JP2006286311A - Composite porous film - Google Patents

Composite porous film Download PDF

Info

Publication number
JP2006286311A
JP2006286311A JP2005102732A JP2005102732A JP2006286311A JP 2006286311 A JP2006286311 A JP 2006286311A JP 2005102732 A JP2005102732 A JP 2005102732A JP 2005102732 A JP2005102732 A JP 2005102732A JP 2006286311 A JP2006286311 A JP 2006286311A
Authority
JP
Japan
Prior art keywords
porous
base material
resin
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005102732A
Other languages
Japanese (ja)
Other versions
JP4859383B2 (en
Inventor
Takafumi Yamamizu
孝文 山水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005102732A priority Critical patent/JP4859383B2/en
Publication of JP2006286311A publication Critical patent/JP2006286311A/en
Application granted granted Critical
Publication of JP4859383B2 publication Critical patent/JP4859383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite porous film being a separator used for a nonaqueous solvent battery, allowing compatibility of high heat resistance with appropriate SD characteristics and having high practicality. <P>SOLUTION: In this composite porous film, the base material of the film is formed of a porous material capable of keeping its porous structure 140°C or higher, and having an average pore diameter of 0.2-10 μm; a porous layer formed of a resin particle aggregate exist, from the surface of the base material to the inside of the porous structure; and pores of the base material are closed, by softening or melting of the resin particles constituting the porous layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水溶媒電池に用いられるセパレータに関する。   The present invention relates to a separator used for a nonaqueous solvent battery.

リチウム、ナトリウムなどの軽金属を活物質とする負極と、金属の酸化物あるいはハロゲン化物などの活物質を正極とする電池やリチウムイオン電池等の非水溶媒電池は、使用する電解液が有機溶媒であり、水系電池の水溶液溶媒と比較して電池の発熱に対して安全性に劣るという問題がある。そのため、従来、非水溶媒電池、中でもエネルギー密度の大きなリチウムイオン電池の安全性を改善する技術として、ポリエチレンを主とするオレフィン系材料の微孔性多孔膜を用いたセパレータを使用することが行われてきた。ポリエチレンが主として使用されるのは、ポリエチレンが有機溶媒中で使用可能であることに加え、電池が短絡等によって異常発熱した場合に適切な温度(130℃前後)でポリエチレンが溶融し、多孔構造が閉塞すること(シャットダウン、SDと略する)により安全性の維持が可能となるからである。   Non-aqueous solvent batteries, such as negative electrodes that use light metals such as lithium and sodium as active materials and batteries that use active materials such as metal oxides or halides as positive electrodes and lithium ion batteries, use electrolytes that are organic solvents. In addition, there is a problem that the safety against heat generation of the battery is inferior to that of the aqueous solvent of the aqueous battery. Therefore, conventionally, as a technique for improving the safety of a non-aqueous solvent battery, particularly a lithium ion battery having a large energy density, a separator using a microporous porous film of an olefin-based material mainly composed of polyethylene has been used. I have been. Polyethylene is mainly used in addition to the fact that polyethylene can be used in an organic solvent. In addition, when a battery abnormally generates heat due to a short circuit or the like, the polyethylene melts at an appropriate temperature (around 130 ° C.), resulting in a porous structure. This is because the safety can be maintained by blocking (abbreviated as “shutdown” or “SD”).

しかし、電池の高温試験に対してはポリエチレンを用いたセパレータでは140℃以下の温度で収縮が生じ易く電極間の短絡による発熱が生じるなど耐熱性に劣ることが問題であった。ポリプロピレンなどポリエチレンよりも耐熱性の高いポリマーの使用では140℃以下の温度での収縮を小さくできるなどの長所はあるが、その場合には適切な温度でSDする特性が発現できないため、その使用は制限されていた。   However, for the high temperature test of the battery, the separator using polyethylene has a problem that it is inferior in heat resistance, for example, shrinkage easily occurs at a temperature of 140 ° C. or less, and heat is generated due to a short circuit between the electrodes. The use of a polymer having higher heat resistance than polyethylene such as polypropylene has the advantage that shrinkage at a temperature of 140 ° C. or lower can be reduced, but in that case, the property of SD at an appropriate temperature cannot be expressed, It was restricted.

一方、微多孔膜の片面に閉塞材を付設し、その閉塞材が加熱溶融可能で加熱溶融されることにより微多孔膜表面を覆うことを特徴とする微多孔膜複合体(例えば特許文献1)が提案されている。特許文献1では、閉塞材は微多孔膜表面上に付設されており、微多孔膜の孔を完全に閉塞するために加熱溶融によって閉塞材がフィルム状になり微多孔膜表面を覆うことを特徴としている。このため閉塞材は微多孔膜表面上に層状に存在することが必要となり微多孔膜複合体は多層膜であることが通常の形態であった。このような多層膜は膜厚が厚くなる問題があり好ましくない。   On the other hand, a microporous membrane composite is characterized in that a blocking material is attached to one side of the microporous membrane, and the blocking material is heat-meltable and heat-melted to cover the surface of the microporous membrane (for example, Patent Document 1). Has been proposed. In Patent Document 1, the plugging material is attached on the surface of the microporous membrane, and the plugging material becomes a film by heating and melting in order to completely block the pores of the microporous membrane and covers the surface of the microporous membrane. It is said. For this reason, it is necessary for the plugging material to be present in a layered manner on the surface of the microporous membrane, and the microporous membrane composite is usually a multilayer film. Such a multilayer film is not preferable because it has a problem of increasing the film thickness.

また、ポリプロピレン不織布の表面にポリエチレン粉末粒子を付着させたセパレータ(例えば特許文献2)が提案されている。この場合には基材が繊維を構成材料としている不織布であり数十μm程度の大きな平均孔径を通常有しているため、樹脂が溶融して孔部を塞ぐまでに時間がかかり、その閉塞も完全とはいえず好ましくない。   Moreover, the separator (for example, patent document 2) which made the polyethylene powder particle adhere to the surface of a polypropylene nonwoven fabric is proposed. In this case, since the base material is a non-woven fabric composed of fibers and usually has a large average pore diameter of about several tens of μm, it takes time until the resin melts and closes the pores. Although it is not perfect, it is not preferable.

さらに、合成樹脂微細多孔膜を基材とし、その少なくとも片面が樹脂多孔性粉末集合体で被覆されているセパレータ(例えば特許文献3)の提案がなされている。安全性の維持に重要なSD特性は多孔構造が完全に閉塞することにより発現する。特許文献3では基材表面上にのみ樹脂多孔性粉末を存在させており、このような場合には樹脂多孔性粉末の軟化・溶融のみでは完全な無孔フィルムが形成されずSD特性の発現は困難である。これに対して特許文献3では基材の合成樹脂微細多孔膜自体がSD特性を有している。樹脂多孔性粉末集合体で被覆することで基材のSD特性をさらに向上させることにより安全性改良の課題を解決している。   Furthermore, a separator (for example, Patent Document 3) has been proposed in which a synthetic resin microporous film is used as a base material and at least one surface thereof is coated with a resin porous powder aggregate. SD characteristics important for maintaining safety are manifested by complete blockage of the porous structure. In Patent Document 3, the resin porous powder is present only on the surface of the base material. In such a case, a complete non-porous film is not formed only by softening and melting of the resin porous powder, and the expression of SD characteristics is not achieved. Have difficulty. On the other hand, in Patent Document 3, the synthetic resin microporous film itself of the base material has SD characteristics. The problem of improving safety is solved by further improving the SD characteristics of the base material by coating with the resin porous powder aggregate.

また、基材の孔部に樹脂粒子を入れず基材表面上にのみ樹脂多孔性粉末を坦持していることから、基材に対して樹脂多孔性粉末の接着強度に限界があり、このため電池組立工程や電池の充放電を繰り返している間に坦持された樹脂粒子が脱落するなど実用性に問題があった。接着強度に対しては、SD用樹脂粒子に加えて接着用樹脂粒子を加えた樹脂粒子を多孔性樹脂膜表面に塗布するセパレータ(例えば特許文献4)の提案がなされている。   In addition, since the resin porous powder is supported only on the surface of the base material without the resin particles being inserted into the holes of the base material, there is a limit to the adhesive strength of the resin porous powder to the base material. Therefore, there has been a problem in practicality such that the resin particles carried during the battery assembly process and the charge / discharge of the battery are repeated. For the adhesive strength, a separator (for example, Patent Document 4) is proposed in which resin particles obtained by adding adhesive resin particles in addition to SD resin particles are applied to the surface of a porous resin film.

しかしながら、このセパレータでは樹脂粒子層の接着強度を発現するために接着用粒子のみを一度溶融させる必要があり、生産性が悪くなるとともに表面粒子層の多孔性が消失して電気抵抗が高くなりやすいなどの問題があった。
特許第1828177号 特許第1869019号 特許第2955323号 特開平9−219185号公報
However, in this separator, in order to develop the adhesive strength of the resin particle layer, it is necessary to melt only the adhesive particles once, so that the productivity is deteriorated and the porosity of the surface particle layer is lost and the electric resistance is likely to be increased. There were problems such as.
Japanese Patent No. 1828177 Japanese Patent No. 1869019 Japanese Patent No. 2955323 JP-A-9-219185

本発明は、高耐熱性と適切なSD特性の両立が可能でかつ実用性の高いセパレータを提供することを目的とする。   An object of the present invention is to provide a separator that can achieve both high heat resistance and appropriate SD characteristics and has high practicality.

本発明らは上記目的を達成するために鋭意検討した結果、本発明に到達した。
すなわち、本発明は、下記のとおりである。
(1)膜の基材が140℃以上で多孔構造が維持可能な平均孔径0.2μm以上10μm以下の多孔材料からなり、基材の表面および多孔構造内部にまで樹脂粒子集合体による多孔層が存在し、その多孔層を構成する樹脂粒子の軟化又は溶融によって基材の孔が閉塞する温度が140℃以下であることを特徴とする複合多孔膜。
(2)樹脂粒子集合体による多孔層が基材表面の片面に形成されることを特徴とする(1)に記載の複合多孔膜。
(3)非水溶媒電池セパレータに使用される(1)又は(2)に記載の複合多孔膜。
As a result of intensive studies to achieve the above object, the present inventors have reached the present invention.
That is, the present invention is as follows.
(1) The membrane substrate is made of a porous material having an average pore diameter of 0.2 μm or more and 10 μm or less capable of maintaining a porous structure at 140 ° C. or higher, and a porous layer formed of resin particle aggregates is formed on the surface of the substrate and inside the porous structure. A composite porous membrane having a temperature at which pores of a base material are blocked by softening or melting of resin particles that are present and constituting the porous layer is 140 ° C. or lower.
(2) The composite porous membrane according to (1), wherein a porous layer made of a resin particle aggregate is formed on one side of the substrate surface.
(3) The composite porous membrane according to (1) or (2), which is used for a nonaqueous solvent battery separator.

本発明によれば、高耐熱性と適切なSD特性の両立によって安全性が高く、かつ実用性の高い非水溶媒電池用セパレータを提供できる。   According to the present invention, it is possible to provide a separator for a non-aqueous solvent battery that has high safety and high practicality by achieving both high heat resistance and appropriate SD characteristics.

本発明における膜の基材とは、連通孔を有する薄膜状の多孔材料であり、例えば、樹脂多孔膜、紙、不織布、無機多孔膜などが挙げられる。
多孔構造とは空隙部と骨格部が相互に連続的に存在する網目状構造である。その維持可能な温度とは、多孔構造の孔径や空隙(気孔率)が実質的に保持可能な温度であり、高耐熱性の点から140℃以上であり、150℃以上が好ましい。さらに高温で多孔構造が保持可能であればより好ましいが、実用的にはコストや他の電池構成材料の耐熱性から300℃以下が好ましい。
The membrane substrate in the present invention is a thin-film porous material having communication holes, and examples thereof include a resin porous membrane, paper, nonwoven fabric, and inorganic porous membrane.
The porous structure is a network structure in which voids and skeletons are continuously present. The maintainable temperature is a temperature at which the pore diameter and voids (porosity) of the porous structure can be substantially maintained, and is 140 ° C. or higher and preferably 150 ° C. or higher from the viewpoint of high heat resistance. Furthermore, it is more preferable if the porous structure can be maintained at a high temperature, but practically, it is preferably 300 ° C. or less in view of cost and heat resistance of other battery constituent materials.

基材の多孔材料の平均孔径は、樹脂粒子が基材の孔内部に十分存在できるように0.2μm以上である必要があり、0.4μm以上が好ましい。また、樹脂粒子集合体の軟化又は溶融による孔の閉塞に時間がかからず、孔の閉塞が完全となり適切なSD特性が得られるように、10μm以下である必要があり、8μm以下が好ましい。基材の膜厚は、特に限定されないが、セパレータとして信頼性確保の点から1μm以上であることが好ましく、5μm以上であることが更に好ましい。また、電池の高エネルギー密度化の点から500μm以下であることが好ましく、200μm以下であることがより好ましい。   The average pore diameter of the porous material of the base material needs to be 0.2 μm or more, and preferably 0.4 μm or more so that the resin particles can be sufficiently present inside the pores of the base material. Moreover, it is necessary to be 10 μm or less, and preferably 8 μm or less so that it does not take time for the pores to be closed due to softening or melting of the resin particle aggregate, and the pores are completely closed and appropriate SD characteristics are obtained. Although the film thickness of a base material is not specifically limited, From the point of ensuring reliability as a separator, it is preferable that it is 1 micrometer or more, and it is still more preferable that it is 5 micrometers or more. Moreover, it is preferable that it is 500 micrometers or less from the point of the high energy density of a battery, and it is more preferable that it is 200 micrometers or less.

基材の気孔率は膜強度、耐電圧信頼性の点から90%以下が好ましく、85%以下がより好ましい。また、低電気抵抗の点から30%以上が好ましく、35%以上がより好ましい。本発明における樹脂粒子集合体の多孔層とは、樹脂粒子が接点をともにした連続体からなり、粒子間に空隙を有した集合体の層である。樹脂粒子集合体の多孔層は、基材表面の両面に設けることができるが、生産性や薄膜化等の観点から片面に形成されることが好ましい。
樹脂粒子の平均粒子径は、電気抵抗の上昇を抑えるために0.1μm以上が好ましく、0.2μm以上がより好ましい。また、SD特性を悪くしないために20μm以下が好ましく、15μm以下がより好ましい。
The porosity of the substrate is preferably 90% or less, more preferably 85% or less, from the viewpoint of film strength and withstand voltage reliability. Moreover, 30% or more is preferable from the point of low electrical resistance, and 35% or more is more preferable. The porous layer of the resin particle aggregate in the present invention is a layer of an aggregate composed of a continuous body in which resin particles are in contact with each other and having voids between the particles. The porous layer of the resin particle aggregate can be provided on both surfaces of the substrate surface, but it is preferably formed on one surface from the viewpoint of productivity and thinning.
The average particle diameter of the resin particles is preferably 0.1 μm or more, more preferably 0.2 μm or more in order to suppress an increase in electrical resistance. Further, it is preferably 20 μm or less, more preferably 15 μm or less in order not to deteriorate the SD characteristics.

