JPS5875763A - Organic solvent battery - Google Patents

Organic solvent battery

Info

Publication number
JPS5875763A
JPS5875763A JP56174058A JP17405881A JPS5875763A JP S5875763 A JPS5875763 A JP S5875763A JP 56174058 A JP56174058 A JP 56174058A JP 17405881 A JP17405881 A JP 17405881A JP S5875763 A JPS5875763 A JP S5875763A
Authority
JP
Japan
Prior art keywords
separator
fiber
positive
active material
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56174058A
Other languages
Japanese (ja)
Inventor
Shintaro Suzuki
信太郎 鈴木
Koji Fujita
宏次 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP56174058A priority Critical patent/JPS5875763A/en
Publication of JPS5875763A publication Critical patent/JPS5875763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To improve the electrolyte-holding ability of a separator, and prevent increase of the internal resistance and interruption of the electric-discharge reaction by using as the separator, a nonwoven fabric consisting of a glass fiber and a complex fiber which is prepared by coating part of polypropylene fiber with polyethylene. CONSTITUTION:In a positive can 1 made of a stainless steel or a metallic plate, a positive mixture 2 principally consisting of a positive active material such as manganese dioxide or carbon fluoride is installed. A negative terminal 3 is attached to the positive can 1, with a gasket 4 interposed between them. A negative active material 5 made of lithium metal is pressed and fixed upon the inner wall of the terminal 3. A separator 6 made of a nonwoven fabric, which consists of a glass fiber with a diameter of 0.1-1.0mum and a complex fiber prepared by coating part of polypropylene fiber with polyethylene, is situated between the positive mixture 2 and the negative active material 5. An organic solvent electrolyte which is prepared by dissolving lithium perchlorate, lithium borofluoride or the like into propylene carbonate, 1,2-dimethoxyethane or the like is poured into such a battery.

Description

【発明の詳細な説明】 本発明は軽金属を負極活物質とする有機溶媒電池のセパ
レータの改良−二関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in separators for organic solvent batteries using light metals as negative electrode active materials.

一般C:、軽金属特I:金属リチウムを負極活物質とす
る有機溶媒電池≦二おいては、金属リチウムと水との反
応を避けるため、七ノ(レータとして親水性でなくかつ
金属リチウムイオンして反応性を示さないポリプロピレ
ン繊維の不織布が使用されている0 しかし、有機溶媒電池の放電反応は、リチウムイオンが
正極側へ移動して正極合剤内で反応生成物を生じる反応
であり、放電反応の進行とともに正極合剤が膨潤する。
General C:, Light Metal Specific I: In order to avoid the reaction between metallic lithium and water, organic solvent batteries using metallic lithium as the negative electrode active material must be However, the discharge reaction in organic solvent batteries is a reaction in which lithium ions move to the positive electrode side and produce reaction products within the positive electrode mixture. As the reaction progresses, the positive electrode mixture swells.

前、記のポリプロピレン不織布は保液性が良くないため
、セパレータ区二使用し九従来の電池は、正極合剤の膨
潤に伴なって合剤中の電解液が吸収され、セパレータ中
の電解液が着るしく減少して、つい−二は枯渇し、電池
内部抵抗が増大し、放電々圧の低下と、液の連絡が断た
れるため放電反応が中断してしまう吟の欠点があった。
The polypropylene nonwoven fabric described above does not have good liquid retention properties, so in conventional batteries, as the positive electrode mixture swells, the electrolyte in the mixture is absorbed, and the electrolyte in the separator The disadvantages of this method are that the battery gradually decreases and eventually becomes depleted, the internal resistance of the battery increases, the discharge pressure decreases, and the discharge reaction is interrupted because the liquid communication is cut off.

そこで正極合剤側へ電解液が移行しない保液性の強いセ
パレータが要求されていた。
Therefore, there was a need for a separator with strong liquid retention properties that would prevent electrolyte from migrating to the positive electrode mixture side.

本発明Fi繊維径が0.1〜1.0μmのガラス繊維と
、ポリプロピレン繊維の表面の一部がポリエチレンで被
接された複合繊維とをからみ合せて不織布とし九セパレ
ータを用いること響二より、放電反応の中断がなく内部
抵抗の小さな有機溶媒電池を得ることを目的とする。
According to Hibiki, a non-woven fabric is made by intertwining glass fibers with a Fi fiber diameter of 0.1 to 1.0 μm and composite fibers in which a part of the surface of polypropylene fibers is covered with polyethylene, using a nine separator. The purpose is to obtain an organic solvent battery with low internal resistance without interruption of the discharge reaction.

