JPH0516140B2 - - Google Patents

Info

Publication number
JPH0516140B2
JPH0516140B2 JP58131552A JP13155283A JPH0516140B2 JP H0516140 B2 JPH0516140 B2 JP H0516140B2 JP 58131552 A JP58131552 A JP 58131552A JP 13155283 A JP13155283 A JP 13155283A JP H0516140 B2 JPH0516140 B2 JP H0516140B2
Authority
JP
Japan
Prior art keywords
battery
temperature
separator
film
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58131552A
Other languages
Japanese (ja)
Other versions
JPS6023954A (en
Inventor
Konosuke Ikeda
Satoshi Ubukawa
Minoru Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58131552A priority Critical patent/JPS6023954A/en
Publication of JPS6023954A publication Critical patent/JPS6023954A/en
Publication of JPH0516140B2 publication Critical patent/JPH0516140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、リチウムを活物質とする負極と、金
属の酸化物、硫化物或いハロゲン化物などを活物
質とする正極と、正負極間に介挿されるセパレー
タと非水電解液とを具備する非水電解液電池に関
するものである。
[Detailed description of the invention] (a) Industrial application field The present invention provides a negative electrode using lithium as an active material, a positive electrode using a metal oxide, sulfide, or halide as an active material, and a positive and negative electrode. The present invention relates to a non-aqueous electrolyte battery including a separator and a non-aqueous electrolyte interposed therebetween.

(ロ) 従来技術 この種電池は高エネルギー密度を有し、且自己
放電が少ないという利点のために近年特に注目さ
れており、事実、負極活物質としてリチウムを用
い、正極活物質として二酸化マンガン、フツ化炭
素或いはクロム酸銀などを用いる電池が実用化に
至つている。
(b) Prior art This type of battery has attracted particular attention in recent years due to its high energy density and low self-discharge, and in fact, it uses lithium as the negative electrode active material and manganese dioxide, manganese dioxide, or the like as the positive electrode active material. Batteries using carbon fluoride or silver chromate have come into practical use.

そして、この種電池においてセパレータ部材と
しては耐非水電解液性の観点からポリプロピレン
不織布が一般的に用いられている。
In this type of battery, a polypropylene nonwoven fabric is generally used as a separator member from the viewpoint of non-aqueous electrolyte resistance.

ところでこの種電池の用途拡大に伴いその安全
性については更に改善が望まれている。発明者等
の実験によると、電池を外部短絡させた場合、短
絡電流によるジユール熱のために電池内温度が上
昇し、セパレータ部材としてのポリプロピレン不
織布が軟化、溶融して正負極が接触する内部短絡
を引起し電池内温度が更に上昇すると共に電解液
の分解によるガスが発生して電池の発火、爆発等
の危険性が生じた。
However, as the uses of this type of battery expand, further improvements in safety are desired. According to experiments conducted by the inventors, when a battery is short-circuited externally, the internal temperature of the battery rises due to Joule heat caused by the short-circuit current, and the polypropylene nonwoven fabric as a separator member softens and melts, causing an internal short circuit in which the positive and negative electrodes come into contact. This caused the internal temperature of the battery to further rise, and gas was generated due to the decomposition of the electrolyte, creating a risk of fire or explosion of the battery.

(ハ) 発明の目的 本発明の目的とするところは改良されたセパレ
ータ部材を用いることにより非水電解液電池の安
全性を更に高めることにある。
(c) Object of the invention The object of the invention is to further enhance the safety of non-aqueous electrolyte batteries by using an improved separator member.