基材の表面から多孔構造内部にまで樹脂粒子集合体による多孔層が存在するとは、樹脂粒子が基材表面から基材の孔内部にまで入り込んで存在し、その樹脂粒子が連続的に連結して多孔層が形成されている状態をいう。樹脂粒子が基材表面から基材の孔内部にまで入り込んで存在することで、樹脂粒子が軟化・溶融する際に、基材表面のみに樹脂粒子が存在している場合に比べ、基材の孔の無孔化がムラ無く効果的に行われる。この結果、適切なSD特性が得られる。
本発明において、適切なSD特性とは、電池温度が上昇してある温度以上に到達すると電池内のセパレータの電気抵抗が温度の上昇とともに急上昇して1000Ωcm以上となる特性をいう。
The presence of a porous layer composed of resin particle aggregates from the surface of the base material to the inside of the porous structure means that the resin particles enter from the surface of the base material into the pores of the base material, and the resin particles are continuously connected. In this state, a porous layer is formed. The presence of resin particles from the surface of the base material to the inside of the pores of the base material makes it easier to soften and melt the resin particles than when the resin particles exist only on the base material surface. The pores can be made non-uniform and effective. As a result, appropriate SD characteristics can be obtained.
In the present invention, the appropriate SD characteristic means a characteristic that when the battery temperature rises to a certain temperature or higher, the electrical resistance of the separator in the battery rapidly increases with the temperature rise to 1000 Ωcm 2 or more.

樹脂粒子の軟化又は溶融によって基材の孔が閉塞する温度とは、樹脂粒子が軟化又は溶融して樹脂粒子の多孔層が無孔化することにより、基材の孔が樹脂によって閉塞した状態となる温度である。孔の閉塞によって基材の電気抵抗は大きく上昇する。このことから、電気抵抗測定により孔閉塞温度が測定できる。孔閉塞温度は電池の安全性確保から140℃以下が好ましい。さらに138℃以下がより好ましい。また、耐熱性の点から80℃以上が好ましく、90℃以上がより好ましい。   The temperature at which the pores of the base material are closed by the softening or melting of the resin particles means that the resin particles are softened or melted and the porous layer of the resin particles is made nonporous, so that the pores of the base material are closed by the resin. Temperature. The electrical resistance of the substrate is greatly increased by the blockage of the holes. From this, the hole closing temperature can be measured by electric resistance measurement. The hole closing temperature is preferably 140 ° C. or lower in order to ensure battery safety. Furthermore, 138 degrees C or less is more preferable. Moreover, 80 degreeC or more is preferable from a heat resistant point, and 90 degreeC or more is more preferable.

樹脂粒子の素材としては、軟化又は溶融によって基材の孔の閉塞温度を80〜140℃の範囲にすることが可能な樹脂であればよく、特に限定されるものではないが、その一例を挙げると、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン及びこれらの共重合体等のポリオレフィン樹脂、ポリスチレン、スチレン・アクリロニトリル共重合体等のポリスチレン樹脂、ポリメタクリル酸メチル、ポリメタクリル酸エチル等のポリアクリル樹脂等が挙げられる。このうち特に低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレンを主体とする樹脂が好ましい。   The resin particle material is not particularly limited as long as it is a resin capable of bringing the closing temperature of the pores of the base material into a range of 80 to 140 ° C. by softening or melting, and an example thereof is given. And polyolefin resins such as low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene and copolymers thereof, polystyrene resins such as polystyrene and styrene / acrylonitrile copolymers, polymethyl methacrylate, polymethacrylic acid Examples thereof include polyacrylic resins such as ethyl. Of these, resins mainly composed of low density polyethylene, linear low density polyethylene, and high density polyethylene are preferred.

樹脂粒子多孔層の基材表面上の膜厚は、樹脂粒子集合体が存在しない基材の膜厚と表面に樹脂粒子集合体が存在する基材全体の膜厚との差であり、この膜厚には特に限定はないが、SD特性の信頼性から0.1μm以上が好ましく、1μm以上がより好ましい。低電気抵抗の点から50μm以下が好ましく、30μm以下がより好ましい。   The film thickness on the substrate surface of the resin particle porous layer is the difference between the film thickness of the substrate where the resin particle aggregate does not exist and the film thickness of the entire substrate where the resin particle aggregate exists on the surface. The thickness is not particularly limited, but is preferably 0.1 μm or more, more preferably 1 μm or more from the viewpoint of reliability of SD characteristics. From the viewpoint of low electrical resistance, 50 μm or less is preferable, and 30 μm or less is more preferable.

本発明の複合多孔膜の製造方法は特に限定されないが、その一例を挙げれば、樹脂粒子の水性分散液又は油性分散液を用いて各種コーティング方式により基材上に塗布する方法が挙げられる。塗布後は樹脂粒子及び基材が大きく変形しない温度で乾燥することができ、場合によっては樹脂粒子同士の部分的熱融着等が多孔性を失わない条件で行うこともできる。   Although the manufacturing method of the composite porous membrane of this invention is not specifically limited, If the example is given, the method of apply | coating on a base material by various coating systems using the aqueous dispersion liquid or oil dispersion of a resin particle will be mentioned. After application, the resin particles and the substrate can be dried at a temperature at which the resin particles and the substrate are not greatly deformed. In some cases, partial heat fusion between the resin particles can be performed under the condition that the porosity is not lost.

本発明の複合多孔膜の透気度は、特に限定するものではないが、好ましくは1000秒以下、より好ましくは600秒以下である。透気度は低い方が電気抵抗など透過性能がより良くなるが、あまり低すぎると電池内の電極間隔離膜(セパレータ)として問題が生じ易くなることから5秒以上が好ましく、より好ましくは10秒以上である。また、電気抵抗は同じく特に限定するものではないが、好ましくは10Ωcm以下、より好ましくは5Ωcm以下である。電極間の短絡を防止する面から好ましくは0.2Ωcm以上、より好ましくは0.5Ωcm以上である。 The air permeability of the composite porous membrane of the present invention is not particularly limited, but is preferably 1000 seconds or less, more preferably 600 seconds or less. The lower the air permeability, the better the permeation performance such as electrical resistance. However, if it is too low, a problem is likely to occur as an interelectrode separator (separator) in the battery, and therefore it is preferably 5 seconds or more, more preferably 10 More than a second. Further, although not electrical resistance also particularly limited, but is preferably 10 .OMEGA.cm 2 or less, more preferably 5Omucm 2 or less. From the aspect of preventing a short circuit between the electrodes, it is preferably 0.2 Ωcm 2 or more, more preferably 0.5 Ωcm 2 or more.

本発明の複合多孔膜は、高耐熱性と適切なSD特性の両立によって安全性が高い特性を有しているため、リチウム、ナトリウムなどの軽金属を活物質とする負極と、金属の酸化物あるいはハロゲン化物などの活物質を正極とする非水溶媒電池や、リチウムイオン電池等の非水溶媒電池に用いられるセパレータとして使用できる。   Since the composite porous membrane of the present invention has high safety characteristics due to both high heat resistance and appropriate SD characteristics, a negative electrode using a light metal such as lithium and sodium as an active material, a metal oxide or It can be used as a separator used in a nonaqueous solvent battery having a positive electrode made of an active material such as a halide or a nonaqueous solvent battery such as a lithium ion battery.

以下、本発明について、実施例を挙げて更に詳細に説明するが、本発明は実施例に特に限定されるものではない。尚、実施例における測定方法および評価方法は次の通りである。
(1) 粒径分布測定
島津製作所製の粒度分布測定装置(SALD-3000)を用いて測定した。
(2)膜厚(μm)
東洋精機製の微小測厚器(タイプKBN、端子径5mm)を用いて測定した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not specifically limited to an Example. In addition, the measuring method and evaluation method in an Example are as follows.
(1) Particle size distribution measurement The particle size distribution was measured using a particle size distribution measuring device (SALD-3000) manufactured by Shimadzu Corporation.
(2) Film thickness (μm)
Measurement was performed using a micro thickness gauge (type KBN, terminal diameter 5 mm) manufactured by Toyo Seiki.

(3) 気孔率(%)
Xcm×Ycmのサンプルを切り出し次式より算出した。
気孔率={1−(M/ρ)/(X×Y×T)}×100
T:サンプル厚み(cm)
M:サンプル重量(g)
ρ:サンプルの骨格密度
(3) Porosity (%)
A sample of Xcm × Ycm was cut out and calculated from the following formula.
Porosity = {1- (M / ρ) / (X × Y × T)} × 100
T: Sample thickness (cm)
M: sample weight (g)
ρ: Sample skeleton density

(4) 平均孔径(μm)
島津製作所製の水銀圧入装置(オートポア9220型)を用いて、初期圧20kPaの条件で細孔分布測定を行い、平均孔径を測定した。
(5) 透気度(sec/100cc)
旭精工製のデジタル型王研式透気度試験機(EG01型)を用いて測定した。
(4) Average pore diameter (μm)
Using a mercury intruder (manufactured by Shimadzu Corp.) (auto pore type 9220), pore distribution was measured under conditions of an initial pressure of 20 kPa, and an average pore diameter was measured.
(5) Air permeability (sec / 100cc)
It was measured using a digital type Oken air permeability tester (EG01 type) manufactured by Asahi Seiko.

(6)電気抵抗(Ωcm
安藤電気製のLCRメーター(AG-4311)を用いて下記条件下、25℃で測定した。
電解液:炭酸プロピレン 50体積%
ジメトキシエタン50体積%
過塩素酸リチウム1mol/dm3
電極:白金黒電極、極板間距離3mm
極板面積:0.785cm2
交流:1kHZ
組立図:図1に記載
(6) Electric resistance (Ωcm 2 )
It measured at 25 degreeC on the following conditions using the Ando Electric LCR meter (AG-4311).
Electrolytic solution: 50% by volume of propylene carbonate
Dimethoxyethane 50% by volume
Lithium perchlorate 1 mol / dm 3
Electrode: Platinum black electrode, electrode plate distance 3 mm
Electrode area: 0.785 cm 2
AC: 1kHz
Assembly drawing: described in Fig. 1

(7)孔閉塞温度(℃)
図2(A)〜(C)に孔閉塞温度の測定装置の概略図を示す。図2(A)は測定装置の構成図である。9は測定サンプルであり、2A及び2Bは厚さ10μmのNi箔、3A及び3Bはガラス板である。4は電気抵抗測定装置(安藤電気LCRメーター AG4311)であり、Ni箔(2A、2B)と接続されている。5は熱電対であり温度計6と接続されている。7はデーターコレクターであり、電気抵抗測定装置4及び温度計6と接続されている。8はオーブンであり、サンプルを加熱する。
(7) Hole closing temperature (° C)
2A to 2C are schematic views of a hole closing temperature measuring device. FIG. 2A is a configuration diagram of the measuring apparatus. 9 is a measurement sample, 2A and 2B are Ni foils having a thickness of 10 μm, and 3A and 3B are glass plates. 4 is an electrical resistance measuring device (Ando Electric LCR meter AG4311), which is connected to Ni foils (2A, 2B). A thermocouple 5 is connected to the thermometer 6. A data collector 7 is connected to the electrical resistance measuring device 4 and the thermometer 6. Reference numeral 8 denotes an oven for heating the sample.

さらに詳細に説明すると、サンプル9には規定の電解液が含浸されており、図2(B)に示すようにNi箔2A上にMDのみテフロン(登録商標)テープで止められた形で固定されている。Ni箔2Bは図2(C)に示すように15mm×10mmの部分を残してテフロン(登録商標)テープでマスキングされている。Ni箔2AとNi箔2Bをサンプル9を挟むような形で重ね合わせ、さらにその両側からガラス板3A、3Bによって2枚のNi箔を挟み込む。2枚のガラス板は市販のクリップではさむことにより固定する。図2(A)に示した装置を用い、連続的に温度と電気抵抗を測定する。なお、温度は2℃/minの速度にて昇温させ、電気抵抗値は1kHzの交流にて測定する。孔閉塞温度とはサンプル9の電気抵抗値が1000Ωに達する時の温度と定義する。   More specifically, the sample 9 is impregnated with a prescribed electrolyte, and as shown in FIG. 2 (B), only the MD is fixed on the Ni foil 2A in a form stopped with Teflon (registered trademark) tape. ing. The Ni foil 2B is masked with Teflon (registered trademark) tape leaving a 15 mm × 10 mm portion as shown in FIG. The Ni foil 2A and the Ni foil 2B are overlapped so as to sandwich the sample 9, and two Ni foils are sandwiched by the glass plates 3A and 3B from both sides thereof. The two glass plates are fixed by sandwiching them with commercially available clips. Using the apparatus shown in FIG. 2A, temperature and electric resistance are continuously measured. The temperature is raised at a rate of 2 ° C./min, and the electrical resistance value is measured with an alternating current of 1 kHz. The hole closing temperature is defined as the temperature at which the electrical resistance value of sample 9 reaches 1000Ω.

なお、規定の電解液とは下記の通りである。
電解液:1mol/Lのホウフッ化リチウム(LiBF4)及び0.5重量%のリン酸トリオクチルを含む炭酸プロピレン/炭酸エチレン/γ−ブチルラクトン=25/25/50体積%の混合有機溶媒。
The prescribed electrolyte is as follows.
Electrolytic solution: mixed organic solvent of propylene carbonate / ethylene carbonate / γ-butyllactone = 25/25/50% by volume containing 1 mol / L lithium borofluoride (LiBF 4 ) and 0.5% by weight of trioctyl phosphate.

[実施例1]
基材としてセルロース製セパレータ(日本高度紙社製TF40)を用いた。この基材の片面にポリエチレン粒子の分散液であるケミパールW401(三井化学社製、平均粒径1μm)の20重量%溶液をNo.11のワイヤーバーを用いてバーコーター方式で塗工した。塗工後80℃で熱風乾燥を1時間行った。サンプルの構成を表1示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Example 1]
A cellulose separator (TF40 manufactured by Nippon Kogyo Paper Co., Ltd.) was used as the substrate. A 20% by weight solution of Chemipearl W401 (Mitsui Chemicals, average particle size of 1 μm), which is a dispersion of polyethylene particles, was applied to one side of this substrate as No. 1 Coating was performed by a bar coater method using 11 wire bars. After coating, hot air drying was performed at 80 ° C. for 1 hour. The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.

[実施例2]
基材としてテンセル繊維(テンセルジャパン社製)を叩解後抄紙して作成したテン
セル製薄膜を用いた。この基材の片面にポリエチレン粒子の分散液であるケミパール
W400(三井化学社製、平均粒径4μm)の20重量%溶液をNo.11のワイヤーバーを用いてバーコーター方式で塗工した。塗工後80℃で熱風乾燥を1時間行った。
サンプルの構成を表1に示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Example 2]
As a base material, a Tencel thin film prepared by beating paper after tencel fiber (manufactured by Tencel Japan) was used. A 20% by weight solution of Chemipearl W400 (Mitsui Chemicals, average particle size of 4 μm), which is a dispersion of polyethylene particles, was applied to one side of this substrate. Coating was performed by a bar coater method using 11 wire bars. After coating, hot air drying was performed at 80 ° C. for 1 hour.
The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.

[比較例1]
基材としてポリプロピレン微多孔膜(セルガードNo.2400)を用いた以外は実施例1と同様の操作を行った。サンプルの構成を表1に示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Comparative Example 1]
The same operation as in Example 1 was performed except that a polypropylene microporous membrane (Celgard No. 2400) was used as the substrate. The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.

[比較例2]
基材としてポリプロピレン製不織布(旭化成せんい社製エルタス)、ポリエチレン粒子の分散液としてケミパールW410(三井化学社製、平均粒径10μm)を用いた以外は実施例1と同様の操作を行った。サンプルの構成を表1に示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Comparative Example 2]
The same operation as in Example 1 was carried out except that polypropylene non-woven fabric (ELTAS manufactured by Asahi Kasei Fibers Co., Ltd.) was used and Chemipearl W410 (Mitsui Chemicals, average particle size 10 μm) was used as the dispersion of polyethylene particles. The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.

[比較例3]
基材としてセルロース製和紙(旭化成ケミカルズ社製AH)、ポリエチレン粒子の分散液としてケミパールW410(三井化学社製、平均粒径10μm)を用いた以外は実施例1と同様の操作を行った。サンプルの構成を表1に示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Comparative Example 3]
The same operation as in Example 1 was performed except that cellulose Japanese paper (AH manufactured by Asahi Kasei Chemicals Corporation) was used as the substrate and Chemipearl W410 (Mitsui Chemicals, average particle size 10 μm) was used as the dispersion of polyethylene particles. The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.

[比較例4]
基材としてセルロース製和紙(旭化成ケミカルズ社製AH)に微小繊維状セルロー
ス(ダイセル社製セリッシュ)を塗布し表面の孔径を小さくした基材を用いた以外は実施例1と同様の操作を行った。サンプルの構成を表1に示すとともに塗工後のコーティングサンプルの物性を表2に示した。
[Comparative Example 4]
The same operation as in Example 1 was carried out except that a base material in which fine fibrous cellulose (Cerish manufactured by Daicel Corp.) was applied to Japanese paper made of cellulose (AH manufactured by Asahi Kasei Chemicals Co., Ltd.) and the surface pore diameter was reduced was used. . The composition of the sample is shown in Table 1, and the physical properties of the coated sample after coating are shown in Table 2.

Figure 2006286311
Figure 2006286311

Figure 2006286311
Figure 2006286311

本発明の複合多孔膜は、高耐熱性と適切なSD特性の両立によって安全性が高い特性を有しており、リチウム、ナトリウムなどの軽金属を活物質とする負極と、金属の酸化物あるいはハロゲン化物などの活物質を正極とする非水溶媒電池や、リチウムイオン電池等の非水溶媒電池に用いられるセパレータとして有用である。   The composite porous membrane of the present invention has high safety characteristics by achieving both high heat resistance and appropriate SD characteristics, and includes a negative electrode using a light metal such as lithium or sodium as an active material, a metal oxide or a halogen. It is useful as a separator used in a nonaqueous solvent battery using an active material such as a chemical compound as a positive electrode or a nonaqueous solvent battery such as a lithium ion battery.

本発明の複合多孔膜の電気抵抗を測定するためのセルの概略図。The schematic of the cell for measuring the electrical resistance of the composite porous membrane of this invention. 本発明の複合多孔膜の孔閉塞温度を測定するための装置の概略図。The schematic of the apparatus for measuring the hole blockage temperature of the composite porous membrane of this invention.

符号の説明Explanation of symbols

1:電極
2:パッキン(外径2cm、内径1cm、厚さ1mm)
3:測定サンプル
2A、2B:厚さ10μmのNi箔
3A、3B:ガラス板
4:電気抵抗測定装置
5:熱電対
6:温度計
7:データーコレクター
8:オーブン
9:測定サンプル
1: Electrode
2: Packing (outer diameter 2 cm, inner diameter 1 cm, thickness 1 mm)
3: Measurement sample 2A, 2B: Ni foil 3A having a thickness of 10 μm, 3B: Glass plate 4: Electrical resistance measuring device 5: Thermocouple 6: Thermometer 7: Data collector 8: Oven 9: Measurement sample

Claims (3)

膜の基材が140℃以上で多孔構造が維持可能な平均孔径0.2μm以上10μm以下の多孔材料からなり、基材の表面から多孔構造内部にまで樹脂粒子集合体による多孔層が存在し、その多孔層を構成する樹脂粒子の軟化又は溶融によって基材の孔が閉塞する温度が140℃以下であることを特徴とする複合多孔膜。   The membrane substrate is made of a porous material having an average pore diameter of 0.2 μm or more and 10 μm or less capable of maintaining a porous structure at 140 ° C. or higher, and there is a porous layer of resin particle aggregates from the surface of the substrate to the inside of the porous structure, A composite porous membrane characterized in that the temperature at which the pores of the base material are closed by softening or melting of the resin particles constituting the porous layer is 140 ° C. or lower. 樹脂粒子集合体による多孔層が基材表面の片面に形成されることを特徴とする請求項1に記載の複合多孔膜。   The composite porous membrane according to claim 1, wherein a porous layer made of a resin particle aggregate is formed on one side of the substrate surface. 非水溶媒電池セパレータに使用される請求項1又は2に記載の複合多孔膜。   The composite porous membrane according to claim 1, which is used for a nonaqueous solvent battery separator.
JP2005102732A 2005-03-31 2005-03-31 Composite porous membrane Expired - Fee Related JP4859383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102732A JP4859383B2 (en) 2005-03-31 2005-03-31 Composite porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102732A JP4859383B2 (en) 2005-03-31 2005-03-31 Composite porous membrane

Publications (2)

Publication Number Publication Date
JP2006286311A true JP2006286311A (en) 2006-10-19
JP4859383B2 JP4859383B2 (en) 2012-01-25

Family

ID=37408017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102732A Expired - Fee Related JP4859383B2 (en) 2005-03-31 2005-03-31 Composite porous membrane

Country Status (1)

Country Link
JP (1) JP4859383B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114434A (en) * 2007-10-15 2009-05-28 Toray Ind Inc Porous film
CN104577009A (en) * 2013-10-29 2015-04-29 松下电器产业株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2019164992A (en) * 2018-03-15 2019-09-26 株式会社リコー Porous insulator, electrode, and non-aqueous storage element
WO2020174974A1 (en) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
US10916752B2 (en) 2018-04-30 2021-02-09 Hyundai Motor Company Lithium secondary battery and manufacturing method thereof
WO2024004420A1 (en) * 2022-06-30 2024-01-04 Dic株式会社 Aqueous resin composition for lithium ion secondary battery separators, slurry for functional layers of lithium ion secondary battery separators, and separator for lithium ion secondary batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052A (en) * 1983-06-15 1985-01-05 Fuji Elelctrochem Co Ltd Non-aqueous electrolytic solution battery
JPH03283259A (en) * 1990-03-29 1991-12-13 Asahi Chem Ind Co Ltd Battery
JP2003317693A (en) * 2002-04-24 2003-11-07 Teijin Ltd Separator for lithium ion secondary cell
JP2005268095A (en) * 2004-03-19 2005-09-29 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052A (en) * 1983-06-15 1985-01-05 Fuji Elelctrochem Co Ltd Non-aqueous electrolytic solution battery
JPH03283259A (en) * 1990-03-29 1991-12-13 Asahi Chem Ind Co Ltd Battery
JP2003317693A (en) * 2002-04-24 2003-11-07 Teijin Ltd Separator for lithium ion secondary cell
JP2005268095A (en) * 2004-03-19 2005-09-29 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114434A (en) * 2007-10-15 2009-05-28 Toray Ind Inc Porous film
CN104577009A (en) * 2013-10-29 2015-04-29 松下电器产业株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2015111546A (en) * 2013-10-29 2015-06-18 パナソニック株式会社 Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2019164992A (en) * 2018-03-15 2019-09-26 株式会社リコー Porous insulator, electrode, and non-aqueous storage element
US10916752B2 (en) 2018-04-30 2021-02-09 Hyundai Motor Company Lithium secondary battery and manufacturing method thereof
WO2020174974A1 (en) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN113498561A (en) * 2019-02-28 2021-10-12 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
CN113498561B (en) * 2019-02-28 2024-05-07 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
WO2024004420A1 (en) * 2022-06-30 2024-01-04 Dic株式会社 Aqueous resin composition for lithium ion secondary battery separators, slurry for functional layers of lithium ion secondary battery separators, and separator for lithium ion secondary batteries

Also Published As

Publication number Publication date
JP4859383B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
US11411281B2 (en) Multi-layered composite functional separator for lithium-ion battery
JP3756815B2 (en) Battery separator and battery
KR100432113B1 (en) Multilayer Non-aqueous Electrolyte Secondary Battery
KR101032443B1 (en) Separator for electronic components and production method therefor
KR100647966B1 (en) Separator for electronic components and process for producing the same
KR101904160B1 (en) micro-porous hybrid polyolefin film having excellent thermal property and stability and manufacturing method thereof
CN103181000B (en) The manufacturing method of diaphragm, the diaphragm manufactured by this method and the electrochemical apparatus for having the diaphragm
CN108352484B (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2006059733A (en) Separator for electronic component and its manufacturing method
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JP2006344506A (en) Separator for electronic components
JP5612797B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4859383B2 (en) Composite porous membrane
JP4812266B2 (en) Separator for electronic parts and method for manufacturing the same
JP2006338918A (en) Electronic component and separator therefor
JP2006032359A (en) Method of manufacturing separator for battery and method of manufacturing battery
JP2006331759A (en) Separator for electronic component and method of manufacturing the same
JPWO2008044761A1 (en) Nonaqueous electrolyte secondary battery separator and multi-layer separator for nonaqueous electrolyte secondary battery
JP2006338917A (en) Electronic component and separator therefor
TW201351757A (en) Structure of an electrochemical separation membrane and manufacturing method for fabricating the same
JPH0574443A (en) Nonaqueous electrolytic battery
JP4495516B2 (en) Separator for electronic parts and method for manufacturing the same
KR101726382B1 (en) A stack/folding type electrode assembly with safety improvement and a electrochemical cell comprising the same
JP2006351365A (en) Separator for electronic components, and the electronic component
JPH11144697A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4859383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees