JP2006286311A - Composite porous film - Google Patents
Composite porous film Download PDFInfo
- Publication number
- JP2006286311A JP2006286311A JP2005102732A JP2005102732A JP2006286311A JP 2006286311 A JP2006286311 A JP 2006286311A JP 2005102732 A JP2005102732 A JP 2005102732A JP 2005102732 A JP2005102732 A JP 2005102732A JP 2006286311 A JP2006286311 A JP 2006286311A
- Authority
- JP
- Japan
- Prior art keywords
- porous
- base material
- resin
- substrate
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 17
- 239000002245 particle Substances 0.000 claims abstract description 53
- 229920005989 resin Polymers 0.000 claims abstract description 49
- 239000011347 resin Substances 0.000 claims abstract description 49
- 239000000463 material Substances 0.000 claims abstract description 36
- 239000011148 porous material Substances 0.000 claims abstract description 30
- 238000002844 melting Methods 0.000 claims abstract description 8
- 230000008018 melting Effects 0.000 claims abstract description 8
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 20
- 239000012528 membrane Substances 0.000 claims description 17
- -1 polyethylene Polymers 0.000 description 16
- 239000010408 film Substances 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 239000004698 Polyethylene Substances 0.000 description 11
- 229920000573 polyethylene Polymers 0.000 description 11
- 239000012982 microporous membrane Substances 0.000 description 9
- 239000011888 foil Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 239000011149 active material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000003125 aqueous solvent Substances 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 229920000433 Lyocell Polymers 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 238000007602 hot air drying Methods 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- HFZGAVPUPMOUMU-UHFFFAOYSA-N 1,1-dimethoxyethane;4-methyl-1,3-dioxolan-2-one Chemical compound COC(C)OC.CC1COC(=O)O1 HFZGAVPUPMOUMU-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 229920004889 linear high-density polyethylene Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004533 oil dispersion Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
Abstract
Description
本発明は、非水溶媒電池に用いられるセパレータに関する。 The present invention relates to a separator used for a nonaqueous solvent battery.
リチウム、ナトリウムなどの軽金属を活物質とする負極と、金属の酸化物あるいはハロゲン化物などの活物質を正極とする電池やリチウムイオン電池等の非水溶媒電池は、使用する電解液が有機溶媒であり、水系電池の水溶液溶媒と比較して電池の発熱に対して安全性に劣るという問題がある。そのため、従来、非水溶媒電池、中でもエネルギー密度の大きなリチウムイオン電池の安全性を改善する技術として、ポリエチレンを主とするオレフィン系材料の微孔性多孔膜を用いたセパレータを使用することが行われてきた。ポリエチレンが主として使用されるのは、ポリエチレンが有機溶媒中で使用可能であることに加え、電池が短絡等によって異常発熱した場合に適切な温度(130℃前後)でポリエチレンが溶融し、多孔構造が閉塞すること(シャットダウン、SDと略する)により安全性の維持が可能となるからである。 Non-aqueous solvent batteries, such as negative electrodes that use light metals such as lithium and sodium as active materials and batteries that use active materials such as metal oxides or halides as positive electrodes and lithium ion batteries, use electrolytes that are organic solvents. In addition, there is a problem that the safety against heat generation of the battery is inferior to that of the aqueous solvent of the aqueous battery. Therefore, conventionally, as a technique for improving the safety of a non-aqueous solvent battery, particularly a lithium ion battery having a large energy density, a separator using a microporous porous film of an olefin-based material mainly composed of polyethylene has been used. I have been. Polyethylene is mainly used in addition to the fact that polyethylene can be used in an organic solvent. In addition, when a battery abnormally generates heat due to a short circuit or the like, the polyethylene melts at an appropriate temperature (around 130 ° C.), resulting in a porous structure. This is because the safety can be maintained by blocking (abbreviated as “shutdown” or “SD”).
しかし、電池の高温試験に対してはポリエチレンを用いたセパレータでは140℃以下の温度で収縮が生じ易く電極間の短絡による発熱が生じるなど耐熱性に劣ることが問題であった。ポリプロピレンなどポリエチレンよりも耐熱性の高いポリマーの使用では140℃以下の温度での収縮を小さくできるなどの長所はあるが、その場合には適切な温度でSDする特性が発現できないため、その使用は制限されていた。 However, for the high temperature test of the battery, the separator using polyethylene has a problem that it is inferior in heat resistance, for example, shrinkage easily occurs at a temperature of 140 ° C. or less, and heat is generated due to a short circuit between the electrodes. The use of a polymer having higher heat resistance than polyethylene such as polypropylene has the advantage that shrinkage at a temperature of 140 ° C. or lower can be reduced, but in that case, the property of SD at an appropriate temperature cannot be expressed, It was restricted.