本発明の電池のセパレーターに用いるガラス繊維Fi、
繊維径0.1〜1.0μmで電解液保持能カーある。し
かし、ガラス繊維単独では強度が弱く不適当であり、こ
れCニボリプロビレン繊維をからみ合せて熱融着すると
める程度の強度が得られるが、さら6二、ポリプロピレ
ン繊維の表面の1部がポリエチレンで被覆された複合繊
維とガラス繊維とをからみ合せて熱融着すると2強度は
充分g二なり。
Glass fiber Fi used in the battery separator of the present invention,
The fiber diameter is 0.1 to 1.0 μm and the electrolyte retention capacity is high. However, the strength of glass fiber alone is weak and unsuitable, and although the strength can be obtained by intertwining C niboripropylene fibers and heat-sealing them, in addition, a part of the surface of the polypropylene fibers is covered with polyethylene. When the composite fibers and glass fibers are intertwined and heat-sealed, the strength is sufficient.

ポリプロピレン繊維とガラスlI1.緒との組合せより
も電解液の保持能力が大となり、電池の放電特性が良好
感−なる。
Polypropylene fiber and glass lI1. The electrolyte retention capacity is greater than that in combination with a battery, and the discharge characteristics of the battery are improved.

第1表I:各セパレータの電解液保持力の−j定結果を
示した。セパレータ(a) Fi本発明品で、繊維径0
.1〜1.0μmのガラス繊維とポリプロピレン繊維の
表面をポリエチレンで被覆率50%で被覆した複合*M
とで構成し九不織布であV、セパレータ(b)は繊維径
0,1〜1.0.amのガラス繊維とポリプロピレン繊
維とで構成した不織布で、セパレータ(a)はポリプロ
ピ−レン単独の不織布である。
Table 1: -j constant results of electrolyte holding power of each separator. Separator (a) Fi This invention product has a fiber diameter of 0.
.. Composite *M in which the surfaces of glass fibers and polypropylene fibers of 1 to 1.0 μm are coated with polyethylene at a coverage rate of 50%.
The separator (b) is composed of a nonwoven fabric with a fiber diameter of 0.1 to 1.0. The separator (a) is a nonwoven fabric made of am glass fiber and polypropylene fiber, and the separator (a) is a nonwoven fabric made of polypropylene alone.

第1表 第1表に示す電解液保持力は次のようにして測定した0
各セパレータを電解液ぷ二30分間浸漬し取り出して、
45°の角度≦二傾斜させたガラス板【二1分間放置し
死後、セパレータ重量を求め、セパレータ(、)を基*
 (10017k )として算出した。
Table 1 The electrolyte retention strength shown in Table 1 was measured as follows:
Immerse each separator in electrolyte solution for 30 minutes and take it out.
Glass plate tilted at an angle of 45°
It was calculated as (10017k).

第1表に示すよう5二本発明セパレータは従来セパレー
タ5−比教して電解液保持力がすぐれている。
As shown in Table 1, the separator of the present invention has superior electrolyte retention ability compared to the conventional separator.

次6二本発明の有m溶媒電池の実施例を第1図にもと丁
いて説明する。
Next, an embodiment of the m-solvent battery of the present invention will be described with reference to FIG.

1はステンレスなどの金属板からなる正極缶で。1 is a positive electrode can made of a metal plate such as stainless steel.

