレスの芯体
から剥離し易いだけでなく、該正極をセパレータや負極
と共に巻回して渦巻き状に変形させるとその湾曲部の正
極粉末が正極から剥離する虞がある。そして、正極から
剥離した正極粉末が正極とセパレータとの間に介在した
状態で渦巻式電極を形成すると、正極から剥離した正極
粉末のある電極部分だけがその厚みを増し、そこに接触
しているセパレータが伸張して、膜厚がより一層薄くな
る。
By the way, in a non-aqueous electrolyte battery, the separator forming the spiral electrode is made as thin as possible in order to shorten the distance between the positive and negative electrodes (and thus reduce the proportion occupied by the electrodes). thing(
A film thickness of 50 μm or less is desirable. However, since the metal compound used as the active material has poor conductivity, the positive electrode is made of powders such as graphite and acetylene black, which have good conductivity, and tetrafluoroethylene, or a copolymer of tetrafluoroethylene and hexafluoropropylene. The mixture is added to the positive electrode active material to increase the conductivity and binding properties of the positive electrode active material, and water is added to this mixture to form a paste, which is applied to a stainless steel core and then dried. Therefore, not only does the end of the positive electrode easily separate from the stainless steel core, but when the positive electrode is wound together with a separator and a negative electrode and deformed into a spiral, there is a risk that the positive electrode powder at the curved portion may separate from the positive electrode. If a spiral electrode is formed with the positive electrode powder separated from the positive electrode interposed between the positive electrode and the separator, only the part of the electrode where the positive electrode powder separated from the positive electrode is located increases in thickness and is in contact with it. The separator expands and the film thickness becomes even thinner.

一方、セパレータはポリエチレン等のような線状構造で
形成された重合体分子の集合体からなるためにその結合
力が弱(、膜厚が薄くなると、膜平面に垂直な力がかか
った場合破損し易い。特に、数十μm程度の微小な部分
に力が集中すると、その傾向が著しくなる。従って、セ
パレータの膜厚が薄くなっている部分に垂直な力がかか
ると、セパレータは破損し、正負両極が短絡し、さらに
この短絡が原因となって該電池の電圧が低下し、所定の
電圧に満たない不良品が発生するという問題点があった
On the other hand, since separators are made of aggregates of polymer molecules formed in a linear structure such as polyethylene, their bonding strength is weak (as the film becomes thinner, it will break if a force perpendicular to the film plane is applied). In particular, this tendency becomes remarkable when force is concentrated in a minute area of several tens of micrometers.Therefore, if a force is applied perpendicular to the thinner part of the separator, the separator will break. There was a problem in that the positive and negative electrodes were short-circuited, and this short-circuit caused the voltage of the battery to drop, resulting in defective products that did not meet the predetermined voltage.

本発明は上記のような問題点に鑑みなされたもので、セ
パレータの破1員を防止して、品質が向上する非水電解
液電池を提供することを目的としている。
The present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide a non-aqueous electrolyte battery with improved quality by preventing breakage of the separator.

四 蝋を解゛′するための− 上記目的を達成するために本発明は、酸化力を有する金
属化合物を活物質とする正極と、軽金属を活物質とする
負極と、前記正負両極間に介挿されるセパレータと、非
水電解液とを備えた非水電解液電池において、前記セパ
レータが、架橋したポリエチレンの微多孔膜で形成され
たことを特徴としている。
4. To dissolve wax - In order to achieve the above object, the present invention provides a positive electrode having a metal compound having oxidizing power as an active material, a negative electrode having a light metal as an active material, and an intervening material between the positive and negative electrodes. A non-aqueous electrolyte battery comprising a separator inserted therein and a non-aqueous electrolyte, characterized in that the separator is formed of a cross-linked microporous polyethylene membrane.

昨二−−−尻 上記構成によれば、架橋したポリエチレンの微多孔膜は
網目構造をとるので、機械的強度が増す。
According to the above configuration, the crosslinked polyethylene microporous membrane has a network structure, so that its mechanical strength is increased.