一方、微多孔膜の片面に閉塞材を付設し、その閉塞材が加熱溶融可能で加熱溶融されることにより微多孔膜表面を覆うことを特徴とする微多孔膜複合体(例えば特許文献1)が提案されている。特許文献1では、閉塞材は微多孔膜表面上に付設されており、微多孔膜の孔を完全に閉塞するために加熱溶融によって閉塞材がフィルム状になり微多孔膜表面を覆うことを特徴としている。このため閉塞材は微多孔膜表面上に層状に存在することが必要となり微多孔膜複合体は多層膜であることが通常の形態であった。このような多層膜は膜厚が厚くなる問題があり好ましくない。
On the other hand, a microporous membrane composite is characterized in that a blocking material is attached to one side of the microporous membrane, and the blocking material is heat-meltable and heat-melted to cover the surface of the microporous membrane (for example, Patent Document 1). Has been proposed. In
また、ポリプロピレン不織布の表面にポリエチレン粉末粒子を付着させたセパレータ(例えば特許文献2)が提案されている。この場合には基材が繊維を構成材料としている不織布であり数十μm程度の大きな平均孔径を通常有しているため、樹脂が溶融して孔部を塞ぐまでに時間がかかり、その閉塞も完全とはいえず好ましくない。 Moreover, the separator (for example, patent document 2) which made the polyethylene powder particle adhere to the surface of a polypropylene nonwoven fabric is proposed. In this case, since the base material is a non-woven fabric composed of fibers and usually has a large average pore diameter of about several tens of μm, it takes time until the resin melts and closes the pores. Although it is not perfect, it is not preferable.
さらに、合成樹脂微細多孔膜を基材とし、その少なくとも片面が樹脂多孔性粉末集合体で被覆されているセパレータ(例えば特許文献3)の提案がなされている。安全性の維持に重要なSD特性は多孔構造が完全に閉塞することにより発現する。特許文献3では基材表面上にのみ樹脂多孔性粉末を存在させており、このような場合には樹脂多孔性粉末の軟化・溶融のみでは完全な無孔フィルムが形成されずSD特性の発現は困難である。これに対して特許文献3では基材の合成樹脂微細多孔膜自体がSD特性を有している。樹脂多孔性粉末集合体で被覆することで基材のSD特性をさらに向上させることにより安全性改良の課題を解決している。
Furthermore, a separator (for example, Patent Document 3) has been proposed in which a synthetic resin microporous film is used as a base material and at least one surface thereof is coated with a resin porous powder aggregate. SD characteristics important for maintaining safety are manifested by complete blockage of the porous structure. In
また、基材の孔部に樹脂粒子を入れず基材表面上にのみ樹脂多孔性粉末を坦持していることから、基材に対して樹脂多孔性粉末の接着強度に限界があり、このため電池組立工程や電池の充放電を繰り返している間に坦持された樹脂粒子が脱落するなど実用性に問題があった。接着強度に対しては、SD用樹脂粒子に加えて接着用樹脂粒子を加えた樹脂粒子を多孔性樹脂膜表面に塗布するセパレータ(例えば特許文献4)の提案がなされている。 In addition, since the resin porous powder is supported only on the surface of the base material without the resin particles being inserted into the holes of the base material, there is a limit to the adhesive strength of the resin porous powder to the base material. Therefore, there has been a problem in practicality such that the resin particles carried during the battery assembly process and the charge / discharge of the battery are repeated. For the adhesive strength, a separator (for example, Patent Document 4) is proposed in which resin particles obtained by adding adhesive resin particles in addition to SD resin particles are applied to the surface of a porous resin film.
しかしながら、このセパレータでは樹脂粒子層の接着強度を発現するために接着用粒子のみを一度溶融させる必要があり、生産性が悪くなるとともに表面粒子層の多孔性が消失して電気抵抗が高くなりやすいなどの問題があった。
本発明は、高耐熱性と適切なSD特性の両立が可能でかつ実用性の高いセパレータを提供することを目的とする。 An object of the present invention is to provide a separator that can achieve both high heat resistance and appropriate SD characteristics and has high practicality.
本発明らは上記目的を達成するために鋭意検討した結果、本発明に到達した。
すなわち、本発明は、下記のとおりである。
(1)膜の基材が140℃以上で多孔構造が維持可能な平均孔径0.2μm以上10μm以下の多孔材料からなり、基材の表面および多孔構造内部にまで樹脂粒子集合体による多孔層が存在し、その多孔層を構成する樹脂粒子の軟化又は溶融によって基材の孔が閉塞する温度が140℃以下であることを特徴とする複合多孔膜。
(2)樹脂粒子集合体による多孔層が基材表面の片面に形成されることを特徴とする(1)に記載の複合多孔膜。
(3)非水溶媒電池セパレータに使用される(1)又は(2)に記載の複合多孔膜。
As a result of intensive studies to achieve the above object, the present inventors have reached the present invention.
That is, the present invention is as follows.