(ニ) 発明の構成 本発明は上記目的を達成すべくなされたものに
してその要旨とするところは、リチウムを活物質
とする負極と、金属の酸化物、硫化物或いはハロ
ゲン化物などを活物質とする正極と、正負極間に
介挿されるセパレータと、非水電解液とを具備
し、前記正負極と前記セパレータとを捲回構成し
た渦巻電極体を備えたものであつて、前記セパレ
ータが厚み0.04mm、目付重量8.43g/m2、孔径約
0.6〜0.7μのポリエチレンを主体とするフイルム
よりなることを特徴とする非水電解液電池にあ
る。
(d) Structure of the Invention The present invention has been made to achieve the above object, and its gist is to provide a negative electrode using lithium as an active material, and a metal oxide, sulfide, or halide as an active material. A spiral electrode body comprising a positive electrode, a separator interposed between the positive and negative electrodes, and a non-aqueous electrolyte, the positive and negative electrodes and the separator being wound together, the separator being Thickness 0.04mm, basis weight 8.43g/m 2 , pore diameter approx.
A non-aqueous electrolyte battery characterized by being made of a film mainly made of polyethylene with a thickness of 0.6 to 0.7μ.

(ホ) 実施例 以下本発明の実施例につき詳述する。(e) Examples Examples of the present invention will be described in detail below.

実施例 1 正極は活物質としての二酸化マンガンに導電剤
としてのアセチレンブラツク及び結着剤としての
フツ素樹脂を85:10:5の重量比で混合した混合
物を集電網に塗着し、熱処理したるものを用い
た。
Example 1 For the positive electrode, a mixture of manganese dioxide as an active material, acetylene black as a conductive agent, and fluorocarbon resin as a binder in a weight ratio of 85:10:5 was applied to a current collecting grid and heat treated. We used the following.

負極はリチウム圧延板を所定寸法に打抜いたも
のであり、又電解液はプロピレンカーボネートと
ジメチルエチレングリコールエーテルの混合溶媒
に渦塩素酸リチウムを溶解したるものを用いた。
The negative electrode was a rolled lithium plate punched to a predetermined size, and the electrolyte was a mixture of propylene carbonate and dimethyl ethylene glycol ether in which lithium dichlorate was dissolved.

そしてセパレータ部材として厚み0.040mm、目
付重量8.43g/m2、孔径約0.6〜0.7μのポリエチレ
ンフイルム(旭化成社製、商品名ハイポアー)を
用いた。
As a separator member, a polyethylene film (manufactured by Asahi Kasei Corporation, trade name: Hipore) with a thickness of 0.040 mm, a basis weight of 8.43 g/m 2 , and a pore diameter of approximately 0.6 to 0.7 μm was used.

第1図は電池の縦断面図を示し、電池組立に際
しては正負極1,2をセパレータ3を介して巻回
してなる渦巻電極体を正極端子兼用の電池容器4
内に収納し、ついでリチウム負極2より導出せる
負極リード板2′の一端が固着された負極端子兼
用の封口蓋5を絶縁パツキング6を介して電池容
器4の開口部に装着したのち電池容器4の開口縁
4′を絶縁パツキング6に締着して完成電池を得
る。尚7,8は渦巻電極体の上下面に配設された
絶縁ワツシヤである。電池寸法は高さ約35mm、直
径約20mmであつた。本実施例による電池をAとす
る。
FIG. 1 shows a vertical cross-sectional view of the battery. When assembling the battery, a spiral electrode body formed by winding the positive and negative electrodes 1 and 2 with a separator 3 interposed therebetween is attached to the battery container 4 which also serves as the positive terminal.
Then, a sealing lid 5 which also serves as a negative electrode terminal, to which one end of the negative electrode lead plate 2' which can be led out from the lithium negative electrode 2 is fixed, is attached to the opening of the battery container 4 via an insulating packing 6. The opening edge 4' of the battery is fastened to the insulating packing 6 to obtain a completed battery. Note that 7 and 8 are insulating washers arranged on the upper and lower surfaces of the spiral electrode body. The battery dimensions were approximately 35 mm in height and 20 mm in diameter. Let A be the battery according to this example.

比較例 1 セパレータ部材として厚み0.025mm、目付重量
11.74g/m2、孔径約0.1μのポリプロピレンフイ
ルム(ポリプラスチツク社製、商品名ジユラガー
ド)を用いることを除いて他は実施例1と同様の
電池を作成した。この電池をBとする。
Comparative example 1 As a separator member, thickness 0.025 mm, basis weight
A battery was prepared in the same manner as in Example 1, except that a polypropylene film (manufactured by Polyplastics Co., Ltd., trade name: Zyuraguard) with a weight of 11.74 g/m 2 and a pore size of about 0.1 μm was used. This battery is called B.