正極缶1には二酸化マンガン、フッ化炭素などの正極活
物質を主成分とする正極合剤2が収納されている。3F
i負極端子板でバッキング4を介して正極缶II−嵌合
され、負極端子板3の内面側には金属リチウムよりなる
負極活物質5が圧着されている。正極合剤2と負極活物
質5との関感二は、繊維径0,1〜1.0μmのガラス
繊維とポリプロピレン繊維の表面の一部をポリエチレン
で被覆した複合線維とで構成した不織布よりなるセパレ
ータ6が配置されている。電池はプロピレンカーボネー
ト、1.2−ジメトキシエタンなどに過塩素酸リチウム
、ホウ弗化リチウムなどを溶解させた有機溶媒電解液が
注入されてなっている。
The positive electrode can 1 houses a positive electrode mixture 2 mainly composed of positive electrode active materials such as manganese dioxide and carbon fluoride. 3F
The negative electrode terminal plate 3 is fitted to the positive electrode can II through the backing 4, and a negative electrode active material 5 made of metallic lithium is crimped onto the inner surface of the negative electrode terminal plate 3. The interface between the positive electrode mixture 2 and the negative electrode active material 5 is made of a nonwoven fabric made of glass fibers with a fiber diameter of 0.1 to 1.0 μm and composite fibers in which a portion of the surface of polypropylene fibers is coated with polyethylene. A separator 6 is arranged. The battery is made up of an organic solvent electrolyte in which lithium perchlorate, lithium borofluoride, etc. are dissolved in propylene carbonate, 1,2-dimethoxyethane, etc.

第2図は、′正極合剤として、二酸化マンガン90重量
%、リン状黒鉛9重量−とポリテトラフルオロエチレン
1重量−とからなる混合物を直径201゜厚さ0.51
に加圧成形したものを使用し、負極活物質として、直径
18″、厚み0.25”の金属リチウム円板を使用し、
電解液として、炭酸プロピレンと1.2−ジメトキシエ
タンとの容量比で1:1の混合液に過塩素酸リチウムを
1モル/lの割合で溶解させたものを使用し、セパレー
タとして、繊維径0.1〜1.0μmのガラス繊維とポ
リプロピレン繊維の表面をポリエチレンで被覆率50−
で被覆した複合繊維とで構成した不織布を用いた本@明
の実施例電池(A)の放電曲線を示した。放電は500
μAの定電流で行ない、横軸は正極合剤の放電理論容量
I:対する利用率で示し友。
Figure 2 shows that a mixture of 90% by weight of manganese dioxide, 9% by weight of phosphorous graphite, and 1% by weight of polytetrafluoroethylene was used as a positive electrode mixture with a diameter of 201° and a thickness of 0.51°.
A metal lithium disk with a diameter of 18" and a thickness of 0.25" was used as the negative electrode active material.
As an electrolyte, a mixture of propylene carbonate and 1,2-dimethoxyethane with a volume ratio of 1:1 was used, in which lithium perchlorate was dissolved at a ratio of 1 mol/l. Coverage rate of 0.1 to 1.0 μm glass fiber and polypropylene fiber surface with polyethylene: 50-
The discharge curve of the example battery (A) of this @mei using a nonwoven fabric composed of composite fibers coated with conjugate fibers is shown. The discharge is 500
It was carried out at a constant current of μA, and the horizontal axis shows the utilization rate with respect to the theoretical discharge capacity I of the positive electrode mixture.

@2図中、(A)は本発明実施例であるが、(0)は従
来のポリプロピレン単、独不織布用いた比較例であり、
(B)は繊維径0.1〜1,0μmのガラス繊維とボリ
プ゛ロピレン繊維とで構成した不織布のセパレータを用
いた比較例である0 第2図から本発明品(A) Id比較例(B)+ (o
) に比べて着しく放電利用率が優れていることがわか
る0以上評述したよう6二、本発明は軽金属を負極活物
質とする有機溶媒電解液−おいて、繊維径0.1〜1.
0μmのガラス繊維とポリプロピレン繊維の表面の一部
をポリエチレンで被覆した複合繊維とで構成した不織布
をセパレータとして用いることによりセパレータの電解
液保持力を良好Iニジ、放電による正極合剤の膨淘に基
づくセパレータ中の電解液の減少ないし枯渇し、内部抵
抗の増加と放電も 反応の中断との防止したものである。
@2 In the figure, (A) is an example of the present invention, but (0) is a comparative example using a conventional non-woven polypropylene fabric,
(B) is a comparative example using a nonwoven fabric separator made of glass fibers and polypropylene fibers with a fiber diameter of 0.1 to 1.0 μm. B) + (o
) It can be seen that the discharge utilization rate is significantly better than that of 0.0 or more.As described above, the present invention uses a fiber diameter of 0.1-1.
By using a nonwoven fabric made of 0 μm glass fiber and a composite fiber made of polypropylene fibers partially coated with polyethylene as a separator, the separator's electrolyte retention ability is good, and the positive electrode mixture expands due to discharge. This also prevents the electrolyte in the separator from decreasing or depleting, increasing internal resistance and discharging the reaction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の有機溶媒電池の実施例の断面図、第2
図は従来電池との放電曲線の比較図である0 2・・・正極合剤    5・・・負極活物質6・・・
セパレータ
FIG. 1 is a cross-sectional view of an embodiment of the organic solvent battery of the present invention, and FIG.
The figure is a comparison diagram of the discharge curve with a conventional battery.0 2...Positive electrode mixture 5...Negative electrode active material 6...
separator