(1) The membrane substrate is made of a porous material having an average pore diameter of 0.2 μm or more and 10 μm or less capable of maintaining a porous structure at 140 ° C. or higher, and a porous layer formed of resin particle aggregates is formed on the surface of the substrate and inside the porous structure. A composite porous membrane having a temperature at which pores of a base material are blocked by softening or melting of resin particles that are present and constituting the porous layer is 140 ° C. or lower.
(2) The composite porous membrane according to (1), wherein a porous layer made of a resin particle aggregate is formed on one side of the substrate surface.
(3) The composite porous membrane according to (1) or (2), which is used for a nonaqueous solvent battery separator.
本発明によれば、高耐熱性と適切なSD特性の両立によって安全性が高く、かつ実用性の高い非水溶媒電池用セパレータを提供できる。 According to the present invention, it is possible to provide a separator for a non-aqueous solvent battery that has high safety and high practicality by achieving both high heat resistance and appropriate SD characteristics.
本発明における膜の基材とは、連通孔を有する薄膜状の多孔材料であり、例えば、樹脂多孔膜、紙、不織布、無機多孔膜などが挙げられる。
多孔構造とは空隙部と骨格部が相互に連続的に存在する網目状構造である。その維持可能な温度とは、多孔構造の孔径や空隙(気孔率)が実質的に保持可能な温度であり、高耐熱性の点から140℃以上であり、150℃以上が好ましい。さらに高温で多孔構造が保持可能であればより好ましいが、実用的にはコストや他の電池構成材料の耐熱性から300℃以下が好ましい。
The membrane substrate in the present invention is a thin-film porous material having communication holes, and examples thereof include a resin porous membrane, paper, nonwoven fabric, and inorganic porous membrane.
The porous structure is a network structure in which voids and skeletons are continuously present. The maintainable temperature is a temperature at which the pore diameter and voids (porosity) of the porous structure can be substantially maintained, and is 140 ° C. or higher and preferably 150 ° C. or higher from the viewpoint of high heat resistance. Furthermore, it is more preferable if the porous structure can be maintained at a high temperature, but practically, it is preferably 300 ° C. or less in view of cost and heat resistance of other battery constituent materials.
基材の多孔材料の平均孔径は、樹脂粒子が基材の孔内部に十分存在できるように0.2μm以上である必要があり、0.4μm以上が好ましい。また、樹脂粒子集合体の軟化又は溶融による孔の閉塞に時間がかからず、孔の閉塞が完全となり適切なSD特性が得られるように、10μm以下である必要があり、8μm以下が好ましい。基材の膜厚は、特に限定されないが、セパレータとして信頼性確保の点から1μm以上であることが好ましく、5μm以上であることが更に好ましい。また、電池の高エネルギー密度化の点から500μm以下であることが好ましく、200μm以下であることがより好ましい。 The average pore diameter of the porous material of the base material needs to be 0.2 μm or more, and preferably 0.4 μm or more so that the resin particles can be sufficiently present inside the pores of the base material. Moreover, it is necessary to be 10 μm or less, and preferably 8 μm or less so that it does not take time for the pores to be closed due to softening or melting of the resin particle aggregate, and the pores are completely closed and appropriate SD characteristics are obtained. Although the film thickness of a base material is not specifically limited, From the point of ensuring reliability as a separator, it is preferable that it is 1 micrometer or more, and it is still more preferable that it is 5 micrometers or more. Moreover, it is preferable that it is 500 micrometers or less from the point of the high energy density of a battery, and it is more preferable that it is 200 micrometers or less.
基材の気孔率は膜強度、耐電圧信頼性の点から90%以下が好ましく、85%以下がより好ましい。また、低電気抵抗の点から30%以上が好ましく、35%以上がより好ましい。本発明における樹脂粒子集合体の多孔層とは、樹脂粒子が接点をともにした連続体からなり、粒子間に空隙を有した集合体の層である。樹脂粒子集合体の多孔層は、基材表面の両面に設けることができるが、生産性や薄膜化等の観点から片面に形成されることが好ましい。
樹脂粒子の平均粒子径は、電気抵抗の上昇を抑えるために0.1μm以上が好ましく、0.2μm以上がより好ましい。また、SD特性を悪くしないために20μm以下が好ましく、15μm以下がより好ましい。
The porosity of the substrate is preferably 90% or less, more preferably 85% or less, from the viewpoint of film strength and withstand voltage reliability. Moreover, 30% or more is preferable from the point of low electrical resistance, and 35% or more is more preferable. The porous layer of the resin particle aggregate in the present invention is a layer of an aggregate composed of a continuous body in which resin particles are in contact with each other and having voids between the particles. The porous layer of the resin particle aggregate can be provided on both surfaces of the substrate surface, but it is preferably formed on one surface from the viewpoint of productivity and thinning.