比較例 2 セパレータ部材として厚み0.120mm、目付重量
40.00g/m2繊維の太さ約1.5〜2μのポリプロピレ
ン不織布(東燃石油社製)を用いることを除いて
他は実施例1と同様の電池を作成した。この電池
をCとする。
Comparative example 2 As a separator member, thickness 0.120mm, basis weight
A battery was prepared in the same manner as in Example 1 except that a polypropylene nonwoven fabric (manufactured by Tonen Sekiyu Co., Ltd.) with 40.00 g/m 2 fibers and a thickness of approximately 1.5 to 2 μm was used. This battery is called C.

第2図及び第3図は上記各電池の短絡試験特性
を比較したものである。
FIGS. 2 and 3 compare the short circuit test characteristics of each of the above batteries.

先づ、第2図は上記電池A,B及びCを夫々2
個ずつ直列に接続し、これらを25℃の恒温槽内に
長時間保持して電池を25℃の温度雰囲気下に慣ら
したのち、夫々2個ずつ直列接続せる各電池群を
短絡させて測定した特性を示し、第2図イは電流
値一測定時間との関係、第2図ロは電池容器温度
一測定時間との関係を夫々示す。尚、第2図にお
ける曲線は同一電池2個のうち電流値及び温度の
高い方の電池の値を採用したものである。
First, in Figure 2, the batteries A, B, and C are
The batteries were connected in series one by one, kept in a constant temperature chamber at 25℃ for a long time to acclimatize the batteries to the 25℃ temperature atmosphere, and then each group of two batteries connected in series was short-circuited and measured. Figure 2A shows the relationship between current value and measurement time, and Figure 2B shows the relationship between battery container temperature and measurement time. Incidentally, the curve in FIG. 2 uses the values of the battery with the higher current value and temperature among two identical batteries.

この第2図から次のことがわかる。 The following can be seen from this Figure 2.

即ち、本発明電池A及び比較電池Bでは短絡後
約5分の時点で電流値は急激に減少している。こ
の時の電池容器温度は電池Aの時約90℃、電池B
の時約105℃を示している。そして、その後は時
間の経過に伴ない電流値はほとんど上昇せず、又
電池容器温度は下降する。
That is, in the battery A of the present invention and the comparative battery B, the current value rapidly decreased about 5 minutes after the short circuit. At this time, the temperature of the battery container is approximately 90℃ for battery A, and for battery B.
The temperature is approximately 105℃. Thereafter, as time passes, the current value hardly increases and the battery container temperature decreases.

これに対し電池Cでは短絡後約5分の時点で一
旦電流値が減少するが、又直ぐに電流値が増大し
ているため電池容器温度は上昇しつづけている。
そして約7分後に電池内圧が上昇して封口蓋が飛
びそれ以上の測定は不可能であつた。
On the other hand, in battery C, the current value decreases once about 5 minutes after the short circuit, but the current value increases immediately again, so the battery container temperature continues to rise.
After about 7 minutes, the internal pressure of the battery increased and the sealing lid flew off, making further measurements impossible.

この理由を考察するに、電池A,Bの場合にお
いてセパレータ部材として用いた微細孔を有する
合成樹脂フイルムは短絡電流によるジユール熱で
電池温度が上昇して各フイルム素材の有する溶融
点に達すると微細孔が溶融物で塞がれ、イオンの
移動が阻止されることになる。即ちセパレータ部
材は電気的絶縁は勿論のことイオンの移動も阻止
する絶縁体となるため電流は流れなくなるのであ
る。その結果として電池温度もそれ以上上昇する
ことなく発火や爆発と云つた不都合は抑制される
ことになる。
Considering the reason for this, in the case of Batteries A and B, the synthetic resin film with microscopic pores used as the separator member becomes fine when the battery temperature rises due to Joule heat caused by the short circuit current and reaches the melting point of each film material. The pores will be plugged with melt and ion migration will be blocked. That is, the separator member acts as an insulator that not only provides electrical insulation but also blocks the movement of ions, so that no current flows. As a result, the battery temperature does not rise any further, and inconveniences such as ignition and explosion are suppressed.

これに対してセパレータ部材としてポリプロピ
レン不織布を用いた電池Cでは短絡電流によるジ
ユール熱で電池温度が上昇すると、ポリプロピレ
ン不織布が若干収縮するためイオン移動量が減少
し電流値が低下するが、根本的にポリプロピレン
不織布はフイルムに比べて大きな孔部を有してい
るためイオンの移動を阻止することはできず、電
流値は又増加しそれに伴い電池温度も上昇してポ
リプロピレン不織布自身が軟化・溶融し電池内短
絡に至ることになる。
On the other hand, in Battery C, which uses polypropylene nonwoven fabric as a separator member, when the battery temperature rises due to Joule heat caused by short circuit current, the polypropylene nonwoven fabric shrinks slightly, reducing the amount of ion movement and lowering the current value. Since polypropylene non-woven fabric has larger pores than film, it is unable to prevent the movement of ions, and the current value increases again, causing the battery temperature to rise as well, causing the polypropylene non-woven fabric itself to soften and melt, causing the battery to deteriorate. This will lead to an internal short circuit.

尚、微細孔を有するポリエチレンを主体とする
フイルムとしては、実施例で挙げたポリエチレン
のみからなるフイルムに限定されず、例えばポリ
エチレンを主体とし、これにポリプロピレンを含
んだフイルムでも適用することができる。
Note that the film mainly made of polyethylene having micropores is not limited to the film made only of polyethylene mentioned in the examples, but can also be applied, for example, to a film mainly made of polyethylene and containing polypropylene.

次に、セパレータ部材として、ポリエチレンフ
イルムを用いた本発明電池A及びポリプロピレン
フイルムを用いた比較電池Bの特性を比較した。
Next, the characteristics of a battery A of the present invention using a polyethylene film as a separator member and a comparative battery B using a polypropylene film were compared.

第3図は電池A及びBを夫々2個ずつ直列に接
続し、これらを70℃の恒温槽内に長時間保持して
電池を70℃の温度雰囲気下に慣らしたのち、夫々
2個ずつ直列接続せる各電池群を短絡させて測定
した特性を示し、第3図イは電流値一測定時間と
の関係、第3図ロは電池容器温度一測定時間との
関係を夫々示す。尚、第3図における曲線は同一
電池2個のうち電流値及び温度の高い方の電池の
値を採用したものである。
Figure 3 shows batteries A and B connected in series, two each, kept in a constant temperature chamber at 70℃ for a long time to acclimatize the batteries to the 70℃ temperature atmosphere, and then connected two of each in series. The characteristics measured by short-circuiting each battery group to be connected are shown. FIG. 3A shows the relationship between the current value and the measurement time, and FIG. 3B shows the relationship between the battery container temperature and the measurement time. Incidentally, the curve in FIG. 3 employs the values of the battery with the higher current value and temperature among two identical batteries.

第3図から明らかなようにポリエチレンフイル
ムをセパレータ部材として用いた本発明電池Aの
方がポリプロピレンフイルムをセパレータ部材と
して用いた比較電池Bに比して、第3図イの如く
電流値は激減後ほとんど上昇せず、又第3図ロの
如く電池温度の最高温度は低く特性的に優れてい
ることがわかる。
As is clear from FIG. 3, the current value of battery A of the present invention using a polyethylene film as a separator member is higher than that of comparative battery B using a polypropylene film as a separator member, as shown in FIG. It can be seen that there is almost no rise in temperature, and as shown in FIG. 3B, the maximum battery temperature is low and the characteristics are excellent.

この理由は次のように考えられる。即ち短絡試
験後電池を解体したところポリエチレンフイルム
は以前としてフイルム状を保つていたのに対しポ
リプロピレンフイルムは若干の衝撃によつてすぐ
に崩れた。このようにポリプロピレンフイルムの
場合は機械的強度の面で問題が有り崩れによる空
隙を介して若干イオンが移動し電流が流れると推
測される。又溶融点について云えばポリエチレン
の方が低いため電池温度の上昇を低く押えられ
る。
The reason for this is thought to be as follows. That is, when the battery was disassembled after the short-circuit test, the polyethylene film maintained its film shape as before, whereas the polypropylene film collapsed immediately upon slight impact. As described above, in the case of polypropylene film, there is a problem in terms of mechanical strength, and it is presumed that ions move slightly through the gaps due to collapse and current flows. In addition, since polyethylene has a lower melting point, it is possible to suppress the rise in battery temperature.

このようにポリプロピレンフイルムとポリエチ
レンフイルムを比較した場合、ポリエチレンフイ
ルムの方が優位であると云える。
When comparing polypropylene film and polyethylene film in this way, it can be said that polyethylene film is superior.

(ヘ) 発明の効果 上述した如く、本発明による非水電解液電池に
よれば正負極とセパレータとを捲回構成した渦巻
電極体を備えた非水電解液電池において、前記セ
パレータとして微細孔を有するポリエチレンを主
体とするフイルムを用いたので、外部短絡させた
としても短絡電流によるジユール熱で電池温度が
上昇すると上記フイルムの微細孔が溶融物で閉塞
されてイオンの移動を阻止するため電流が流れな
くなりそれに伴い電池温度の上昇も、ポリプロピ
レンフイルムに比して、きわめて効果的に抑制さ
れるものであり、この種電池の安全性を向上でき
その工業的価値は極めて大である。
(F) Effects of the Invention As described above, according to the non-aqueous electrolyte battery according to the present invention, in a non-aqueous electrolyte battery equipped with a spiral electrode body in which positive and negative electrodes and a separator are wound, micropores are formed as the separator. Since we used a film mainly composed of polyethylene, even if an external short circuit occurs, when the battery temperature rises due to the heat generated by the short circuit current, the micropores of the film will be blocked by the melt, preventing the movement of ions, so the current will not flow. The lack of flow and the associated rise in battery temperature are extremely effectively suppressed compared to polypropylene films, and the safety of this type of battery can be improved and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例による本発明電池の縦断面
図、第2図及び第3図は本発明電池の短絡試験特
性であり、夫々イは電流値一測定時間との関係、
ロは電池容器温度一測定時間との関係を示す図で
ある。 1……正極、2……負極、3……微細孔を有す
るポリエチレンフイルムよりなるセパレータ、4
……電池容器、5……封口蓋、6……絶縁パツキ
ング、7,8……絶縁ワツシヤ、A……本発明電
池、B,C……比較電池。
FIG. 1 is a longitudinal cross-sectional view of a battery of the present invention according to an example, and FIGS. 2 and 3 are short-circuit test characteristics of the battery of the present invention, where A is the relationship between current value and measurement time, and
B is a diagram showing the relationship between battery container temperature and measurement time. 1...Positive electrode, 2...Negative electrode, 3...Separator made of polyethylene film having micropores, 4
... Battery container, 5 ... Sealing lid, 6 ... Insulating packing, 7, 8 ... Insulating washer, A ... Invention battery, B, C ... Comparative battery.

Claims (1)

【特許請求の範囲】[Claims] 1 リチウムを活物質とする負極と、金属の酸化
物、硫化物或いはハロゲン化物などを活物質とす
る正極と、正負極間に介挿されるセパレータとを
捲回構成した渦巻電極体を備えたものであつて、
前記セパレータが厚み0.04mm、目付重量8.43g/
m2、孔径約0.6〜0.7μのポリエチレンを主体とす
るフイルムよりなることを特徴とする非水電解液
電池。
1 Equipped with a spiral electrode body consisting of a negative electrode using lithium as an active material, a positive electrode using a metal oxide, sulfide, or halide as an active material, and a separator inserted between the positive and negative electrodes. And,
The separator has a thickness of 0.04 mm and a basis weight of 8.43 g/
1. A non-aqueous electrolyte battery comprising a film mainly made of polyethylene and having a pore size of about 0.6 to 0.7 μm.
JP58131552A 1983-07-18 1983-07-18 Nonaqueous electrolyte battery Granted JPS6023954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58131552A JPS6023954A (en) 1983-07-18 1983-07-18 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131552A JPS6023954A (en) 1983-07-18 1983-07-18 Nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS6023954A JPS6023954A (en) 1985-02-06
JPH0516140B2 true JPH0516140B2 (en) 1993-03-03