従って、架橋したポリエチレンを使ったセパレータは適
度な強度を有し、セパレータ膜平面に対して垂直な力が
加わった場合でも破損し難<、電極の短絡防止がするこ
とができる。また、外部短絡が起こった場合でも、短絡
電流によるジュール熱で電池の温度上昇がおこると、ポ
リエチレンが溶融して微多孔を閉塞し、正負両極間のイ
オンの移動が阻止され、電流が流れなくなり、電池の温
度上昇が抑制される。
Therefore, a separator made of crosslinked polyethylene has appropriate strength, is difficult to break even when a force perpendicular to the plane of the separator membrane is applied, and can prevent electrode short-circuiting. In addition, even if an external short circuit occurs, when the temperature of the battery rises due to Joule heat caused by the short circuit current, the polyethylene melts and closes the micropores, blocking the movement of ions between the positive and negative electrodes, and the current no longer flows. , the temperature rise of the battery is suppressed.

叉−族一斑 第1図は本発明の一実施例に係る非水電解液電池の一部
破断正面図である。図において、1は非水電解液電池で
あって、正極2と負極3と前記正負両極間に介挿された
セパレータ4とが巻回されてなる渦巻式電極7と、絶縁
性樹脂からなる上下一対の絶縁スリーブ8 (下側絶縁
スリーブは不図示)と、非水電解液(不図示)と、下端
に正極端子部5aが形成されると共に前記渦巻式電極7
等を内存する上面開放のステンレス製筒状容器5と、絶
縁性樹脂からなるバッキング10を介して前記容器5を
施蓋する凸状のステンレス製蓋体6とからなる。
FIG. 1 is a partially cutaway front view of a non-aqueous electrolyte battery according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a nonaqueous electrolyte battery, which includes a spiral electrode 7 formed by winding a positive electrode 2, a negative electrode 3, and a separator 4 inserted between the positive and negative electrodes, and an upper and lower upper and lower electrode made of insulating resin. A pair of insulating sleeves 8 (the lower insulating sleeve is not shown), a non-aqueous electrolyte (not shown), a positive electrode terminal portion 5a is formed at the lower end, and the spiral electrode 7
It consists of a stainless steel cylindrical container 5 with an open top surface and a convex stainless steel lid 6 that covers the container 5 via a backing 10 made of insulating resin.

また、前記蓋体6は、負極端子部6aが形成された上蓋
6Cと、一端を負極3に接続したニッケル製の負極タブ
9と電気的に接続される下16bと、からなる。8aは
前記負極タブ9が貫通する空洞部である。
Further, the lid body 6 includes an upper lid 6C in which a negative electrode terminal portion 6a is formed, and a lower portion 16b electrically connected to a negative electrode tab 9 made of nickel whose one end is connected to the negative electrode 3. 8a is a cavity through which the negative electrode tab 9 passes.

前記渦巻式電極7は2枚のセパレータを張り合わせて袋
状とし、その中に負極3を挿入して正極2と共に巻回し
て形成され、且つ渦巻式電極7の最外側に位置する正極
2は前記容器5の内側壁と接触状態とされると共に、渦
巻式電極7の上下端部は前記絶縁スリーブによって容器
5とは非接触状態に保たれている。
The spiral electrode 7 is formed by pasting two separators together to form a bag shape, into which the negative electrode 3 is inserted and wound together with the positive electrode 2, and the positive electrode 2 located at the outermost side of the spiral electrode 7 is formed by While being in contact with the inner wall of the container 5, the upper and lower ends of the spiral electrode 7 are kept out of contact with the container 5 by the insulating sleeve.

前記正極2としては酸化力を有する金属化合物の一例と
しての二酸化マンガンを活物質とし、黒鉛を導電剤とし
、四フッ化エチレンを結着剤としは各々容量%で二酸化
マンガン:黒鉛:四フッ化エチレン=90:6:4の割
合で混合し、該混合物に水を加えてペースト状としたも
のをステンレスのラス板に塗布し、熱処理を行なって乾
燥させたものを使用した。
For the positive electrode 2, manganese dioxide, which is an example of a metal compound having oxidizing power, is used as an active material, graphite is used as a conductive agent, and tetrafluoroethylene is used as a binder, each of which is manganese dioxide: graphite: tetrafluoride in volume %. Ethylene was mixed in a ratio of 90:6:4, and water was added to the mixture to form a paste, which was applied to a stainless steel lath plate, heat-treated, and dried.

前記負極3は軽金属の一例としてのリチウムを活物質と
したものを使用した。
The negative electrode 3 was made of lithium, which is an example of a light metal, as an active material.

前記セパレータは厚さ30μm、空孔率50%最大孔径
20μmの架橋したポリエチレン微多孔膜を使用した。
The separator used was a crosslinked polyethylene microporous membrane having a thickness of 30 μm, a porosity of 50%, and a maximum pore diameter of 20 μm.