The average particle diameter of the resin particles is preferably 0.1 μm or more, more preferably 0.2 μm or more in order to suppress an increase in electrical resistance. Further, it is preferably 20 μm or less, more preferably 15 μm or less in order not to deteriorate the SD characteristics.
基材の表面から多孔構造内部にまで樹脂粒子集合体による多孔層が存在するとは、樹脂粒子が基材表面から基材の孔内部にまで入り込んで存在し、その樹脂粒子が連続的に連結して多孔層が形成されている状態をいう。樹脂粒子が基材表面から基材の孔内部にまで入り込んで存在することで、樹脂粒子が軟化・溶融する際に、基材表面のみに樹脂粒子が存在している場合に比べ、基材の孔の無孔化がムラ無く効果的に行われる。この結果、適切なSD特性が得られる。
本発明において、適切なSD特性とは、電池温度が上昇してある温度以上に到達すると電池内のセパレータの電気抵抗が温度の上昇とともに急上昇して1000Ωcm2以上となる特性をいう。
The presence of a porous layer composed of resin particle aggregates from the surface of the base material to the inside of the porous structure means that the resin particles enter from the surface of the base material into the pores of the base material, and the resin particles are continuously connected. In this state, a porous layer is formed. The presence of resin particles from the surface of the base material to the inside of the pores of the base material makes it easier to soften and melt the resin particles than when the resin particles exist only on the base material surface. The pores can be made non-uniform and effective. As a result, appropriate SD characteristics can be obtained.
In the present invention, the appropriate SD characteristic means a characteristic that when the battery temperature rises to a certain temperature or higher, the electrical resistance of the separator in the battery rapidly increases with the temperature rise to 1000 Ωcm 2 or more.
樹脂粒子の軟化又は溶融によって基材の孔が閉塞する温度とは、樹脂粒子が軟化又は溶融して樹脂粒子の多孔層が無孔化することにより、基材の孔が樹脂によって閉塞した状態となる温度である。孔の閉塞によって基材の電気抵抗は大きく上昇する。このことから、電気抵抗測定により孔閉塞温度が測定できる。孔閉塞温度は電池の安全性確保から140℃以下が好ましい。さらに138℃以下がより好ましい。また、耐熱性の点から80℃以上が好ましく、90℃以上がより好ましい。 The temperature at which the pores of the base material are closed by the softening or melting of the resin particles means that the resin particles are softened or melted and the porous layer of the resin particles is made nonporous, so that the pores of the base material are closed by the resin. Temperature. The electrical resistance of the substrate is greatly increased by the blockage of the holes. From this, the hole closing temperature can be measured by electric resistance measurement. The hole closing temperature is preferably 140 ° C. or lower in order to ensure battery safety. Furthermore, 138 degrees C or less is more preferable. Moreover, 80 degreeC or more is preferable from a heat resistant point, and 90 degreeC or more is more preferable.
樹脂粒子の素材としては、軟化又は溶融によって基材の孔の閉塞温度を80〜140℃の範囲にすることが可能な樹脂であればよく、特に限定されるものではないが、その一例を挙げると、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン及びこれらの共重合体等のポリオレフィン樹脂、ポリスチレン、スチレン・アクリロニトリル共重合体等のポリスチレン樹脂、ポリメタクリル酸メチル、ポリメタクリル酸エチル等のポリアクリル樹脂等が挙げられる。このうち特に低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレンを主体とする樹脂が好ましい。 The resin particle material is not particularly limited as long as it is a resin capable of bringing the closing temperature of the pores of the base material into a range of 80 to 140 ° C. by softening or melting, and an example thereof is given. And polyolefin resins such as low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene and copolymers thereof, polystyrene resins such as polystyrene and styrene / acrylonitrile copolymers, polymethyl methacrylate, polymethacrylic acid Examples thereof include polyacrylic resins such as ethyl. Of these, resins mainly composed of low density polyethylene, linear low density polyethylene, and high density polyethylene are preferred.
樹脂粒子多孔層の基材表面上の膜厚は、樹脂粒子集合体が存在しない基材の膜厚と表面に樹脂粒子集合体が存在する基材全体の膜厚との差であり、この膜厚には特に限定はないが、SD特性の信頼性から0.1μm以上が好ましく、1μm以上がより好ましい。低電気抵抗の点から50μm以下が好ましく、30μm以下がより好ましい。 The film thickness on the substrate surface of the resin particle porous layer is the difference between the film thickness of the substrate where the resin particle aggregate does not exist and the film thickness of the entire substrate where the resin particle aggregate exists on the surface. The thickness is not particularly limited, but is preferably 0.1 μm or more, more preferably 1 μm or more from the viewpoint of reliability of SD characteristics. From the viewpoint of low electrical resistance, 50 μm or less is preferable, and 30 μm or less is more preferable.