Claims (1)

【特許請求の範囲】[Claims] (1)軽金属を負極活物質とする有機溶媒電池1二おい
て、ガラス繊維とポリプロピレン繊維の表面の一部をポ
リエチレンで被覆した複合繊維とで構成された不織布を
セパレータとして用い、正極合剤と負極活物質との間−
二介在した有機溶媒電池0
(1) In an organic solvent battery 12 that uses a light metal as a negative electrode active material, a nonwoven fabric made of glass fiber and a composite fiber in which a portion of the surface of polypropylene fiber is coated with polyethylene is used as a separator, and the positive electrode mixture and Between negative electrode active material
2 intervening organic solvent cells 0
JP56174058A 1981-10-30 1981-10-30 Organic solvent battery Pending JPS5875763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56174058A JPS5875763A (en) 1981-10-30 1981-10-30 Organic solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56174058A JPS5875763A (en) 1981-10-30 1981-10-30 Organic solvent battery

Publications (1)

Publication Number Publication Date
JPS5875763A true JPS5875763A (en) 1983-05-07

Family

ID=15971877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56174058A Pending JPS5875763A (en) 1981-10-30 1981-10-30 Organic solvent battery

Country Status (1)

Country Link
JP (1) JPS5875763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052A (en) * 1983-06-15 1985-01-05 Fuji Elelctrochem Co Ltd Non-aqueous electrolytic solution battery
EP0413297A2 (en) * 1989-08-16 1991-02-20 Hitachi Maxell Ltd. Inorganic nonaqueous electrolytic solution type cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193334A (en) * 1975-02-12 1976-08-16
JPS51101837A (en) * 1975-03-05 1976-09-08 Yuasa Battery Co Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193334A (en) * 1975-02-12 1976-08-16
JPS51101837A (en) * 1975-03-05 1976-09-08 Yuasa Battery Co Ltd

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052A (en) * 1983-06-15 1985-01-05 Fuji Elelctrochem Co Ltd Non-aqueous electrolytic solution battery
JPH0516139B2 (en) * 1983-06-15 1993-03-03 Fuji Electrochemical Co Ltd
EP0413297A2 (en) * 1989-08-16 1991-02-20 Hitachi Maxell Ltd. Inorganic nonaqueous electrolytic solution type cell

Similar Documents

Publication Publication Date Title
WO2003088404A1 (en) Nonaqueous electrolyte secondary battery
US5004657A (en) Battery
US3716411A (en) Rechargeable alkaline manganese cell
JPS5875763A (en) Organic solvent battery
JPS6362869B2 (en)
JPS59134561A (en) Lithium cell
JPS60167280A (en) Electrochemical device capable of recharging
JPH0139191B2 (en)
JPH08124597A (en) Solid electrolytic secondary cell
JP4217290B2 (en) Nonaqueous electrolyte battery using aluminum as negative electrode
JP3021517B2 (en) Organic electrolyte secondary battery
JPS60182664A (en) Nonaqueous electrolyte battery
JPS614170A (en) Nonaqueous electrolyte secondary battery
JPH0473862A (en) Lithium secondary battery
JPS60170172A (en) Rechargeable electrochemical device
JP2552393B2 (en) Lithium battery
WO2019176932A1 (en) Electrode and secondary battery
JPH0828215B2 (en) Inorganic non-aqueous electrolyte battery
SU720580A1 (en) Separator for lead storage battery
JPS6025152A (en) Rechargeable battery
JP2757470B2 (en) Sealed lead-acid battery
JPS6065479A (en) Lithium secondary battery
JP2950863B2 (en) Flat lithium-thionyl chloride battery
JPS63148541A (en) Rechargeable battery
JPS62290075A (en) Nonaqueous solvent secondary battery