また、非水電解液にはプロピレンカーボネートと1,2
−ジメトキシエタンとの混合溶媒(体積比1:1)に過
塩素酸リチウムを溶解させたものからなり、該過塩素酸
リチウムの濃度が0.75Mとなるように調整したもの
を使用した。
In addition, the non-aqueous electrolyte contains propylene carbonate and 1,2
- Dimethoxyethane and lithium perchlorate dissolved in a mixed solvent (volume ratio 1:1) were used, and the concentration of the lithium perchlorate was adjusted to 0.75M.

第1表は本発明の非水電解液電池Aと、従来の非水電解
液電池Bとの組み立て直後の電圧を測定してその不良数
を調べた結果を示したものである。
Table 1 shows the results of measuring the voltages of non-aqueous electrolyte battery A of the present invention and conventional non-aqueous electrolyte battery B immediately after assembly, and investigating the number of defects.

尚、非水電解液電池Bは、セパレータが線状構造に形成
されたポリエチレンの微多孔膜を使用している他は非水
電解液電池Aと同様であり、試料数は各々500個であ
る。また、これらの非水電解液電池はいずれも高さHは
約35mm、直径りは約20mmである。
The non-aqueous electrolyte battery B is the same as the non-aqueous electrolyte battery A except that the separator uses a polyethylene microporous membrane formed in a linear structure, and the number of samples is 500 for each. . Further, each of these non-aqueous electrolyte batteries has a height H of about 35 mm and a diameter of about 20 mm.

第1表 この第1表かられかるように、従来の非水電解液電池B
には電圧不良のものが8個もあるのに対して、本発明の
一非水電解液電池Aは電圧不良のものがなく (不良数
O)、良好な結果を示している。
Table 1 As can be seen from this table, conventional non-aqueous electrolyte battery B
There were as many as 8 batteries with voltage failures, whereas non-aqueous electrolyte battery A of the present invention had no voltage failures (number of failures: O), showing good results.

上述の如く構成された非水電解液電池は、セパレータが
架橋したポリエチレンの微多孔膜で形成されているので
、セパレータは網目構造を有して分子間結合力が増大す
ることとなり、強度が向上する。従って、セパレータ膜
平面に対して垂直な力が加わてもセパレータは破損する
虞がなく、正負両電極間の短絡が防止でき、短絡に起因
する電圧の低下も防止でき、高品質の非水電解液電池が
得られ、所期の目的が達成できる。
In the non-aqueous electrolyte battery configured as described above, the separator is made of a cross-linked polyethylene microporous membrane, so the separator has a network structure, which increases intermolecular bonding strength and improves strength. do. Therefore, there is no risk of the separator being damaged even if a force perpendicular to the plane of the separator membrane is applied, short circuits between the positive and negative electrodes can be prevented, voltage drops due to short circuits can also be prevented, and high quality non-aqueous electrolysis A liquid battery is obtained and the intended purpose can be achieved.

尚、上記実施例においては、正極活物質に二酸化マンガ
ン、負極活物質にリチウムを用いたものについて示した
が、正極活物質は酸化力を有する金属酸化物であれば良
いのであって酸化銅やフッ化黒鉛でも良く、負極活物質
も軽金属であれば良いのであってナトリウムでも良いの
は言うまでもない。
In the above example, manganese dioxide was used as the positive electrode active material and lithium was used as the negative electrode active material, but the positive electrode active material may be any metal oxide with oxidizing power, such as copper oxide or the like. Graphite fluoride may be used, and the negative electrode active material may also be a light metal, so it goes without saying that sodium may also be used.

2浬Iと九栗 上記構成によれば、本発明の非水電解液電池はセパレー
タが架橋したポリエチレンの微多孔膜で形成されている
ので、外部短絡が起こってもポリエチレンが溶融して微
多孔を閉塞し正負両極間のイオンの移動を阻止するので
、電流は流れなくなり、電池の温度上昇が抑制され、電
池の安全性が向上する。また、架橋したポリエチレンの
微多孔膜は結合力を増大するので、セパレータの破損が
防止でき、内部短絡を起こして所定電圧が低下するとい
った不都合が起こることのない非水電解液電池を得るこ
とができ、この非水電解液電池の品質が向上するという
効果がある。
According to the above configuration, the separator of the non-aqueous electrolyte battery of the present invention is made of a crosslinked polyethylene microporous membrane, so even if an external short circuit occurs, the polyethylene melts and the microporous This blocks the ions and prevents the movement of ions between the positive and negative electrodes, so current no longer flows, suppressing battery temperature rise, and improving battery safety. In addition, since the crosslinked polyethylene microporous membrane increases the bonding strength, it is possible to prevent damage to the separator and obtain a non-aqueous electrolyte battery that does not cause problems such as internal short circuits and a drop in the specified voltage. This has the effect of improving the quality of this non-aqueous electrolyte battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る非水電解液電池の部分
破断図である。 2・・・正極、3・・・負極、4・・・セパレータ。
FIG. 1 is a partially cutaway view of a non-aqueous electrolyte battery according to an embodiment of the present invention. 2...Positive electrode, 3...Negative electrode, 4...Separator.

Claims (1)

【特許請求の範囲】 酸化力を有する金属化合物を活物質とする正極と、軽金
属を活物質とする負極と、前記正負両極間に介挿される
セパレータと、非水電解液とを備えた非水電解液電池に
おいて、 前記セパレータが、架橋したポリエチレンの微多孔膜で
形成されたことを特徴とする非水電解液電池。
[Scope of Claims] A non-aqueous device comprising a positive electrode using a metal compound with oxidizing power as an active material, a negative electrode using a light metal as an active material, a separator interposed between the positive and negative electrodes, and a non-aqueous electrolyte. A non-aqueous electrolyte battery, wherein the separator is formed of a microporous crosslinked polyethylene membrane.
JP62038167A 1987-02-20 1987-02-20 Nonaqueous electrolyte battery Pending JPS63205048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62038167A JPS63205048A (en) 1987-02-20 1987-02-20 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62038167A JPS63205048A (en) 1987-02-20 1987-02-20 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS63205048A true JPS63205048A (en) 1988-08-24

Family

ID=12517842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62038167A Pending JPS63205048A (en) 1987-02-20 1987-02-20 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS63205048A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127438A (en) * 1995-03-03 2000-10-03 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene microporous film and process for producing the same
EP1022798A3 (en) * 1999-01-22 2001-09-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US7402360B2 (en) 2003-03-28 2008-07-22 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
US9077025B2 (en) 2007-05-24 2015-07-07 Nitto Denko Corporation Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127438A (en) * 1995-03-03 2000-10-03 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene microporous film and process for producing the same
EP1022798A3 (en) * 1999-01-22 2001-09-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US7402360B2 (en) 2003-03-28 2008-07-22 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
US9077025B2 (en) 2007-05-24 2015-07-07 Nitto Denko Corporation Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator
US9340653B2 (en) 2007-05-24 2016-05-17 Nitto Denko Corporation Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator

Similar Documents

Publication Publication Date Title
KR100646535B1 (en) Electrode Assembly for Lithium Ion Second Battery and Lithium Ion Secondary Battery using the Same
US20030044677A1 (en) Nonaqueous electrolyte secondary battery
JP4960326B2 (en) Secondary battery
JP4952878B2 (en) Primary battery
KR100971345B1 (en) Electrode assembly and rechargeable battery comprising the same
US4604333A (en) Non-aqueous electrolyte battery with spiral wound electrodes
JP4382557B2 (en) Non-aqueous secondary battery
JPS6052A (en) Non-aqueous electrolytic solution battery
JPH0516140B2 (en)
JPS63308866A (en) Nonaqueous electrolytic solution battery
JPS63205048A (en) Nonaqueous electrolyte battery
JP2642206B2 (en) Explosion-proof secondary battery
JPH0562662A (en) Nonaqueous electrolyte secondary battery
JP3723352B2 (en) Secondary battery
JP2002246012A (en) Non-aqueous electrolyte secondary battery
JPH0311806Y2 (en)
KR101450337B1 (en) Terminal assembly and rechargeable battery with the same
JPH0548209U (en) Non-aqueous electrolyte battery
JPH03283259A (en) Battery
KR100833741B1 (en) Electrode assembly of jelly roll type and rechargeable battery with the same
JPH08111214A (en) Organic electrolytic battery
JPH0887995A (en) Organic electrolyte battery
JPS6394556A (en) Nonaqueous electrolyte cell
JPH10241663A (en) Battery
JPH02304863A (en) Nonaqueous electrolyte battery