Family

ID=15060739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131552A Granted JPS6023954A (en) 1983-07-18 1983-07-18 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS6023954A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650730A (en) * 1985-05-16 1987-03-17 W. R. Grace & Co. Battery separator
US4794057A (en) * 1987-07-17 1988-12-27 Duracell Inc. Separator for electrochemical cells
JPH01213963A (en) * 1988-02-22 1989-08-28 Fuji Elelctrochem Co Ltd Battery
US4973532A (en) * 1989-04-05 1990-11-27 Hoechst Celanese Corporation Battery separator with integral thermal fuse
EP0565938B1 (en) * 1992-03-30 1996-09-11 Nitto Denko Corporation Porous film, process for producing the same, and use
US5922492A (en) * 1996-06-04 1999-07-13 Tonen Chemical Corporation Microporous polyolefin battery separator
TW439309B (en) * 1999-01-22 2001-06-07 Toshiba Corp Nonaquous electrolyte secondary battery
US6521376B1 (en) 1999-11-26 2003-02-18 Hitachi Maxell, Ltd. Non-aqueous liquid electrolyte cell
CN102355938B (en) 2009-03-30 2014-09-10 东丽电池隔膜株式会社 Microporous membranes and methods for producing and using such membranes
CN103261294B (en) 2010-12-22 2014-06-25 东丽电池隔膜株式会社 Microporous film, manufacturing method for said film, and use for said film as battery separator film
EP2849258A4 (en) 2012-05-09 2015-12-30 Hitachi Chemical Co Ltd Separator for electrochemical element and fabrication method for same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983834A (en) * 1972-12-20 1974-08-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983834A (en) * 1972-12-20 1974-08-12

Also Published As

Publication number Publication date
JPS6023954A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
US7060388B2 (en) Nonaqueous electrolyte secondary battery
KR100646535B1 (en) Electrode Assembly for Lithium Ion Second Battery and Lithium Ion Secondary Battery using the Same
US20080131769A1 (en) Nonaqueous electrolyte secondary battery
US4604333A (en) Non-aqueous electrolyte battery with spiral wound electrodes
JPH0778635A (en) Safe secondary battery of non-aqueous group
JPH10241665A (en) Electrode and battery using the same
JPH0516139B2 (en)
JPH06231749A (en) Electricity storage element
JPH10199574A (en) Nonaqueous electrolyte battery
JPH0516140B2 (en)
JPH01213962A (en) Electrochemical cell containing nonaqueous electrolyte for lithium battery
JPH1050287A (en) Nonaqueous electrolyte battery, separator for it, and manufacture of the separator
JP2950860B2 (en) Inorganic non-aqueous electrolyte battery
JPH0750601B2 (en) Non-aqueous electrolyte battery
JP2002246012A (en) Non-aqueous electrolyte secondary battery
JPH0562662A (en) Nonaqueous electrolyte secondary battery
JPH0311806Y2 (en)
JP3048083B2 (en) Non-aqueous electrolyte secondary battery
JPH0770308B2 (en) Non-aqueous electrolyte battery
JPH0548209U (en) Non-aqueous electrolyte battery
JPS63205048A (en) Nonaqueous electrolyte battery
JPH067483B2 (en) Non-aqueous electrolyte battery
JPH06203827A (en) Nonaqueous electrolyte battery
JPH06101322B2 (en) Organic electrolyte battery
JPH0887995A (en) Organic electrolyte battery