本発明の複合多孔膜の製造方法は特に限定されないが、その一例を挙げれば、樹脂粒子の水性分散液又は油性分散液を用いて各種コーティング方式により基材上に塗布する方法が挙げられる。塗布後は樹脂粒子及び基材が大きく変形しない温度で乾燥することができ、場合によっては樹脂粒子同士の部分的熱融着等が多孔性を失わない条件で行うこともできる。 Although the manufacturing method of the composite porous membrane of this invention is not specifically limited, If the example is given, the method of apply | coating on a base material by various coating systems using the aqueous dispersion liquid or oil dispersion of a resin particle will be mentioned. After application, the resin particles and the substrate can be dried at a temperature at which the resin particles and the substrate are not greatly deformed. In some cases, partial heat fusion between the resin particles can be performed under the condition that the porosity is not lost.
本発明の複合多孔膜の透気度は、特に限定するものではないが、好ましくは1000秒以下、より好ましくは600秒以下である。透気度は低い方が電気抵抗など透過性能がより良くなるが、あまり低すぎると電池内の電極間隔離膜(セパレータ)として問題が生じ易くなることから5秒以上が好ましく、より好ましくは10秒以上である。また、電気抵抗は同じく特に限定するものではないが、好ましくは10Ωcm2以下、より好ましくは5Ωcm2以下である。電極間の短絡を防止する面から好ましくは0.2Ωcm2以上、より好ましくは0.5Ωcm2以上である。 The air permeability of the composite porous membrane of the present invention is not particularly limited, but is preferably 1000 seconds or less, more preferably 600 seconds or less. The lower the air permeability, the better the permeation performance such as electrical resistance. However, if it is too low, a problem is likely to occur as an interelectrode separator (separator) in the battery, and therefore it is preferably 5 seconds or more, more preferably 10 More than a second. Further, although not electrical resistance also particularly limited, but is preferably 10 .OMEGA.cm 2 or less, more preferably 5Omucm 2 or less. From the aspect of preventing a short circuit between the electrodes, it is preferably 0.2 Ωcm 2 or more, more preferably 0.5 Ωcm 2 or more.
本発明の複合多孔膜は、高耐熱性と適切なSD特性の両立によって安全性が高い特性を有しているため、リチウム、ナトリウムなどの軽金属を活物質とする負極と、金属の酸化物あるいはハロゲン化物などの活物質を正極とする非水溶媒電池や、リチウムイオン電池等の非水溶媒電池に用いられるセパレータとして使用できる。 Since the composite porous membrane of the present invention has high safety characteristics due to both high heat resistance and appropriate SD characteristics, a negative electrode using a light metal such as lithium and sodium as an active material, a metal oxide or It can be used as a separator used in a nonaqueous solvent battery having a positive electrode made of an active material such as a halide or a nonaqueous solvent battery such as a lithium ion battery.
以下、本発明について、実施例を挙げて更に詳細に説明するが、本発明は実施例に特に限定されるものではない。尚、実施例における測定方法および評価方法は次の通りである。
(1) 粒径分布測定
島津製作所製の粒度分布測定装置(SALD-3000)を用いて測定した。
(2)膜厚(μm)
東洋精機製の微小測厚器(タイプKBN、端子径5mm)を用いて測定した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not specifically limited to an Example. In addition, the measuring method and evaluation method in an Example are as follows.
(1) Particle size distribution measurement The particle size distribution was measured using a particle size distribution measuring device (SALD-3000) manufactured by Shimadzu Corporation.
(2) Film thickness (μm)
Measurement was performed using a micro thickness gauge (type KBN, terminal diameter 5 mm) manufactured by Toyo Seiki.
(3) 気孔率(%)
Xcm×Ycmのサンプルを切り出し次式より算出した。
気孔率={1−(M/ρ)/(X×Y×T)}×100
T:サンプル厚み(cm)
M:サンプル重量(g)
ρ:サンプルの骨格密度
(3) Porosity (%)
A sample of Xcm × Ycm was cut out and calculated from the following formula.
Porosity = {1- (M / ρ) / (X × Y × T)} × 100
T: Sample thickness (cm)
M: sample weight (g)
ρ: Sample skeleton density
(4) 平均孔径(μm)
島津製作所製の水銀圧入装置(オートポア9220型)を用いて、初期圧20kPaの条件で細孔分布測定を行い、平均孔径を測定した。
(5) 透気度(sec/100cc)
旭精工製のデジタル型王研式透気度試験機(EG01型)を用いて測定した。
(4) Average pore diameter (μm)
Using a mercury intruder (manufactured by Shimadzu Corp.) (auto pore type 9220), pore distribution was measured under conditions of an initial pressure of 20 kPa, and an average pore diameter was measured.
(5) Air permeability (sec / 100cc)
It was measured using a digital type Oken air permeability tester (EG01 type) manufactured by Asahi Seiko.
(6)電気抵抗(Ωcm2)
安藤電気製のLCRメーター(AG-4311)を用いて下記条件下、25℃で測定した。
電解液:炭酸プロピレン 50体積%
ジメトキシエタン50体積%
過塩素酸リチウム1mol/dm3
電極:白金黒電極、極板間距離3mm
極板面積:0.785cm2
交流:1kHZ
組立図:図1に記載
(6) Electric resistance (Ωcm 2 )
It measured at 25 degreeC on the following conditions using the Ando Electric LCR meter (AG-4311).
Electrolytic solution: 50% by volume of propylene carbonate
Dimethoxyethane 50% by volume
Electrode: Platinum black electrode,
Electrode area: 0.785 cm 2
AC: 1kHz
Assembly drawing: described in Fig. 1
(7)孔閉塞温度(℃)
図2(A)〜(C)に孔閉塞温度の測定装置の概略図を示す。図2(A)は測定装置の構成図である。9は測定サンプルであり、2A及び2Bは厚さ10μmのNi箔、3A及び3Bはガラス板である。4は電気抵抗測定装置(安藤電気LCRメーター AG4311)であり、Ni箔(2A、2B)と接続されている。5は熱電対であり温度計6と接続されている。7はデーターコレクターであり、電気抵抗測定装置4及び温度計6と接続されている。8はオーブンであり、サンプルを加熱する。
(7) Hole closing temperature (° C)
2A to 2C are schematic views of a hole closing temperature measuring device. FIG. 2A is a configuration diagram of the measuring apparatus. 9 is a measurement sample, 2A and 2B are Ni foils having a thickness of 10 μm, and 3A and 3B are glass plates. 4 is an electrical resistance measuring device (Ando Electric LCR meter AG4311), which is connected to Ni foils (2A, 2B). A thermocouple 5 is connected to the thermometer 6. A data collector 7 is connected to the electrical
さらに詳細に説明すると、サンプル9には規定の電解液が含浸されており、図2(B)に示すようにNi箔2A上にMDのみテフロン(登録商標)テープで止められた形で固定されている。Ni箔2Bは図2(C)に示すように15mm×10mmの部分を残してテフロン(登録商標)テープでマスキングされている。Ni箔2AとNi箔2Bをサンプル9を挟むような形で重ね合わせ、さらにその両側からガラス板3A、3Bによって2枚のNi箔を挟み込む。2枚のガラス板は市販のクリップではさむことにより固定する。図2(A)に示した装置を用い、連続的に温度と電気抵抗を測定する。なお、温度は2℃/minの速度にて昇温させ、電気抵抗値は1kHzの交流にて測定する。孔閉塞温度とはサンプル9の電気抵抗値が1000Ωに達する時の温度と定義する。
More specifically, the
なお、規定の電解液とは下記の通りである。
電解液:1mol/Lのホウフッ化リチウム(LiBF4)及び0.5重量%のリン酸トリオクチルを含む炭酸プロピレン/炭酸エチレン/γ−ブチルラクトン=25/25/50体積%の混合有機溶媒。
The prescribed electrolyte is as follows.
Electrolytic solution: mixed organic solvent of propylene carbonate / ethylene carbonate / γ-butyllactone = 25/25/50% by volume containing 1 mol / L lithium borofluoride (LiBF 4 ) and 0.5% by weight of trioctyl phosphate.
[実施例1]
基材としてセルロース製セパレータ(日本高度紙社製TF40)を用いた。この基材の片面にポリエチレン粒子の分散液であるケミパールW401(三井化学社製、平均粒径1μm)の20重量%溶液をNo.11のワイヤーバーを用いてバーコーター方式で塗工した。塗工後80℃で熱風乾燥を1時間行った。サンプルの構成を表1示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Example 1]
A cellulose separator (TF40 manufactured by Nippon Kogyo Paper Co., Ltd.) was used as the substrate. A 20% by weight solution of Chemipearl W401 (Mitsui Chemicals, average particle size of 1 μm), which is a dispersion of polyethylene particles, was applied to one side of this substrate as No. 1 Coating was performed by a bar coater method using 11 wire bars. After coating, hot air drying was performed at 80 ° C. for 1 hour. The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.
[実施例2]
基材としてテンセル繊維(テンセルジャパン社製)を叩解後抄紙して作成したテン
セル製薄膜を用いた。この基材の片面にポリエチレン粒子の分散液であるケミパール
W400(三井化学社製、平均粒径4μm)の20重量%溶液をNo.11のワイヤーバーを用いてバーコーター方式で塗工した。塗工後80℃で熱風乾燥を1時間行った。
サンプルの構成を表1に示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Example 2]
As a base material, a Tencel thin film prepared by beating paper after tencel fiber (manufactured by Tencel Japan) was used. A 20% by weight solution of Chemipearl W400 (Mitsui Chemicals, average particle size of 4 μm), which is a dispersion of polyethylene particles, was applied to one side of this substrate. Coating was performed by a bar coater method using 11 wire bars. After coating, hot air drying was performed at 80 ° C. for 1 hour.
The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.
[比較例1]
基材としてポリプロピレン微多孔膜(セルガードNo.2400)を用いた以外は実施例1と同様の操作を行った。サンプルの構成を表1に示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Comparative Example 1]
The same operation as in Example 1 was performed except that a polypropylene microporous membrane (Celgard No. 2400) was used as the substrate. The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.
[比較例2]
基材としてポリプロピレン製不織布(旭化成せんい社製エルタス)、ポリエチレン粒子の分散液としてケミパールW410(三井化学社製、平均粒径10μm)を用いた以外は実施例1と同様の操作を行った。サンプルの構成を表1に示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Comparative Example 2]
The same operation as in Example 1 was carried out except that polypropylene non-woven fabric (ELTAS manufactured by Asahi Kasei Fibers Co., Ltd.) was used and Chemipearl W410 (Mitsui Chemicals, average particle size 10 μm) was used as the dispersion of polyethylene particles. The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.
[比較例3]
基材としてセルロース製和紙(旭化成ケミカルズ社製AH)、ポリエチレン粒子の分散液としてケミパールW410(三井化学社製、平均粒径10μm)を用いた以外は実施例1と同様の操作を行った。サンプルの構成を表1に示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Comparative Example 3]
The same operation as in Example 1 was performed except that cellulose Japanese paper (AH manufactured by Asahi Kasei Chemicals Corporation) was used as the substrate and Chemipearl W410 (Mitsui Chemicals, average particle size 10 μm) was used as the dispersion of polyethylene particles. The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.
[比較例4]
基材としてセルロース製和紙(旭化成ケミカルズ社製AH)に微小繊維状セルロー
ス(ダイセル社製セリッシュ)を塗布し表面の孔径を小さくした基材を用いた以外は実施例1と同様の操作を行った。サンプルの構成を表1に示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Comparative Example 4]
The same operation as in Example 1 was carried out except that a base material in which fine fibrous cellulose (Cerish manufactured by Daicel Corp.) was applied to Japanese paper made of cellulose (AH manufactured by Asahi Kasei Chemicals Co., Ltd.) and the surface pore diameter was reduced was used. . The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.
本発明の複合多孔膜は、高耐熱性と適切なSD特性の両立によって安全性が高い特性を有しており、リチウム、ナトリウムなどの軽金属を活物質とする負極と、金属の酸化物あるいはハロゲン化物などの活物質を正極とする非水溶媒電池や、リチウムイオン電池等の非水溶媒電池に用いられるセパレータとして有用である。 The composite porous membrane of the present invention has high safety characteristics by achieving both high heat resistance and appropriate SD characteristics, and includes a negative electrode using a light metal such as lithium or sodium as an active material, a metal oxide or a halogen. It is useful as a separator used in a nonaqueous solvent battery using an active material such as a chemical compound as a positive electrode or a nonaqueous solvent battery such as a lithium ion battery.
1:電極
2:パッキン(外径2cm、内径1cm、厚さ1mm)
3:測定サンプル
2A、2B:厚さ10μmのNi箔
3A、3B:ガラス板
4:電気抵抗測定装置
5:熱電対
6:温度計
7:データーコレクター
8:オーブン
9:測定サンプル
1: Electrode
2: Packing (
3: Measurement sample 2A, 2B:
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005102732A JP4859383B2 (en) | 2005-03-31 | 2005-03-31 | Composite porous membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005102732A JP4859383B2 (en) | 2005-03-31 | 2005-03-31 | Composite porous membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006286311A true JP2006286311A (en) | 2006-10-19 |
JP4859383B2 JP4859383B2 (en) | 2012-01-25 |
Family
ID=37408017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005102732A Expired - Fee Related JP4859383B2 (en) | 2005-03-31 | 2005-03-31 | Composite porous membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4859383B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009114434A (en) * | 2007-10-15 | 2009-05-28 | Toray Ind Inc | Porous film |
CN104577009A (en) * | 2013-10-29 | 2015-04-29 | 松下电器产业株式会社 | Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP2019164992A (en) * | 2018-03-15 | 2019-09-26 | 株式会社リコー | Porous insulator, electrode, and non-aqueous storage element |
WO2020174974A1 (en) * | 2019-02-28 | 2020-09-03 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
US10916752B2 (en) | 2018-04-30 | 2021-02-09 | Hyundai Motor Company | Lithium secondary battery and manufacturing method thereof |
WO2024004420A1 (en) * | 2022-06-30 | 2024-01-04 | Dic株式会社 | Aqueous resin composition for lithium ion secondary battery separators, slurry for functional layers of lithium ion secondary battery separators, and separator for lithium ion secondary batteries |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6052A (en) * | 1983-06-15 | 1985-01-05 | Fuji Elelctrochem Co Ltd | Non-aqueous electrolytic solution battery |
JPH03283259A (en) * | 1990-03-29 | 1991-12-13 | Asahi Chem Ind Co Ltd | Battery |
JP2003317693A (en) * | 2002-04-24 | 2003-11-07 | Teijin Ltd | Separator for lithium ion secondary cell |
JP2005268095A (en) * | 2004-03-19 | 2005-09-29 | Tomoegawa Paper Co Ltd | Separator for electronic component and manufacturing method thereof |
-
2005
- 2005-03-31 JP JP2005102732A patent/JP4859383B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6052A (en) * | 1983-06-15 | 1985-01-05 | Fuji Elelctrochem Co Ltd | Non-aqueous electrolytic solution battery |
JPH03283259A (en) * | 1990-03-29 | 1991-12-13 | Asahi Chem Ind Co Ltd | Battery |
JP2003317693A (en) * | 2002-04-24 | 2003-11-07 | Teijin Ltd | Separator for lithium ion secondary cell |
JP2005268095A (en) * | 2004-03-19 | 2005-09-29 | Tomoegawa Paper Co Ltd | Separator for electronic component and manufacturing method thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009114434A (en) * | 2007-10-15 | 2009-05-28 | Toray Ind Inc | Porous film |
CN104577009A (en) * | 2013-10-29 | 2015-04-29 | 松下电器产业株式会社 | Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP2015111546A (en) * | 2013-10-29 | 2015-06-18 | パナソニック株式会社 | Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2019164992A (en) * | 2018-03-15 | 2019-09-26 | 株式会社リコー | Porous insulator, electrode, and non-aqueous storage element |
US10916752B2 (en) | 2018-04-30 | 2021-02-09 | Hyundai Motor Company | Lithium secondary battery and manufacturing method thereof |
WO2020174974A1 (en) * | 2019-02-28 | 2020-09-03 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
CN113498561A (en) * | 2019-02-28 | 2021-10-12 | 松下知识产权经营株式会社 | Nonaqueous electrolyte secondary battery |
CN113498561B (en) * | 2019-02-28 | 2024-05-07 | 松下知识产权经营株式会社 | Nonaqueous electrolyte secondary battery |
WO2024004420A1 (en) * | 2022-06-30 | 2024-01-04 | Dic株式会社 | Aqueous resin composition for lithium ion secondary battery separators, slurry for functional layers of lithium ion secondary battery separators, and separator for lithium ion secondary batteries |
Also Published As
Publication number | Publication date |
---|---|
JP4859383B2 (en) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11411281B2 (en) | Multi-layered composite functional separator for lithium-ion battery | |
JP3756815B2 (en) | Battery separator and battery | |
KR100432113B1 (en) | Multilayer Non-aqueous Electrolyte Secondary Battery | |
KR101032443B1 (en) | Separator for electronic components and production method therefor | |
KR100647966B1 (en) | Separator for electronic components and process for producing the same | |
KR101904160B1 (en) | micro-porous hybrid polyolefin film having excellent thermal property and stability and manufacturing method thereof | |
CN103181000B (en) | The manufacturing method of diaphragm, the diaphragm manufactured by this method and the electrochemical apparatus for having the diaphragm | |
CN108352484B (en) | Separator for nonaqueous secondary battery and nonaqueous secondary battery | |
JP2006059733A (en) | Separator for electronic component and its manufacturing method | |
US11777175B2 (en) | Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery | |
JP2006344506A (en) | Separator for electronic components | |
JP5612797B1 (en) | Nonaqueous secondary battery separator and nonaqueous secondary battery | |
JP4859383B2 (en) | Composite porous membrane | |
JP4812266B2 (en) | Separator for electronic parts and method for manufacturing the same | |
JP2006338918A (en) | Electronic component and separator therefor | |
JP2006032359A (en) | Method of manufacturing separator for battery and method of manufacturing battery | |
JP2006331759A (en) | Separator for electronic component and method of manufacturing the same | |
JPWO2008044761A1 (en) | Nonaqueous electrolyte secondary battery separator and multi-layer separator for nonaqueous electrolyte secondary battery | |
JP2006338917A (en) | Electronic component and separator therefor | |
TW201351757A (en) | Structure of an electrochemical separation membrane and manufacturing method for fabricating the same | |
JPH0574443A (en) | Nonaqueous electrolytic battery | |
JP4495516B2 (en) | Separator for electronic parts and method for manufacturing the same | |
KR101726382B1 (en) | A stack/folding type electrode assembly with safety improvement and a electrochemical cell comprising the same | |
JP2006351365A (en) | Separator for electronic components, and the electronic component | |
JPH11144697A (en) | Nonaqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080220 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111012 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20111012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111101 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4859383 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |