WO2024004420A1 - Aqueous resin composition for lithium ion secondary battery separators, slurry for functional layers of lithium ion secondary battery separators, and separator for lithium ion secondary batteries - Google Patents

Aqueous resin composition for lithium ion secondary battery separators, slurry for functional layers of lithium ion secondary battery separators, and separator for lithium ion secondary batteries Download PDF

Info

Publication number
WO2024004420A1
WO2024004420A1 PCT/JP2023/018521 JP2023018521W WO2024004420A1 WO 2024004420 A1 WO2024004420 A1 WO 2024004420A1 JP 2023018521 W JP2023018521 W JP 2023018521W WO 2024004420 A1 WO2024004420 A1 WO 2024004420A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
resin composition
secondary battery
aqueous resin
Prior art date
Application number
PCT/JP2023/018521
Other languages
French (fr)
Japanese (ja)
Inventor
優佑 松村
幸司 植村
正浩 梶川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2024004420A1 publication Critical patent/WO2024004420A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aqueous resin composition for a lithium ion secondary battery separator, a slurry for a functional layer, and a lithium ion secondary battery separator.
  • secondary batteries have used battery members that include an adhesive layer for the purpose of improving adhesion between battery members, a porous film layer for the purpose of improving heat resistance, strength, etc.
  • an electrode is formed by further forming an adhesive layer and/or a porous membrane layer on an electrode base material formed by providing an electrode mixture layer on a current collector, and an electrode formed by further forming an adhesive layer and/or a porous membrane layer on a separator base material.
  • a separator formed with a porous membrane layer is used as a battery member.
  • the adhesive layer and porous membrane layer are usually prepared using a slurry-like adhesive layer or porous membrane layer slurry containing components for exhibiting a desired function, a binder component, and a dispersion medium such as water.
  • the composition is formed by applying the composition onto a suitable substrate such as an electrode substrate or a separator substrate and drying it.
  • Patent Document 1 a particulate polymer having a core-shell structure including a core part and a shell part partially covering the outer surface of the core part, and a binder containing an acrylic polymer are used in a lithium ion secondary battery.
  • Techniques used to form adhesive layers are disclosed. Further, a technique is disclosed in which alumina and a binder containing an acrylic polymer are used to form a porous membrane for a lithium ion secondary battery.
  • the problem to be solved by the present invention is to provide an aqueous resin composition for a lithium ion secondary battery separator that allows a separator with excellent adhesion to electrodes and heat shrinkage resistance to be obtained in one coat.
  • the present invention provides an aqueous resin composition for a lithium ion secondary battery separator containing organic particles (A) and an aqueous medium (B), wherein the organic particles (A) have a volume average particle diameter of 6 to 20 ⁇ m.
  • the present invention relates to an aqueous resin composition for a lithium ion secondary battery separator, which is characterized by the following.
  • a separator with excellent adhesion to electrodes and heat shrinkage resistance can be obtained. It can be suitably used as a separator for secondary batteries.
  • the aqueous resin composition for a lithium ion secondary battery separator of the present invention is an aqueous resin composition for a lithium ion secondary battery separator containing an organic particle (A) and an aqueous medium (B), the aqueous resin composition for a lithium ion secondary battery separator containing the organic particles (A) and an aqueous medium (B). ) has a volume average particle diameter of 6 to 20 ⁇ m.
  • the volume average particle diameter of the organic particles (A) is 6 to 20 ⁇ m, and when it is 6 ⁇ m or more, the adhesion between the resulting porous membrane layer and the separator and electrode is excellent, and the volume average particle diameter is 20 ⁇ m or less. This results in excellent dispersion stability.
  • the volume average particle diameter of the organic particles (A) is preferably 6 to 15 ⁇ m, since the dispersion stability is further improved.
  • the CV value of the organic particles (A) is preferably 0 to 80% since the adhesion between the electrode and the separator is further improved.
  • the glass transition temperature of the organic particles (A) is preferably 10 to 110°C. If the temperature is 10° C. or higher, blocking will be less likely to occur when winding up onto a separator roll, improving workability. If the temperature is 110° C. or lower, the adhesiveness between the electrode and the separator will be further improved.
  • the gel fraction of the organic particles (A) with respect to the mixed solvent is preferably 90% or more, more preferably 95% or more.
  • Examples of the organic component forming the organic particles (A) include resins such as acrylic resin, epoxy resin, urethane resin, and polyester resin, with acrylic resin being preferred.
  • the acrylic resin can be obtained, for example, by radical polymerizing monomer raw materials such as acrylic monomers and vinyl monomers.
  • the monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, t-butyl (meth)acrylate, 2 - Alkyl (meth)acrylates such as ethylhexyl (meth)acrylate, lauryl (meth)acrylate, and stearyl (meth)acrylate; (meth)acrylic acid, unsaturated monocarboxylic acids such as crotonic acid, maleic anhydride, maleic acid, anhydride Monomers with carboxyl groups such as unsaturated dicarboxylic acids such as itaconic acid, itaconic acid, and fumaric acid; 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxy-n-butyl ( meth)acrylate, 2-hydroxypropyl(meth)acrylate,
  • crosslinkable monomers such as monomers having alkoxysilyl groups, di(meth)acrylate monomers, etc. are used, since the swelling ratio and gel fraction in the mixed solvent of the organic particles (A) are further improved. Preference is given to using monomers.
  • the amount of the crosslinkable monomer in the monomer raw material is preferably 0.1 to 20% by mass. If it is 0.1% by mass or more, the swelling ratio and gel fraction with respect to the mixed solvent will be further improved. If it is 20% by mass or less, the adhesiveness between the electrode and the separator will be further improved.
  • (meth)acrylic acid refers to one or both of acrylic acid and methacrylic acid
  • (meth)acryloyl refers to one or both of acryloyl and methacryloyl
  • (meth)acrylic acid refers to one or both of acryloyl and methacryloyl
  • (meth)acrylic acid refers to one or both of acryloyl and methacryloyl.
  • “Acrylate” refers to one or both of acrylate and methacrylate.
  • the organic particles (A) having a volume average particle diameter of 6 to 20 ⁇ m there are various methods for producing the organic particles (A) having a volume average particle diameter of 6 to 20 ⁇ m, but the organic particles (A) can be obtained by simple operations without using any special additives. Therefore, the suspension polymerization method is preferable.
  • the monomer raw material and the polymerizable monomer component including the polymerization initiator and the critical micelle concentration for example, the monomer raw material and the polymerizable monomer component including the polymerization initiator and the critical micelle concentration
  • surfactant Prepare an emulsion by stirring an aqueous solution containing a surfactant at a concentration higher than the minimum concentration at which micelles are formed in an aqueous solution, and add an aqueous solution containing a dispersion stabilizer to this emulsion to adjust the concentration of the surfactant.
  • a method of radical polymerization at a temperature of 50 to 100° C. after reducing the micelle concentration to less than the critical micelle concentration can be mentioned.
  • Examples of the polymerization initiator include azo compounds such as 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), and azobiscyanovaleric acid; tert-butylperoxy Organic peroxides such as pivalate, tert-butyl peroxybenzoate, tert-butyl peroxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, benzoyl peroxide, and tert-butyl hydroperoxide.
  • Oxides examples include inorganic peroxides such as hydrogen peroxide, ammonium persulfate, potassium persulfate, and sodium persulfate. Note that these polymer initiators can be used alone or in combination of two or more.
  • Examples of the aqueous medium (B) include water, organic solvents miscible with water, and mixtures thereof.
  • organic solvents that are miscible with water include alcohols such as methanol, ethanol, n-propanol, and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol, and propylene glycol; and alkyl ethers of polyalkylene glycols. and lactams such as N-methyl-2-pyrrolidone.
  • water alone may be used, a mixture of water and a water-miscible organic solvent may be used, or only a water-miscible organic solvent may be used. From the viewpoint of safety and environmental impact, it is preferable to use only water or a mixture of water and an organic solvent miscible with water, and it is particularly preferable to use only water.
  • aqueous medium (B) it is convenient and preferable to use the aqueous medium used when producing the organic particles (A) by a suspension polymerization method as is.
  • the emulsifier examples include sulfuric esters of higher alcohols and their salts, alkylbenzene sulfonates, polyoxyethylene alkylphenyl sulfonates, polyoxyethylene alkyl diphenyl ether sulfonates, sulfuric acid half ester salts of polyoxyethylene alkyl ethers, Anionic emulsifiers such as alkyldiphenyl ether disulfonates, succinic acid dialkyl ester sulfonates; polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene diphenyl ethers, polyoxyethylene-polyoxypropylene block copolymers, Examples include nonionic emulsifiers such as acetylene diol-based emulsifiers; cationic emulsifiers such as alkylammonium salts; and amphoteric emulsifiers such as alkyl (amide) betaines and al
  • the mixed liquid consisting of the polymerizable monomer component containing the acrylic monomer and the polymerization initiator and the aqueous solution containing the surfactant while applying shear, for example, using a homomixer, high pressure, etc.
  • Stirring devices such as homogenizers, ultrasonic dispersion devices, high-pressure jet dispersion devices, and static mixers can be used.
  • an emulsion with a volume average particle diameter of 6 to 20 ⁇ m can be easily prepared.
  • An aqueous solution containing a dispersion stabilizer is added to the emulsion obtained as described above to form a dispersion in which the concentration of surfactant in the emulsion is less than the critical concentration of 0.01 to 1.0, and then suspension polymerization is carried out. By doing so, the organic particles having a volume average particle diameter of 6 to 20 ⁇ m can be obtained.
  • dispersion stabilizer examples include water-soluble resins such as polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, and hydroxyethylcellulose. Note that these dispersion stabilizers can be used alone or in combination of two or more.
  • the aqueous resin composition for a lithium ion secondary battery separator of the present invention contains the organic particles (A) and the aqueous medium (B), and the resin particles obtained by the suspension polymerization method ( Preferably, A) is dispersed in an aqueous medium (B).
  • the amount of organic solvent in the aqueous resin composition of the present invention can be reduced by performing a solvent removal step as necessary.
  • the aqueous resin composition of the present invention obtained by the above method contains 5 to 60% by mass of the organic particles (A) based on the total amount of the aqueous resin composition, since coating workability is further improved. is preferable, and one containing 10 to 50% by mass is more preferable.
  • the aqueous resin composition of the present invention preferably contains 95 to 40% by mass of the aqueous medium (B) based on the total amount of the aqueous resin composition, since the coating workability is further improved. It is more preferable to contain up to 50% by mass.
  • the aqueous resin composition of the present invention may contain a water-soluble polymerization inhibitor such as sodium nitrite and hydroquinone, if necessary.
  • the aqueous resin composition of the present invention may contain a curing agent, a curing catalyst, a lubricant, a filler, a thixotropic agent, a tackifier, a wax, a heat stabilizer, a light stabilizer, and a fluorescent whitening agent, as necessary.
  • additives such as foaming agents, pH adjusters, leveling agents, anti-gelling agents, dispersion stabilizers, antioxidants, radical scavengers, heat resistance imparters, inorganic fillers, organic fillers, plasticizers, reinforcing agents , catalyst, antibacterial agent, antifungal agent, rust preventive agent, thermoplastic resin, thermosetting resin, pigment, dye, conductivity imparting agent, antistatic agent, moisture permeability improver, water repellent, oil repellent, hollow foam crystal water-containing compounds, flame retardants, water absorbing agents, moisture absorbing agents, deodorizing agents, foam stabilizers, antifoaming agents, antifungal agents, preservatives, algaecides, pigment dispersants, antiblocking agents, hydrolysis prevention Agents and pigments can be used in combination.
  • the slurry for a lithium ion secondary battery separator functional layer of the present invention contains the aqueous resin composition of the present invention, non-conductive particles, and a water-soluble polymer.
  • the aqueous resin composition contains 0.1 to 100% by mass of organic particles (A) and 0.1 to 100% by mass of water-soluble polymer based on 100 parts by mass of non-conductive particles. It is preferable to do so.
  • non-conductive particles for example, inorganic particles or organic particles can be used, but inorganic particles are preferable.
  • the inorganic particles include oxide particles such as aluminum oxide (alumina), silicon oxide, magnesium oxide, titanium oxide, BaTiO 2 , ZrO, and alumina-silica composite oxide, and nitrides such as aluminum nitride and boron nitride.
  • oxide particles such as aluminum oxide (alumina), silicon oxide, magnesium oxide, titanium oxide, BaTiO 2 , ZrO, and alumina-silica composite oxide, and nitrides such as aluminum nitride and boron nitride.
  • covalent crystal particles such as silicon and diamond, poorly soluble ionic crystal particles such as barium sulfate, calcium fluoride, and barium fluoride, and fine clay particles such as talc and montmorillonite.
  • aluminum oxide (Alumina) is preferred.
  • these inorganic particles can be used alone or in combination of two or more types.
  • the organic particles include, for example, polyethylene, polystyrene, polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, polyamide, polyamideimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensate, etc.
  • examples include various crosslinked polymer particles and heat-resistant polymer particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, and thermoplastic polyimide. Note that these organic particles can be used alone or in combination of two or more.
  • water-soluble polymer examples include cellulose polymers such as carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose, and their ammonium salts and alkali metal salts; poly(meth)acrylic acid and their ammonium salts and alkali metal salts; polyvinyl Polyvinyl alcohol compounds such as alcohol, acrylic acid or a copolymer of acrylic acid and vinyl alcohol, maleic anhydride or a copolymer of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinylpyrrolidone, modified polyacrylic Examples include acid, oxidized starch, phosphate starch, casein, and various modified starches. Note that these water-soluble polymers can be used alone or in combination of two or more.
  • the particulate polymer examples include crosslinked poly(meth)acrylic acid particles, crosslinked poly(meth)acrylic ester particles, crosslinked polystyrene particles, copolymerized crosslinked resin particles of (meth)acrylic ester and styrene, and melamine.
  • examples include resin particles, nylon particles, polyimide particles, polyamideimide particles, phenol resin particles, polytetrafluoroethylene particles, fluororesin particles, and silicone resin particles. Note that these particulate polymers can be used alone or in combination of two or more.
  • the functional layer in the present invention can be formed by coating the above-mentioned functional layer slurry on a separator.
  • the method for applying the functional layer slurry composition onto the base material is not particularly limited, and any known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, etc. can be used. At this time, the functional layer slurry composition may be applied to only one side of the base material, or may be applied to both sides of the base material.
  • the method for drying the functional layer slurry composition on the base material is not particularly limited and any known method can be used, such as drying with warm air, hot air, low humidity air, vacuum drying, infrared rays or electron beams. Examples include drying methods using irradiation such as.
  • the adhesion between the separator of the present invention and the electrode material is preferably 10 N/m or more.
  • the heat shrinkage rate of the separator of the present invention is preferably 5% or less.
  • the particle diameter of the organic particles was measured using a laser diffraction method. Specifically, an aqueous dispersion containing organic particles (solid content concentration 25% by mass) was used as a sample, and the particle size distribution was obtained using a laser diffraction particle size distribution measuring device (Malvern Panalytical, "Mastersizer 2000"). (on a volume basis), the particle size was determined as the particle size at which the cumulative volume calculated from the small diameter side was 50%, and was defined as the volume average particle size ( ⁇ m).
  • Tg glass transition temperature
  • Example 1 Synthesis of aqueous resin composition (1)
  • t-butyl peroxyoctoate 1.00 g of t-butyl peroxyoctoate was dissolved in a mixed solution consisting of 121.4 g of styrene, 76.2 g of 2-ethylhexyl acrylate, and 2.4 g of 3-methacryloxypropyltrimethoxysilane. And so.
  • 3.00 g of alkylbenzene sulfonate (“Neogen S-20F" manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was dissolved in 200.0 g of water.
  • the above polymerizable monomer component was mixed with this aqueous solution, and T. K.
  • the mixture was stirred for 10 minutes at a rotation speed of 6000 rpm using a Homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.).
  • the obtained emulsion was placed in a 2 L reaction vessel equipped with a stirrer and a thermometer, and an aqueous solution of 8.0 g of polyvinyl alcohol ("44-88" manufactured by Kuraray Co., Ltd.) dissolved in 430.7 g of water was further added.
  • Polymerization was carried out at 75° C. for 5 hours while stirring in a nitrogen stream. Thereafter, the temperature was raised to 85° C., and polymerization was performed for 2 hours to obtain an aqueous resin composition (1).
  • the volume average particle diameter of the organic particles (A-1) in the aqueous resin composition (1) was 7.2 ⁇ m.
  • Example 2 Synthesis of aqueous resin composition (2)
  • An aqueous resin composition (2) was obtained in the same manner as in Example 1 except that the rotation speed of the Homomixer was changed to 3500 rpm.
  • the volume average particle diameter of the organic particles (A-2) in the aqueous resin composition (2) was 9.5 ⁇ m.
  • Example 3 Synthesis of aqueous resin composition (3)
  • t-butyl peroxyoctoate 1.00 g was dissolved in a mixed solution consisting of 140.5 g of styrene, 57.1 g of 2-ethylhexyl acrylate, and 2.4 g of 3-methacryloxypropyltrimethoxysilane, and the polymerizable monomer component
  • Aqueous resin composition (3) was obtained in the same manner as in Example 1 except that The volume average particle diameter of the organic particles (A-3) in the aqueous resin composition (3) was 6.8 ⁇ m.
  • Example 4 Synthesis of aqueous resin composition (4)
  • 1.00 g of t-butyl peroxyoctoate was dissolved in a mixed solution consisting of 121.4 g of methyl methacrylate, 76.2 g of 2-ethylhexyl acrylate, and 2.4 g of 3-methacryloxypropyltrimethoxysilane, and the polymerizable monomer
  • An aqueous resin composition (4) was obtained in the same manner as in Example 1 except that the body component was used as a body component.
  • the volume average particle diameter of the organic particles (A-4) in the aqueous resin composition (4) was 7.0 ⁇ m.
  • Example 5 Synthesis of aqueous resin composition (5) Except that 1.00 g of t-butyl peroxyoctoate was dissolved in a mixed solution consisting of 121.4 g of styrene, 76.2 g of 2-ethylhexyl acrylate, and 2.4 g of ethylene glycol dimethacrylate to form a polymerizable monomer component. In the same manner as in Example 1, an aqueous resin composition (5) was obtained. The volume average particle diameter of the organic particles (A-5) in the aqueous resin composition (5) was 6.2 ⁇ m.
  • the mixture was stirred for 10 minutes at a rotation speed of 8000 rpm using a Homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.).
  • the obtained emulsion was placed in a 2 L reaction vessel equipped with a stirrer and a thermometer, and an aqueous solution of 8.0 g of polyvinyl alcohol ("44-88" manufactured by Kuraray Co., Ltd.) dissolved in 430.7 g of water was further added.
  • Polymerization was carried out at 75° C. for 5 hours while stirring in a nitrogen stream. Thereafter, the temperature was raised to 85° C., and polymerization was performed for 2 hours to obtain an aqueous resin composition (R2).
  • the volume average particle diameter of the organic particles (A-1) in the aqueous resin composition (R2) was 3.2 ⁇ m.
  • ion-exchanged water 50 g of ion-exchanged water, 0.5 g of sodium dodecylbenzenesulfonate as an emulsifier, 94 g of butyl acrylate as polymerizable monomers, 2 g of acrylonitrile, 2 g of methacrylic acid, 1 g of N-hydroxymethylacrylamide, and allylglycidyl.
  • a monomer mixture was obtained by supplying and mixing 1 g of ether. Polymerization was carried out by continuously adding the monomer mixture to the reactor over a period of 4 hours. Note that during the addition of the monomer mixture, the polymerization reaction was continued at a temperature of 60°C.
  • the mixture was further stirred for 3 hours at a temperature of 70°C to complete the polymerization reaction, and an aqueous resin composition (R3) was obtained.
  • the volume average particle diameter of the organic particles (RA-3) in the aqueous resin composition (R3) was 0.3 ⁇ m.
  • the functional layer slurry was coated onto a polyethylene separator base material having a thickness of 12 ⁇ m using a bar coater so as to have a dry film thickness of 4 ⁇ m to obtain a separator having a functional layer.
  • the drying temperature was 80°C and the drying time was 1 minute.
  • Peel strength was measured and adhesion was evaluated as follows. Specifically, the mixture layer of the negative electrode (manufactured by Hosen Co., Ltd., HS-LIB-N-Gr-001) and the functional layer on the separator were placed opposite each other at a temperature of 80° C. and a load of 6.5 MPa. A test sample in which the negative electrode and separator were bonded together was prepared by pressing for 1 minute. This was cut out to a width of 20 mm and a height of 120 mm, double-sided tape was attached to the surface of the negative electrode, and then fixed to a metal plate with double-sided tape.
  • the mixture layer of the negative electrode manufactured by Hosen Co., Ltd., HS-LIB-N-Gr-001
  • a test sample in which the negative electrode and separator were bonded together was prepared by pressing for 1 minute. This was cut out to a width of 20 mm and a height of 120 mm, double-sided tape was attached to the surface of the negative electrode, and then fixed to a metal plate
  • separators coated with the aqueous resin compositions of Examples 1 to 5 of the present invention had excellent adhesion to electrodes and heat shrinkage resistance.
  • Comparative Examples 1 to 3 are examples in which the volume average particle diameter of the organic particles (A) is smaller than the lower limit of the present invention, but it was confirmed that the adhesion to the electrode was insufficient.

Abstract

The present invention provides an aqueous resin composition for lithium ion secondary battery separators, the aqueous resin composition containing organic particles (A) and an aqueous medium (B), while being characterized in that the volume average particle diameter of the organic particles (A) is 6 µm to 20 µm. Since this aqueous resin composition for lithium ion secondary battery separators enables the achievement of a separator which has excellent adhesion to an electrode and excellent thermal shrinkage resistance by single coating with excellent workability, this aqueous resin composition is suitably used for lithium ion secondary battery separators.

Description

リチウムイオン二次電池セパレータ用水性樹脂組成物、リチウムイオン二次電池セパレータ機能層用スラリー、及びリチウムイオン二次電池用セパレータAqueous resin composition for lithium ion secondary battery separator, slurry for lithium ion secondary battery separator functional layer, and lithium ion secondary battery separator
 本発明は、リチウムイオン二次電池セパレータ用水性樹脂組成物、機能層用スラリー、及びリチウムイオン二次電池用セパレータに関する。 The present invention relates to an aqueous resin composition for a lithium ion secondary battery separator, a slurry for a functional layer, and a lithium ion secondary battery separator.
 近年、二次電池においては、電池部材間の接着性の向上を目的とした接着層、並びに、耐熱性および強度などの向上を目的とした多孔膜層などを備える電池部材が使用されている。具体的には、集電体上に電極合材層を設けてなる電極基材上にさらに接着層および/または多孔膜層を形成してなる電極、並びに、セパレータ基材上に接着層および/または多孔膜層を形成してなるセパレータが電池部材として使用されている。そして当該接着層および多孔膜層は、通常、所望の機能を発揮するための成分と、結着材成分と、水などの分散媒とを含有するスラリー状の接着層用または多孔膜層用スラリー組成物を、電極基材またはセパレータ基材などの適切な基材上に供給し、乾燥することで形成される。 In recent years, secondary batteries have used battery members that include an adhesive layer for the purpose of improving adhesion between battery members, a porous film layer for the purpose of improving heat resistance, strength, etc. Specifically, an electrode is formed by further forming an adhesive layer and/or a porous membrane layer on an electrode base material formed by providing an electrode mixture layer on a current collector, and an electrode formed by further forming an adhesive layer and/or a porous membrane layer on a separator base material. Alternatively, a separator formed with a porous membrane layer is used as a battery member. The adhesive layer and porous membrane layer are usually prepared using a slurry-like adhesive layer or porous membrane layer slurry containing components for exhibiting a desired function, a binder component, and a dispersion medium such as water. The composition is formed by applying the composition onto a suitable substrate such as an electrode substrate or a separator substrate and drying it.
 そこで、近年では、二次電池の更なる性能向上を達成すべく、基材上に設けられる接着層および多孔膜層の改良が試みられている(例えば、特許文献1参照)。この文献には、コア部および当該コア部の外表面を部分的に覆うシェル部を備えるコアシェル構造を有する粒子状重合体と、アクリル重合体を含有する結着材とを、リチウムイオン二次電池用接着層の形成に用いる技術が開示されている。また、アルミナと、アクリル重合体を含有する結着材とを、リチウムイオン二次電池用多孔膜の形成に用いる技術が開示されている。そして、セパレータ基材上に、上述した多孔膜、更に当該多孔膜層上に上述した接着層を設けることにより、電解液中における電極およびセパレータ間の接着性を高め、低温出力特性および高温サイクル特性に優れたリチウムイオン二次電池の製造を実現させている。 Therefore, in recent years, attempts have been made to improve the adhesive layer and porous membrane layer provided on the base material in order to further improve the performance of secondary batteries (see, for example, Patent Document 1). In this document, a particulate polymer having a core-shell structure including a core part and a shell part partially covering the outer surface of the core part, and a binder containing an acrylic polymer are used in a lithium ion secondary battery. Techniques used to form adhesive layers are disclosed. Further, a technique is disclosed in which alumina and a binder containing an acrylic polymer are used to form a porous membrane for a lithium ion secondary battery. By providing the above-mentioned porous membrane on the separator base material and further providing the above-mentioned adhesive layer on the porous membrane layer, the adhesion between the electrode and the separator in the electrolytic solution is improved, and the low-temperature output characteristics and high-temperature cycle characteristics are improved. We have realized the production of lithium-ion secondary batteries with excellent performance.
 しかしながら、このような接着層及び多孔膜層をセパレータ上に形成する方法は、作業工程が煩雑になることから、簡便化が求められていた。 However, since the method of forming such an adhesive layer and a porous membrane layer on a separator requires complicated work steps, there has been a demand for simplification.
国際公開第2015/064411号International Publication No. 2015/064411
 本発明が解決しようとする課題は、電極との密着性及び耐熱収縮性に優れるセパレータが1コートで得られるリチウムイオン二次電池セパレータ用水性樹脂組成物を提供することである。 The problem to be solved by the present invention is to provide an aqueous resin composition for a lithium ion secondary battery separator that allows a separator with excellent adhesion to electrodes and heat shrinkage resistance to be obtained in one coat.
 本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、特定の粒子径を有する有機粒子及び水性媒体を含有する水性樹脂組成物を用いることで、上記課題を解決できることを見出し、本発明を完成した。 As a result of extensive research to solve the above problems, the present inventors discovered that the above problems could be solved by using an aqueous resin composition containing organic particles having a specific particle size and an aqueous medium. The invention has been completed.
 すなわち、本発明は、有機粒子(A)及び水性媒体(B)を含有するリチウムイオン二次電池セパレータ用水性樹脂組成物であって、前記有機粒子(A)の体積平均粒子径が6~20μmであることを特徴とするリチウムイオン二次電池セパレータ用水性樹脂組成物に関するものである。 That is, the present invention provides an aqueous resin composition for a lithium ion secondary battery separator containing organic particles (A) and an aqueous medium (B), wherein the organic particles (A) have a volume average particle diameter of 6 to 20 μm. The present invention relates to an aqueous resin composition for a lithium ion secondary battery separator, which is characterized by the following.
 本発明のリチウムイオン二次電池セパレータ用水性樹脂組成物を含有する機能層用スラリーをセパレータに塗布することにより、電極との密着性及び耐熱収縮性に優れるセパレータが得られることから、リチウムイオン二次電池のセパレータに好適に用いることができる。 By applying the functional layer slurry containing the aqueous resin composition for lithium ion secondary battery separators of the present invention to a separator, a separator with excellent adhesion to electrodes and heat shrinkage resistance can be obtained. It can be suitably used as a separator for secondary batteries.
 本発明のリチウムイオン二次電池セパレータ用水性樹脂組成物は、有機粒子(A)及び水性媒体(B)を含有するリチウムイオン二次電池セパレータ用水性樹脂組成物であって、前記有機粒子(A)の体積平均粒子径が6~20μmであるものである。 The aqueous resin composition for a lithium ion secondary battery separator of the present invention is an aqueous resin composition for a lithium ion secondary battery separator containing an organic particle (A) and an aqueous medium (B), the aqueous resin composition for a lithium ion secondary battery separator containing the organic particles (A) and an aqueous medium (B). ) has a volume average particle diameter of 6 to 20 μm.
 まず、前記有機粒子(A)について説明する。前記有機粒子(A)の体積平均粒子径は6~20μmであるが、6μm以上であることで、得られる多孔膜層とセパレータ及び電極との密着性が優れたものになり、20μm以下であることで、分散安定性に優れたものになる。なお、分散安定性がより向上することから、前記有機粒子(A)の体積平均粒子径は6~15μmが好ましい。 First, the organic particles (A) will be explained. The volume average particle diameter of the organic particles (A) is 6 to 20 μm, and when it is 6 μm or more, the adhesion between the resulting porous membrane layer and the separator and electrode is excellent, and the volume average particle diameter is 20 μm or less. This results in excellent dispersion stability. Note that the volume average particle diameter of the organic particles (A) is preferably 6 to 15 μm, since the dispersion stability is further improved.
 また、前記有機粒子(A)のCV値は、電極とセパレータ間の密着性がより向上することから、0~80%が好ましい。 Further, the CV value of the organic particles (A) is preferably 0 to 80% since the adhesion between the electrode and the separator is further improved.
 前記有機粒子(A)のガラス転移温度は、10~110℃が好ましい。10℃以上であればセパレーターロールに巻き取る場合にブロッキングしにくくなり作業性が向上する。110℃以下であれば電極およびセパレータ間の接着性がより向上する。 The glass transition temperature of the organic particles (A) is preferably 10 to 110°C. If the temperature is 10° C. or higher, blocking will be less likely to occur when winding up onto a separator roll, improving workability. If the temperature is 110° C. or lower, the adhesiveness between the electrode and the separator will be further improved.
 前記有機粒子(A)の電解液として使用される混合溶剤(炭酸エチレン/炭酸エチルメチル/炭酸ジエチル=40/20/40(25℃における体積比))に対する膨潤率は、300%以下が好ましく、150%以下がより好ましい。 The swelling ratio of the organic particles (A) with respect to the mixed solvent (ethylene carbonate/ethyl methyl carbonate/diethyl carbonate = 40/20/40 (volume ratio at 25°C)) used as the electrolyte is preferably 300% or less, More preferably, it is 150% or less.
 また、前記有機粒子(A)の前記混合溶剤に対するゲル分率は、90%以上が好ましく、95%以上がより好ましい。 Further, the gel fraction of the organic particles (A) with respect to the mixed solvent is preferably 90% or more, more preferably 95% or more.
 前記有機粒子(A)を形成する有機成分としては、例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂等の樹脂が挙げられるが、アクリル樹脂が好ましい。 Examples of the organic component forming the organic particles (A) include resins such as acrylic resin, epoxy resin, urethane resin, and polyester resin, with acrylic resin being preferred.
 前記アクリル樹脂は、例えば、アクリル単量体、ビニル単量体等の単量体原料をラジカル重合することにより得られる。 The acrylic resin can be obtained, for example, by radical polymerizing monomer raw materials such as acrylic monomers and vinyl monomers.
 前記単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;(メタ)アクリル酸、クロトン酸等の不飽和モノカルボン酸、無水マレイン酸、マレイン酸、無水イタコン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸などのカルボキシル基を有する単量体;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシ-n-ブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-n-ブチル(メタ)アクリレート、3-ヒドロキシ-n-ブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等の水酸基を有する単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート等のアミノ基を有する(メタ)アクリレート、(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド等のN-ヒドロキシメチルアミド基を有する単量体、N-ブトキシメチルアクリルアミド等のN-アルコキシメチルアミド基を有する単量体などの窒素原子を有する単量体;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリブチレングリコール(メタ)アクリレート、メトキシポリブチレングリコール(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;スチレン、α-メチルスチレン、パラメチルスチレン、クロロメチルスチレン、酢酸ビニル、(メタ)アクリロニトリル等のビニル単量体;テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン等のアルコキシシリル基を有する単量体;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のジ(メタ)アクリレート単量体などが挙げられる。なお、これらの単量体は、単独で用いることも2種以上併用することもできる The monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, t-butyl (meth)acrylate, 2 - Alkyl (meth)acrylates such as ethylhexyl (meth)acrylate, lauryl (meth)acrylate, and stearyl (meth)acrylate; (meth)acrylic acid, unsaturated monocarboxylic acids such as crotonic acid, maleic anhydride, maleic acid, anhydride Monomers with carboxyl groups such as unsaturated dicarboxylic acids such as itaconic acid, itaconic acid, and fumaric acid; 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxy-n-butyl ( meth)acrylate, 2-hydroxypropyl(meth)acrylate, 2-hydroxy-n-butyl(meth)acrylate, 3-hydroxy-n-butyl(meth)acrylate, 1,4-cyclohexanedimethanol mono(meth)acrylate, N-(2-hydroxyethyl)(meth)acrylamide, glycerin mono(meth)acrylate, polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, 2-hydroxy-3-phenoxypropyl(meth)acrylate, 2 - Monomers with hydroxyl groups such as (meth)acryloyloxyethyl-2-hydroxyethyl phthalate and lactone-modified (meth)acrylates with hydroxyl groups at the ends; N,N-dimethylaminoethyl (meth)acrylate, N,N- (Meth)acrylates with amino groups such as diethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-diethylaminopropyl (meth)acrylate, (meth)acrylamide, N-hydroxymethyl ( Monomers having a nitrogen atom such as monomers having an N-hydroxymethylamide group such as meth)acrylamide, monomers having an N-alkoxymethylamide group such as N-butoxymethylacrylamide; glycidyl (meth)acrylate (Meth)acrylates having glycidyl groups such as; polyethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, methoxypolypropylene glycol (meth)acrylate, polybutylene glycol (meth)acrylate, methoxy Polyalkylene glycol (meth)acrylates such as polybutylene glycol (meth)acrylate; Vinyl monomers such as styrene, α-methylstyrene, paramethylstyrene, chloromethylstyrene, vinyl acetate, (meth)acrylonitrile; Tetrahydrofurfuryl ( meth)acrylate, benzyl(meth)acrylate; vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, 3-(meth)acryloyloxypropyltrimethoxysilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3 - Monomers having an alkoxysilyl group such as (meth)acryloyloxypropylmethyldimethoxysilane; di(meth)acrylate monomers such as ethylene glycol di(meth)acrylate and propylene glycol di(meth)acrylate, etc. . In addition, these monomers can be used alone or in combination of two or more types.
 前記単量体としては、前記有機粒子(A)の混合溶剤に対する膨潤率及びゲル分率がより向上することからアルコキシシリル基を有する単量体、ジ(メタ)アクリレート単量体等の架橋性単量体を使用することが好ましい。 As the monomer, crosslinkable monomers such as monomers having alkoxysilyl groups, di(meth)acrylate monomers, etc. are used, since the swelling ratio and gel fraction in the mixed solvent of the organic particles (A) are further improved. Preference is given to using monomers.
 前記単量体原料中の前記架橋性単量体は、0.1~20質量%が好ましい。0.1質量%以上であれば混合溶剤に対する膨潤率及びゲル分率がより向上する。20質量%以下であれば電極およびセパレータ間の接着性がより向上する。 The amount of the crosslinkable monomer in the monomer raw material is preferably 0.1 to 20% by mass. If it is 0.1% by mass or more, the swelling ratio and gel fraction with respect to the mixed solvent will be further improved. If it is 20% by mass or less, the adhesiveness between the electrode and the separator will be further improved.
 なお、本発明において、「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の一方又は両方をいい、「(メタ)アクリロイル」とは、アクリロイルとメタクリロイルの一方又は両方をいい、「(メタ)アクリレート」とは、アクリレートとメタクリレートの一方又は両方をいう。 In the present invention, "(meth)acrylic acid" refers to one or both of acrylic acid and methacrylic acid, "(meth)acryloyl" refers to one or both of acryloyl and methacryloyl, and "(meth)acrylic acid" refers to one or both of acryloyl and methacryloyl. ) "Acrylate" refers to one or both of acrylate and methacrylate.
 体積平均粒子径は6~20μmである前記有機粒子(A)の製造方法としては、各種の方法が挙げられるが、特別な添加剤を用いることなく簡単な操作で前記有機粒子(A)を得られることから、懸濁重合法が好ましい。 There are various methods for producing the organic particles (A) having a volume average particle diameter of 6 to 20 μm, but the organic particles (A) can be obtained by simple operations without using any special additives. Therefore, the suspension polymerization method is preferable.
 前記懸濁重合法により、前記有機粒子(A)としてアクリル樹脂粒子を得る方法としては、例えば、前記単量体原料及び重合開始剤を含む重合性単量体成分と臨界ミセル濃度(界面活性剤が、水溶液でミセルを形成する最低濃度)以上の界面活性剤を含む水溶液とからなる混合液を撹拌してエマルジョンを調整し、このエマルジョンに分散安定剤を含む水溶液を加えて界面活性剤の濃度を臨界ミセル濃度未満とした後、50~100℃の温度でラジカル重合する方法が挙げられる。 As a method for obtaining acrylic resin particles as the organic particles (A) by the suspension polymerization method, for example, the monomer raw material and the polymerizable monomer component including the polymerization initiator and the critical micelle concentration (surfactant Prepare an emulsion by stirring an aqueous solution containing a surfactant at a concentration higher than the minimum concentration at which micelles are formed in an aqueous solution, and add an aqueous solution containing a dispersion stabilizer to this emulsion to adjust the concentration of the surfactant. A method of radical polymerization at a temperature of 50 to 100° C. after reducing the micelle concentration to less than the critical micelle concentration can be mentioned.
 前記重合開始剤としては、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、アゾビスシアノ吉草酸等のアゾ化合物;tert-ブチルパーオキシピバレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、tert-ブチルハイドロパーオキサイド等の有機過酸化物;過酸化水素、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機過酸化物などが挙げられる。なお、これらの重合体開始剤は、単独で用いることも2種以上併用することもできる。 Examples of the polymerization initiator include azo compounds such as 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), and azobiscyanovaleric acid; tert-butylperoxy Organic peroxides such as pivalate, tert-butyl peroxybenzoate, tert-butyl peroxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, benzoyl peroxide, and tert-butyl hydroperoxide. Oxides: Examples include inorganic peroxides such as hydrogen peroxide, ammonium persulfate, potassium persulfate, and sodium persulfate. Note that these polymer initiators can be used alone or in combination of two or more.
 前記水性媒体(B)としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール及びイソプロパノール等のアルコール;アセトン、メチルエチルケトン等のケトン;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール;ポリアルキレングリコールのアルキルエーテル;N-メチル-2-ピロリドン等のラクタム等が挙げられる。本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。安全性や環境に対する負荷の点から、水のみ、または、水及び水と混和する有機溶剤との混合物が好ましく、水のみを使用することが特に好ましい。 Examples of the aqueous medium (B) include water, organic solvents miscible with water, and mixtures thereof. Examples of organic solvents that are miscible with water include alcohols such as methanol, ethanol, n-propanol, and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol, and propylene glycol; and alkyl ethers of polyalkylene glycols. and lactams such as N-methyl-2-pyrrolidone. In the present invention, water alone may be used, a mixture of water and a water-miscible organic solvent may be used, or only a water-miscible organic solvent may be used. From the viewpoint of safety and environmental impact, it is preferable to use only water or a mixture of water and an organic solvent miscible with water, and it is particularly preferable to use only water.
 前記水性媒体(B)は、前記有機粒子(A)を懸濁重合法により製造する際に使用される水性媒体をそのまま使用することが、簡便であり好ましい。 As the aqueous medium (B), it is convenient and preferable to use the aqueous medium used when producing the organic particles (A) by a suspension polymerization method as is.
 前記乳化剤としては、例えば、高級アルコールの硫酸エステル及びその塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルフェニルスルホン酸塩、ポリオキシエチレンアルキルジフェニルエーテルスルホン酸塩、ポリオキシエチレンア
ルキルエーテルの硫酸ハーフエステル塩、アルキルジフェニルエーテルジスルホン酸塩、コハク酸ジアルキルエステルスルホン酸塩等の陰イオン性乳化剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンジフェニルエーテル、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体、アセチレンジオール系等の非イオン性乳化剤;アルキルアンモニウム塩等の陽イオン性乳化剤;アルキル(アミド)ベタイン、アルキルジメチルアミンオキシド等の両イオン性乳化剤などが挙げられる。なお、これらの乳化剤は、単独で用いることも2種以上併用することもできる。また、これらの乳化剤は、臨界ミセル
濃度以上であり、臨界ミセル濃度の0.1~10倍であるのが好ましい。
Examples of the emulsifier include sulfuric esters of higher alcohols and their salts, alkylbenzene sulfonates, polyoxyethylene alkylphenyl sulfonates, polyoxyethylene alkyl diphenyl ether sulfonates, sulfuric acid half ester salts of polyoxyethylene alkyl ethers, Anionic emulsifiers such as alkyldiphenyl ether disulfonates, succinic acid dialkyl ester sulfonates; polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene diphenyl ethers, polyoxyethylene-polyoxypropylene block copolymers, Examples include nonionic emulsifiers such as acetylene diol-based emulsifiers; cationic emulsifiers such as alkylammonium salts; and amphoteric emulsifiers such as alkyl (amide) betaines and alkyl dimethylamine oxides. Note that these emulsifiers can be used alone or in combination of two or more. Further, these emulsifiers have a concentration higher than the critical micelle concentration, preferably 0.1 to 10 times the critical micelle concentration.
 前記アクリル単量体及び重合開始剤を含む重合性単量体成分と界面活性剤を含む水溶液とからなる混合液の攪拌は、特に剪断を与えながら攪拌することが好ましく、例えば、ホモミキサー、高圧ホモジナイザー、超音波分散装置、高圧噴射型分散装置、スタティックミキサーなどの攪拌装置を使用することができる。剪断を与えながら攪拌することにより、体積平均粒子径が6~20μmのエマルジョンを容易に調製できる。 It is preferable to stir the mixed liquid consisting of the polymerizable monomer component containing the acrylic monomer and the polymerization initiator and the aqueous solution containing the surfactant while applying shear, for example, using a homomixer, high pressure, etc. Stirring devices such as homogenizers, ultrasonic dispersion devices, high-pressure jet dispersion devices, and static mixers can be used. By stirring while applying shear, an emulsion with a volume average particle diameter of 6 to 20 μm can be easily prepared.
 上記のようにして得られたエマルジョンに分散安定剤を含む水溶液を加えて、エマルジョン中の界面活性剤の濃度が臨界濃度の0.01~1.0未満の分散液とした後、懸濁重合することで体積平均粒子径は6~20μmの前記有機粒子が得られる。 An aqueous solution containing a dispersion stabilizer is added to the emulsion obtained as described above to form a dispersion in which the concentration of surfactant in the emulsion is less than the critical concentration of 0.01 to 1.0, and then suspension polymerization is carried out. By doing so, the organic particles having a volume average particle diameter of 6 to 20 μm can be obtained.
 前記分散安定剤としては例えばポリビニルアルコール、ポリビニルピロリドン、メチルセルロース、ヒドロキシエチルセルロースなどの水溶性樹脂などがあげられる。なお、これらの分散安定剤は、単独で用いることも2種以上併用することもできる。 Examples of the dispersion stabilizer include water-soluble resins such as polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, and hydroxyethylcellulose. Note that these dispersion stabilizers can be used alone or in combination of two or more.
 本発明のリチウムイオン二次電池セパレータ用水性樹脂組成物は、前記有機粒子(A)、及び、水性媒体(B)を含有するものであるが、前記懸濁重合法により得られた樹脂粒子(A)が水性媒体(B)に分散したものであることが好ましい。 The aqueous resin composition for a lithium ion secondary battery separator of the present invention contains the organic particles (A) and the aqueous medium (B), and the resin particles obtained by the suspension polymerization method ( Preferably, A) is dispersed in an aqueous medium (B).
 また、必要に応じて脱溶剤工程を経ることにより、本発明の水性樹脂組成物中の有機溶剤量を低減することができる。 Furthermore, the amount of organic solvent in the aqueous resin composition of the present invention can be reduced by performing a solvent removal step as necessary.
 前記方法で得られた本発明の水性樹脂組成物は、塗工作業性がより向上することから、水性樹脂組成物の全量に対して前記有機粒子(A)を5~60質量%含有するものが好ましく、10~50質量%含有するものがより好ましい。 The aqueous resin composition of the present invention obtained by the above method contains 5 to 60% by mass of the organic particles (A) based on the total amount of the aqueous resin composition, since coating workability is further improved. is preferable, and one containing 10 to 50% by mass is more preferable.
 また、本発明の水性樹脂組成物は、塗工作業性がより向上することから、水性樹脂組成物の全量に対して前記水性媒体(B)を95~40質量%含有するものが好ましく、90~50質量%含有するものがより好ましい。 In addition, the aqueous resin composition of the present invention preferably contains 95 to 40% by mass of the aqueous medium (B) based on the total amount of the aqueous resin composition, since the coating workability is further improved. It is more preferable to contain up to 50% by mass.
 本発明の水性樹脂組成物は、必要に応じて、亜硝酸ナトリウムやハイドロキノンなどの水溶性重合禁止剤を含んでもよい。 The aqueous resin composition of the present invention may contain a water-soluble polymerization inhibitor such as sodium nitrite and hydroquinone, if necessary.
 また、本発明の水性樹脂組成物は、必要に応じて、硬化剤、硬化触媒、潤滑剤、充填剤、チキソ付与剤、粘着付与剤、ワックス、熱安定剤、耐光安定剤、蛍光増白剤、発泡剤等の添加剤、pH調整剤、レベリング剤、ゲル化防止剤、分散安定剤、酸化防止剤、ラジカル捕捉剤、耐熱性付与剤、無機充填剤、有機充填剤、可塑剤、補強剤、触媒、抗菌剤、防カビ剤、防錆剤、熱可塑性樹脂、熱硬化性樹脂、顔料、染料、導電性付与剤、帯電防止剤、透湿性向上剤、撥水剤、撥油剤、中空発泡体、結晶水含有化合物、難燃剤、吸水剤、吸湿剤、消臭剤、整泡剤、消泡剤、防黴剤、防腐剤、防藻剤、顔料分散剤、ブロッキング防止剤、加水分解防止剤、顔料を併用することができる。 In addition, the aqueous resin composition of the present invention may contain a curing agent, a curing catalyst, a lubricant, a filler, a thixotropic agent, a tackifier, a wax, a heat stabilizer, a light stabilizer, and a fluorescent whitening agent, as necessary. , additives such as foaming agents, pH adjusters, leveling agents, anti-gelling agents, dispersion stabilizers, antioxidants, radical scavengers, heat resistance imparters, inorganic fillers, organic fillers, plasticizers, reinforcing agents , catalyst, antibacterial agent, antifungal agent, rust preventive agent, thermoplastic resin, thermosetting resin, pigment, dye, conductivity imparting agent, antistatic agent, moisture permeability improver, water repellent, oil repellent, hollow foam crystal water-containing compounds, flame retardants, water absorbing agents, moisture absorbing agents, deodorizing agents, foam stabilizers, antifoaming agents, antifungal agents, preservatives, algaecides, pigment dispersants, antiblocking agents, hydrolysis prevention Agents and pigments can be used in combination.
 本発明のリチウムイオン二次電池セパレータ機能層用スラリーは、本発明の水性樹脂組成物、非導電性粒子、及び水溶性重合体を含有するものである。機能層用スラリーにおいて、非導電性粒子100質量部に対して、水性樹脂組成物中の有機粒子(A)を0.1~100質量%、水溶性重合体を0.1~100質量%含有することが好ましい。 The slurry for a lithium ion secondary battery separator functional layer of the present invention contains the aqueous resin composition of the present invention, non-conductive particles, and a water-soluble polymer. In the functional layer slurry, the aqueous resin composition contains 0.1 to 100% by mass of organic particles (A) and 0.1 to 100% by mass of water-soluble polymer based on 100 parts by mass of non-conductive particles. It is preferable to do so.
 前記非導電性粒子としては、例えば、無機粒子や有機粒子を使用することができるが、無機粒子が好ましい。 As the non-conductive particles, for example, inorganic particles or organic particles can be used, but inorganic particles are preferable.
 前記無機粒子としては、例えば、酸化アルミニウム(アルミナ)、酸化珪素、酸化マグネシウム、酸化チタン、BaTiO、ZrO、アルミナ-シリ力複合酸化物等の酸化物粒子、窒化アルミニウム、窒化硼素等の窒化物粒子、シリコン、ダイヤモンド等の共有結合性結晶粒子、硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子、タルク、モンモリロナイトなどの粘土微粒子などを挙げられるが、これらの中でも、酸化アルミニウム(アルミナ)が好ましい。なお、これらの無機粒子は、単独で用いることも2種以上併用することもできる。 Examples of the inorganic particles include oxide particles such as aluminum oxide (alumina), silicon oxide, magnesium oxide, titanium oxide, BaTiO 2 , ZrO, and alumina-silica composite oxide, and nitrides such as aluminum nitride and boron nitride. Examples include covalent crystal particles such as silicon and diamond, poorly soluble ionic crystal particles such as barium sulfate, calcium fluoride, and barium fluoride, and fine clay particles such as talc and montmorillonite. Among these, aluminum oxide (Alumina) is preferred. In addition, these inorganic particles can be used alone or in combination of two or more types.
 また、前記有機粒子としては、例えば、ポリエチレン、ポリスチレン、ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、そして、ポリイミド、ポリアミド、ポリアミドイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子粒子や、ポリスルフォン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子粒子などを挙げることができる。なお、これらの有機粒子は単独で用いることも2種以上併用することもできる。 The organic particles include, for example, polyethylene, polystyrene, polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, polyamide, polyamideimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensate, etc. Examples include various crosslinked polymer particles and heat-resistant polymer particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, and thermoplastic polyimide. Note that these organic particles can be used alone or in combination of two or more.
 前記水溶性重合体としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマー及びこれらのアンモニウム塩並びにアルカリ金属塩;ポリ(メタ)アクリル酸及びこれらのアンモニウム塩並びにアルカリ金属塩;ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸若しくはフマル酸とビニルアルコールの共重合体等のポリビニルアルコール化合物;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが挙げられる。なお、これらの水溶性重合体は、単独で用いることも2種以上併用することもできる。 Examples of the water-soluble polymer include cellulose polymers such as carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose, and their ammonium salts and alkali metal salts; poly(meth)acrylic acid and their ammonium salts and alkali metal salts; polyvinyl Polyvinyl alcohol compounds such as alcohol, acrylic acid or a copolymer of acrylic acid and vinyl alcohol, maleic anhydride or a copolymer of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinylpyrrolidone, modified polyacrylic Examples include acid, oxidized starch, phosphate starch, casein, and various modified starches. Note that these water-soluble polymers can be used alone or in combination of two or more.
 前記粒子状重合体としては、例えば、架橋ポリ(メタ)アクリル酸粒子、架橋ポリ(メタ)アクリル酸エステル粒子、架橋ポリスチレン粒子、(メタ)アクリル酸エステルとスチレンとの共重合架橋樹脂粒子、メラミン樹脂粒子、ナイロン粒子、ポリイミド粒子、ポリアミドイミド粒子、フェノール樹脂粒子、ポリテトラフルオロエチレン粒子、フッ素樹脂粒子、シリコーン樹脂粒子などが挙げられる。なお、これらの粒子状重合体は、単独で用いることも2種以上併用することもできる。 Examples of the particulate polymer include crosslinked poly(meth)acrylic acid particles, crosslinked poly(meth)acrylic ester particles, crosslinked polystyrene particles, copolymerized crosslinked resin particles of (meth)acrylic ester and styrene, and melamine. Examples include resin particles, nylon particles, polyimide particles, polyamideimide particles, phenol resin particles, polytetrafluoroethylene particles, fluororesin particles, and silicone resin particles. Note that these particulate polymers can be used alone or in combination of two or more.
 本発明における機能層は、上述の機能層用スラリーをセパレータ上に塗工することにより形成することができる。上記機能層用スラリー組成物を基材上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、機能層用スラリー組成物を基材の片面だけに塗布してもよく、両面に塗布してもよい。 The functional layer in the present invention can be formed by coating the above-mentioned functional layer slurry on a separator. The method for applying the functional layer slurry composition onto the base material is not particularly limited, and any known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, etc. can be used. At this time, the functional layer slurry composition may be applied to only one side of the base material, or may be applied to both sides of the base material.
 基材上の機能層用スラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。このように基材上の機能層用スラリー組成物を乾燥することで、基材上に機能層を形成した本発明のセパレータを得ることができる。 The method for drying the functional layer slurry composition on the base material is not particularly limited and any known method can be used, such as drying with warm air, hot air, low humidity air, vacuum drying, infrared rays or electron beams. Examples include drying methods using irradiation such as. By drying the functional layer slurry composition on the base material in this way, the separator of the present invention in which the functional layer is formed on the base material can be obtained.
 本発明のセパレータと極材との密着性は、10N/m以上が好ましい。 The adhesion between the separator of the present invention and the electrode material is preferably 10 N/m or more.
 また、本発明のセパレータの熱収縮率は5%以下が好ましい。 Furthermore, the heat shrinkage rate of the separator of the present invention is preferably 5% or less.
 以下に本発明を具体的な実施例を挙げてより詳細に説明する。 The present invention will be explained in more detail below with reference to specific examples.
 有機粒子の粒子径は、レーザー回折法を用いて測定した。具体的には、有機粒子を含む水分散液(固形分濃度25質量%)を試料とし、レーザー回折式粒子径分布測定装置(Malvern Panalytical社製、「マスターサイザー2000」)により得られた粒度分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径として求め、体積平均粒子径(μm)とした。 The particle diameter of the organic particles was measured using a laser diffraction method. Specifically, an aqueous dispersion containing organic particles (solid content concentration 25% by mass) was used as a sample, and the particle size distribution was obtained using a laser diffraction particle size distribution measuring device (Malvern Panalytical, "Mastersizer 2000"). (on a volume basis), the particle size was determined as the particle size at which the cumulative volume calculated from the small diameter side was 50%, and was defined as the volume average particle size (μm).
 有機粒子の電解液に対するゲル率は、有機粒子の水分散液を108℃で4時間乾燥して水を除去することで厚さ300μmのフィルムを作成した。フィルム片の約1gを精秤し、フィルム片の質量をWとした。このフィルム片を、約100gの混合溶剤(EC/MEC/DEC(25℃における体積混合比)=40/20/40))に60℃で72時間浸漬した。その後、混合溶剤からフィルム片を引き揚げた。引き揚げたフィルム片の混合溶剤をタオルでふき取り、次いで108℃で4時間真空乾燥して、その質量(不溶分の質量)Wを計測した。そして、以下の式に従って、有機粒子の混合溶剤に対するゲル分率(%)を算出した。
  混合溶剤に対するゲル分率(%)=(W/W)×100
The gel rate of the organic particles with respect to the electrolytic solution was determined by drying an aqueous dispersion of organic particles at 108° C. for 4 hours to remove water, thereby creating a film with a thickness of 300 μm. Approximately 1 g of the film piece was accurately weighed, and the mass of the film piece was defined as W 0 . This film piece was immersed in about 100 g of a mixed solvent (EC/MEC/DEC (volume mixing ratio at 25°C) = 40/20/40) at 60°C for 72 hours. Thereafter, the film pieces were pulled out of the mixed solvent. The mixed solvent of the salvaged film piece was wiped off with a towel, and then vacuum-dried at 108°C for 4 hours, and its mass (mass of insoluble matter) W 1 was measured. Then, the gel fraction (%) of the organic particles with respect to the mixed solvent was calculated according to the following formula.
Gel fraction (%) for mixed solvent = (W 1 /W 0 ) x 100
 有機粒子の電解液に対する膨潤率は、有機粒子の水分散液を108℃で4時間乾燥して水を除去することで厚さ300μmのフィルムを作成した。フィルム片の約1gを精秤し、フィルム片の質量をWとした。このフィルム片を、約100gの混合溶剤(EC/MEC/DEC(25℃における体積混合比)=40/20/40))に60℃で72時間浸漬した。その後、混合溶剤からフィルム片を引き揚げた。引き揚げたフィルム片の混合溶剤をタオルでふき取り、その質量Wを計測した。そして、以下の式に従って、有機粒子の混合溶剤に対する膨潤率(%)を算出した。
  混合溶剤に対する膨潤率(%)=(W/W)×100-100
The swelling rate of the organic particles with respect to the electrolytic solution was determined by drying an aqueous dispersion of organic particles at 108° C. for 4 hours to remove water, thereby creating a film with a thickness of 300 μm. Approximately 1 g of the film piece was accurately weighed, and the mass of the film piece was defined as W 0 . This film piece was immersed in about 100 g of a mixed solvent (EC/MEC/DEC (volume mixing ratio at 25°C) = 40/20/40) at 60°C for 72 hours. Thereafter, the film pieces were pulled out of the mixed solvent. The mixed solvent on the salvaged film piece was wiped off with a towel, and its mass W1 was measured. Then, the swelling ratio (%) of the organic particles to the mixed solvent was calculated according to the following formula.
Swelling rate (%) for mixed solvent = (W 1 /W 0 ) x 100-100
 ガラス転移温度(Tg)の算出方法は、測定試料10mgをアルミパンに計量し、示差熱分析測定装置(TA Instulments製「QA-100」)にて、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~500℃の間で、昇温速度10℃/minで、常温常湿下で、DSC曲線を測定した。この昇温過程で、微分信号(DDSC)が0.05mW/min/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点を、ガラス転移温度(Tg)として求めた。 To calculate the glass transition temperature (Tg), weigh 10 mg of the measurement sample into an aluminum pan, use a differential thermal analysis measurement device (TA Instruments "QA-100"), use an empty aluminum pan as a reference, and calculate the measurement temperature. DSC curves were measured in the range -100°C to 500°C at a temperature increase rate of 10°C/min at room temperature and normal humidity. During this temperature increase process, the baseline immediately before the endothermic peak of the DSC curve where the differential signal (DDSC) becomes 0.05 mW/min/mg or more, and the tangent of the DSC curve at the first inflection point after the endothermic peak appear. The intersection point with was determined as the glass transition temperature (Tg).
(実施例1:水性樹脂組成物(1)の合成)
 スチレン121.4g、アクリル酸2-エチルヘキシル76.2g、3-メタクリロキシプロピルトリメトキシシラン2.4gからなる混合液にt-ブチルパーオキシオクトエート1.00gを溶解し、重合性単量体成分とした。これとは別に、水200.0gにアルキルベンゼンスルホネート(第一工業製薬株式会社製「ネオゲンS-20F」)3.00gを溶解した。この水溶液に上記の重合性単量体成分を混合し、T.K.Homomixer(特殊機化工業株式会社製)を用いて回転数6000rpmで10分間攪拌した。得られたエマルションを攪拌機および温度計を備えた容量2Lの反応容器内に入れ、ポリビニルアルコール(株式会社クラレ製「44-88」)8.0gを水430.7gに溶解した水溶液をさらに加えて、窒素気流中で撹拌しながら75℃で5時間重合を行った。その後85℃に昇温し、2時間重合を行い、水性樹脂組成物(1)を得た。水性樹脂組成物(1)中の有機粒子(A-1)の体積平均粒子径は7.2μmであった。
(Example 1: Synthesis of aqueous resin composition (1))
1.00 g of t-butyl peroxyoctoate was dissolved in a mixed solution consisting of 121.4 g of styrene, 76.2 g of 2-ethylhexyl acrylate, and 2.4 g of 3-methacryloxypropyltrimethoxysilane. And so. Separately, 3.00 g of alkylbenzene sulfonate ("Neogen S-20F" manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was dissolved in 200.0 g of water. The above polymerizable monomer component was mixed with this aqueous solution, and T. K. The mixture was stirred for 10 minutes at a rotation speed of 6000 rpm using a Homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). The obtained emulsion was placed in a 2 L reaction vessel equipped with a stirrer and a thermometer, and an aqueous solution of 8.0 g of polyvinyl alcohol ("44-88" manufactured by Kuraray Co., Ltd.) dissolved in 430.7 g of water was further added. Polymerization was carried out at 75° C. for 5 hours while stirring in a nitrogen stream. Thereafter, the temperature was raised to 85° C., and polymerization was performed for 2 hours to obtain an aqueous resin composition (1). The volume average particle diameter of the organic particles (A-1) in the aqueous resin composition (1) was 7.2 μm.
(実施例2:水性樹脂組成物(2)の合成)
 T.K.Homomixerの回転数を3500rpmに変更した以外は実施例1と同様にして、水性樹脂組成物(2)を得た。水性樹脂組成物(2)中の有機粒子(A-2)の体積平均粒子径は9.5μmであった。
(Example 2: Synthesis of aqueous resin composition (2))
T. K. An aqueous resin composition (2) was obtained in the same manner as in Example 1 except that the rotation speed of the Homomixer was changed to 3500 rpm. The volume average particle diameter of the organic particles (A-2) in the aqueous resin composition (2) was 9.5 μm.
(実施例3:水性樹脂組成物(3)の合成)
 スチレン140.5g、アクリル酸2-エチルヘキシル57.1g、3-メタクリロキシプロピルトリメトキシシラン2.4gからなる混合液にt-ブチルパーオキシオクトエート1.00gを溶解し、重合性単量体成分とした以外は、実施例1と同様にして、水性樹脂組成物(3)を得た。水性樹脂組成物(3)中の有機粒子(A-3)の体積平均粒子径は6.8μmであった。
(Example 3: Synthesis of aqueous resin composition (3))
1.00 g of t-butyl peroxyoctoate was dissolved in a mixed solution consisting of 140.5 g of styrene, 57.1 g of 2-ethylhexyl acrylate, and 2.4 g of 3-methacryloxypropyltrimethoxysilane, and the polymerizable monomer component Aqueous resin composition (3) was obtained in the same manner as in Example 1 except that The volume average particle diameter of the organic particles (A-3) in the aqueous resin composition (3) was 6.8 μm.
(実施例4:水性樹脂組成物(4)の合成)
 メタクリル酸メチル121.4g、アクリル酸2-エチルヘキシル76.2g、3-メタクリロキシプロピルトリメトキシシラン2.4gからなる混合液にt-ブチルパーオキシオクトエート1.00gを溶解し、重合性単量体成分とした以外は、実施例1と同様にして、水性樹脂組成物(4)を得た。水性樹脂組成物(4)中の有機粒子(A-4)の体積平均粒子径は7.0μmであった。
(Example 4: Synthesis of aqueous resin composition (4))
1.00 g of t-butyl peroxyoctoate was dissolved in a mixed solution consisting of 121.4 g of methyl methacrylate, 76.2 g of 2-ethylhexyl acrylate, and 2.4 g of 3-methacryloxypropyltrimethoxysilane, and the polymerizable monomer An aqueous resin composition (4) was obtained in the same manner as in Example 1 except that the body component was used as a body component. The volume average particle diameter of the organic particles (A-4) in the aqueous resin composition (4) was 7.0 μm.
(実施例5:水性樹脂組成物(5)の合成)
 スチレン121.4g、アクリル酸2-エチルヘキシル76.2g、エチレングリコールジメタクリレート2.4gからなる混合液にt-ブチルパーオキシオクトエート1.00gを溶解し、重合性単量体成分とした以外は、実施例1と同様にして、水性樹脂組成物(5)を得た。水性樹脂組成物(5)中の有機粒子(A-5)の体積平均粒子径は6.2μmであった。
(Example 5: Synthesis of aqueous resin composition (5))
Except that 1.00 g of t-butyl peroxyoctoate was dissolved in a mixed solution consisting of 121.4 g of styrene, 76.2 g of 2-ethylhexyl acrylate, and 2.4 g of ethylene glycol dimethacrylate to form a polymerizable monomer component. In the same manner as in Example 1, an aqueous resin composition (5) was obtained. The volume average particle diameter of the organic particles (A-5) in the aqueous resin composition (5) was 6.2 μm.
(比較例1:水性樹脂組成物(R1)の合成)
 T.K.Homomixerの回転数を10000rpmに変更した以外は実施例1と同様にして、水性樹脂組成物(R1)を得た。水性樹脂組成物(R1)中の有機粒子(RA-1)の体積平均粒子径は1.9μmであった。
(Comparative Example 1: Synthesis of aqueous resin composition (R1))
T. K. An aqueous resin composition (R1) was obtained in the same manner as in Example 1 except that the rotation speed of the Homomixer was changed to 10,000 rpm. The volume average particle diameter of the organic particles (RA-1) in the aqueous resin composition (R1) was 1.9 μm.
(比較例2:水性樹脂組成物(R2)の合成)
 スチレン121.4g、アクリル酸2-エチルヘキシル76.2gからなる混合液にt-ブチルパーオキシオクトエート1.00gを溶解し、重合性単量体成分とした。これとは別に、水200.0gにアルキルベンゼンスルホネート(第一工業製薬株式会社製「ネオゲンS-20F」)3.00gを溶解した。この水溶液に上記の重合性単量体成分を混合し、T.K.Homomixer(特殊機化工業株式会社製)を用いて回転数8000rpmで10分間攪拌した。得られたエマルションを攪拌機および温度計を備えた容量2Lの反応容器内に入れ、ポリビニルアルコール(株式会社クラレ製「44-88」)8.0gを水430.7gに溶解した水溶液をさらに加えて、窒素気流中で撹拌しながら75℃で5時間重合を行った。その後85℃に昇温し、2時間重合を行い、水性樹脂組成物(R2)を得た。水性樹脂組成物(R2)中の有機粒子(A-1)の体積平均粒子径は3.2μmであった。
(Comparative Example 2: Synthesis of aqueous resin composition (R2))
1.00 g of t-butyl peroxyoctoate was dissolved in a mixed solution consisting of 121.4 g of styrene and 76.2 g of 2-ethylhexyl acrylate to obtain a polymerizable monomer component. Separately, 3.00 g of alkylbenzene sulfonate ("Neogen S-20F" manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was dissolved in 200.0 g of water. The above polymerizable monomer component was mixed with this aqueous solution, and T. K. The mixture was stirred for 10 minutes at a rotation speed of 8000 rpm using a Homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). The obtained emulsion was placed in a 2 L reaction vessel equipped with a stirrer and a thermometer, and an aqueous solution of 8.0 g of polyvinyl alcohol ("44-88" manufactured by Kuraray Co., Ltd.) dissolved in 430.7 g of water was further added. Polymerization was carried out at 75° C. for 5 hours while stirring in a nitrogen stream. Thereafter, the temperature was raised to 85° C., and polymerization was performed for 2 hours to obtain an aqueous resin composition (R2). The volume average particle diameter of the organic particles (A-1) in the aqueous resin composition (R2) was 3.2 μm.
(比較例3:水性樹脂組成物(R3)の合成)
 撹拌機及び温度計を備えた反応器に、イオン交換水70g、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製「エマール2F」)0.15g、および重合開始剤として過硫酸アンモニウム0.5gをそれぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。
 一方、別の容器に、イオン交換水50g、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.5g、重合性単量体としてブチルアクリレート94g、アクリロニトリル2g、メタクリル酸2g、N-ヒドロキシメチルアクリルアミド1g、およびアリルグリシジルエーテル1gを供給し、混合することにより、単量体混合物を得た。当該単量体混合物を4時間かけて前記反応器に連続的に添加して重合を行った。なお、単量体混合物の添加中は、温度60℃下で重合反応を続けた。添加終了後、さらに温度70℃下で3時間撹拌して重合反応を終了し、水性樹脂組成物(R3)を得た。水性樹脂組成物(R3)中の有機粒子(RA-3)の体積平均粒子径は、0.3μmであった。
(Comparative Example 3: Synthesis of aqueous resin composition (R3))
A reactor equipped with a stirrer and a thermometer was supplied with 70 g of ion-exchanged water, 0.15 g of sodium lauryl sulfate ("Emar 2F" manufactured by Kao Chemical Co., Ltd.) as an emulsifier, and 0.5 g of ammonium persulfate as a polymerization initiator. The gas phase was replaced with nitrogen gas, and the temperature was raised to 60°C.
Meanwhile, in another container, 50 g of ion-exchanged water, 0.5 g of sodium dodecylbenzenesulfonate as an emulsifier, 94 g of butyl acrylate as polymerizable monomers, 2 g of acrylonitrile, 2 g of methacrylic acid, 1 g of N-hydroxymethylacrylamide, and allylglycidyl. A monomer mixture was obtained by supplying and mixing 1 g of ether. Polymerization was carried out by continuously adding the monomer mixture to the reactor over a period of 4 hours. Note that during the addition of the monomer mixture, the polymerization reaction was continued at a temperature of 60°C. After the addition was completed, the mixture was further stirred for 3 hours at a temperature of 70°C to complete the polymerization reaction, and an aqueous resin composition (R3) was obtained. The volume average particle diameter of the organic particles (RA-3) in the aqueous resin composition (R3) was 0.3 μm.
[機能層用スラリーの調製]
 ポリビニルアルコール(DIC株式会社製「DICNAL VA-29」)30.0質量部と分散剤(テツタニ株式会社製「BYK-154」)0.36質量部の混合溶液にホモディスパーで000回転にて撹拌しながらアルミナ(住友化学株式会社製「AKP-3000」)30.0質量部を徐々に加え、5分間分散を行った。均一になったのち、上記で得た水性樹脂組成物6.0質量部、イオン交換水15.8質量部添加し、ホモディスパーで5000rpmにて10分間分散を行った。得られたスラリーを100メッシュの金網でろ過することで機能層スラリーを得た。
[Preparation of slurry for functional layer]
A mixed solution of 30.0 parts by mass of polyvinyl alcohol ("DICNAL VA-29" manufactured by DIC Corporation) and 0.36 parts by mass of a dispersant ("BYK-154" manufactured by Tetsutani Corporation) was stirred at 000 rpm with a homodisper. While doing so, 30.0 parts by mass of alumina ("AKP-3000" manufactured by Sumitomo Chemical Co., Ltd.) was gradually added and dispersed for 5 minutes. After the mixture became uniform, 6.0 parts by mass of the aqueous resin composition obtained above and 15.8 parts by mass of ion-exchanged water were added, and the mixture was dispersed using a homodisper at 5000 rpm for 10 minutes. A functional layer slurry was obtained by filtering the obtained slurry through a 100-mesh wire mesh.
[セパレータの製造]
 厚み12μmのポリエチレンセパレータ基材に機能層スラリーをバーコーターにて乾燥膜厚4μとなるように塗工し、機能層を有するセパレータを得た。乾燥温度は80℃、乾燥時間は1分とした。
[Manufacture of separators]
The functional layer slurry was coated onto a polyethylene separator base material having a thickness of 12 μm using a bar coater so as to have a dry film thickness of 4 μm to obtain a separator having a functional layer. The drying temperature was 80°C and the drying time was 1 minute.
[密着性の評価]
 以下の通りピール強度を測定し、密着性を評価した。具体的には、負極(宝泉株式会社製、HS-LIB-N-Gr-001)の合材層とセパレータ上の機能層とが対向するように温度80℃下、荷重6.5MPaにて1分間プレスすることにより、負極およびセパレータを貼り合わせた試験サンプルを作成した。これを幅20mm、高さ120mmに切り出し、負極表面に両面テープを貼り付けたあと、両面テープで金属板に固定した。
試験片のうちセパレータ側の一端を、10mm/秒の速度で鉛直方向に引張って剥がしたときの応力を測定した。この電極とのピール強度の値が大きいほど好ましい。
使用機器:株式会社島津オートグラフAG-10KNX Plus 
使用冶具:引張用チャック      
試験速度:100mm/min
使用セル:50N  
測定温度:室温
[Evaluation of adhesion]
Peel strength was measured and adhesion was evaluated as follows. Specifically, the mixture layer of the negative electrode (manufactured by Hosen Co., Ltd., HS-LIB-N-Gr-001) and the functional layer on the separator were placed opposite each other at a temperature of 80° C. and a load of 6.5 MPa. A test sample in which the negative electrode and separator were bonded together was prepared by pressing for 1 minute. This was cut out to a width of 20 mm and a height of 120 mm, double-sided tape was attached to the surface of the negative electrode, and then fixed to a metal plate with double-sided tape.
One end of the test piece on the separator side was pulled and peeled off in the vertical direction at a speed of 10 mm/sec, and the stress was measured. The larger the value of peel strength with this electrode, the more preferable.
Equipment used: Shimadzu Autograph AG-10KNX Plus
Jig used: tension chuck
Test speed: 100mm/min
Cell used: 50N
Measurement temperature: room temperature
[耐熱収縮性の評価]
 機能層を塗工したセパレータを5cm角に切り、試験片を厚紙に挟み、内温150℃の乾燥機で1時間加熱後取り出した。対面する2辺の中点同士の距離を測定し、収縮後の寸法(mm)とした。得られた初期寸法と、収縮後の寸法を用い、下記計算式にてMD方向(長手方向)の長さ、及びTD 方向(横手方向)の長さを計算し、その平均値から熱収縮率(%)を得た。この熱収縮率の値が小さいほど好ましい。
熱収縮率(%) = {初期寸法(mm)- 収縮後の寸法(mm)}/初期寸法(mm)×100 
[Evaluation of heat shrinkage resistance]
The separator coated with the functional layer was cut into 5 cm square pieces, the test pieces were sandwiched between cardboard sheets, heated in a dryer at an internal temperature of 150° C. for 1 hour, and then taken out. The distance between the midpoints of the two facing sides was measured and determined as the dimension (mm) after shrinkage. Using the obtained initial dimensions and dimensions after shrinkage, calculate the length in the MD direction (longitudinal direction) and the length in the TD direction (transverse direction) using the following calculation formula, and calculate the heat shrinkage rate from the average value. (%) was obtained. The smaller the value of this thermal shrinkage rate, the more preferable.
Heat shrinkage rate (%) = {Initial dimension (mm) - Dimension after shrinkage (mm)}/Initial dimension (mm) x 100
 上記の実施例1~5及び比較例1~3の評価結果を表1及び2に示す。 The evaluation results of Examples 1 to 5 and Comparative Examples 1 to 3 above are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の水性樹脂組成物である実施例1~5のものを塗布したセパレータは、電極との密着性及び耐熱収縮性に優れることが確認された。 It was confirmed that the separators coated with the aqueous resin compositions of Examples 1 to 5 of the present invention had excellent adhesion to electrodes and heat shrinkage resistance.
一方、比較例1~3は、有機粒子(A)の体積平均粒子径が本発明の下限よりも小さい例であるが、電極との密着性が不十分であることが確認された。 On the other hand, Comparative Examples 1 to 3 are examples in which the volume average particle diameter of the organic particles (A) is smaller than the lower limit of the present invention, but it was confirmed that the adhesion to the electrode was insufficient.

Claims (6)

  1.  有機粒子(A)及び水性媒体(B)を含有するリチウムイオン二次電池セパレータ用水性樹脂組成物であって、前記有機粒子(A)の体積平均粒子径が6~20μmであることを特徴とするリチウムイオン二次電池セパレータ用水性樹脂組成物。 An aqueous resin composition for a lithium ion secondary battery separator containing organic particles (A) and an aqueous medium (B), characterized in that the organic particles (A) have a volume average particle diameter of 6 to 20 μm. Aqueous resin composition for lithium ion secondary battery separator.
  2.  前記有機粒子(A)の混合溶剤(炭酸エチレン/炭酸エチルメチル/炭酸ジエチル=40/20/40(25℃における体積比))に対する、膨潤率が300%以下であり、ゲル分率が90%以上である請求項1記載のリチウムイオン二次電池セパレータ用水性樹脂組成物。 The swelling ratio of the organic particles (A) in a mixed solvent (ethylene carbonate/ethylmethyl carbonate/diethyl carbonate = 40/20/40 (volume ratio at 25°C)) is 300% or less, and the gel fraction is 90%. The aqueous resin composition for a lithium ion secondary battery separator according to claim 1, which is the above.
  3.  前記有機粒子(A)における粒子径2μm以下の粒子の体積比率が30%以下である請求項1記載のリチウムイオン二次電池セパレータ用水性樹脂組成物。 The aqueous resin composition for a lithium ion secondary battery separator according to claim 1, wherein the volume ratio of particles with a particle diameter of 2 μm or less in the organic particles (A) is 30% or less.
  4.  分散安定剤(C)を0.1~20質量%含有する請求項1記載のリチウムイオン二次電池セパレータ用水性樹脂組成物。 The aqueous resin composition for a lithium ion secondary battery separator according to claim 1, containing 0.1 to 20% by mass of a dispersion stabilizer (C).
  5.  請求項1~4いずれか1項に記載のリチウムイオン二次電池セパレータ用水性樹脂組成物を含有するリチウムイオン二次電池セパレータ機能層用スラリー。 A slurry for a functional layer of a lithium ion secondary battery separator containing the aqueous resin composition for a lithium ion secondary battery separator according to any one of claims 1 to 4.
  6.  請求項5記載のリチウムイオン二次電池セパレータ機能層用スラリーを用いて得られた塗膜を有するリチウムイオン二次電池用セパレータ。 A lithium ion secondary battery separator having a coating film obtained using the slurry for lithium ion secondary battery separator functional layer according to claim 5.
PCT/JP2023/018521 2022-06-30 2023-05-18 Aqueous resin composition for lithium ion secondary battery separators, slurry for functional layers of lithium ion secondary battery separators, and separator for lithium ion secondary batteries WO2024004420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022105818 2022-06-30
JP2022-105818 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024004420A1 true WO2024004420A1 (en) 2024-01-04

Family

ID=89382003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018521 WO2024004420A1 (en) 2022-06-30 2023-05-18 Aqueous resin composition for lithium ion secondary battery separators, slurry for functional layers of lithium ion secondary battery separators, and separator for lithium ion secondary batteries

Country Status (1)

Country Link
WO (1) WO2024004420A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241135A (en) * 2003-02-03 2004-08-26 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
JP2006286311A (en) * 2005-03-31 2006-10-19 Asahi Kasei Chemicals Corp Composite porous film
JP2010238448A (en) * 2009-03-30 2010-10-21 Mitsubishi Paper Mills Ltd Separator for lithium-ion secondary battery
JP2013211160A (en) * 2012-03-30 2013-10-10 Tdk Corp Cell separator and cell using the same
JP2016071963A (en) * 2014-09-26 2016-05-09 旭化成イーマテリアルズ株式会社 Separator for power storage device
JP2016072142A (en) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 Battery separator
JP2016072247A (en) * 2014-09-26 2016-05-09 旭化成イーマテリアルズ株式会社 Separator for power storage device
JP2017185647A (en) * 2016-04-01 2017-10-12 三菱ケミカル株式会社 Laminated porous film and method for producing the same
JP2019102400A (en) * 2017-12-08 2019-06-24 旭化成株式会社 Multilayer separator, and its wound body and manufacturing method
JP2021102710A (en) * 2019-12-25 2021-07-15 旭化成株式会社 Polymer composition for nonaqueous secondary batteries and nonaqueous secondary battery
JP2022042818A (en) * 2020-09-03 2022-03-15 富士フイルムビジネスイノベーション株式会社 Separator for non-aqueous secondary battery, secondary battery, and method for manufacturing secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241135A (en) * 2003-02-03 2004-08-26 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
JP2006286311A (en) * 2005-03-31 2006-10-19 Asahi Kasei Chemicals Corp Composite porous film
JP2010238448A (en) * 2009-03-30 2010-10-21 Mitsubishi Paper Mills Ltd Separator for lithium-ion secondary battery
JP2013211160A (en) * 2012-03-30 2013-10-10 Tdk Corp Cell separator and cell using the same
JP2016071963A (en) * 2014-09-26 2016-05-09 旭化成イーマテリアルズ株式会社 Separator for power storage device
JP2016072247A (en) * 2014-09-26 2016-05-09 旭化成イーマテリアルズ株式会社 Separator for power storage device
JP2016072142A (en) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 Battery separator
JP2017185647A (en) * 2016-04-01 2017-10-12 三菱ケミカル株式会社 Laminated porous film and method for producing the same
JP2019102400A (en) * 2017-12-08 2019-06-24 旭化成株式会社 Multilayer separator, and its wound body and manufacturing method
JP2021102710A (en) * 2019-12-25 2021-07-15 旭化成株式会社 Polymer composition for nonaqueous secondary batteries and nonaqueous secondary battery
JP2022042818A (en) * 2020-09-03 2022-03-15 富士フイルムビジネスイノベーション株式会社 Separator for non-aqueous secondary battery, secondary battery, and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
CN111492507B (en) Lithium ion battery diaphragm
KR102209887B1 (en) Separator for batteries and method for producing same
JPWO2018043200A1 (en) Aqueous resin composition for lithium ion secondary battery binder and separator for lithium ion secondary battery
KR20180048778A (en) Aqueous binder for lithium ion battery, manufacturing method and use thereof
JP7185504B2 (en) Raw material for coating material for secondary battery separator, method for producing raw material for coating material for secondary battery separator, coating material for secondary battery separator, secondary battery separator, method for producing secondary battery separator, and secondary battery
JP6988808B2 (en) Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer and non-aqueous secondary battery
WO2017188055A1 (en) Aqueous resin composition for lithium ion secondary battery binders and separator for lithium ion secondary batteries
KR101133555B1 (en) Composite particle
JPWO2018037867A1 (en) Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing electrode for non-aqueous secondary battery
JP2024511117A (en) Separator coating for lithium-ion batteries based on PVDF acrylate latex
JP6710910B2 (en) Composition for coating agent for lithium-ion secondary battery separator and method for producing the same
CN111100523A (en) Coating composition for lithium battery diaphragm and preparation method thereof
WO2024004420A1 (en) Aqueous resin composition for lithium ion secondary battery separators, slurry for functional layers of lithium ion secondary battery separators, and separator for lithium ion secondary batteries
JP7151938B2 (en) Aqueous Resin Composition for Lithium Ion Secondary Battery Separator Heat-Resistant Layer Binder
US20230145168A1 (en) Ingredient for secondary cell separator coating material, secondary cell separator coating material, secondary cell separator, method for producing secondary cell separator, and secondary cell
JP7311587B2 (en) Coating material for secondary battery separator
JP5881496B2 (en) Undercoat for release substrate
JP6973695B2 (en) Aqueous resin composition for lithium ion secondary battery binder and separator for lithium ion secondary battery
TW202410538A (en) Water-based resin composition for lithium ion secondary battery separators, slurry for functional layer of lithium ion secondary battery separators, and lithium ion secondary battery separators
JPS61148278A (en) Aqueous suspension of adhesive microsphere
WO2023276867A1 (en) Coating starting material for secondary battery separator, coating material for secondary battery separator, secondary battery separator, method for producing secondary battery separator, and secondary battery
US20240141198A1 (en) Separator coating for li-ion batteries based on pvdf acrylate latex
WO2022230711A1 (en) Composition for electrochemical element functional layer, method for producing said composition, functional layer for electrochemical element, laminate for electrochemical element, and electrochemical element
JP2024007380A (en) Binder for nonaqueous secondary battery, slurry for lithium ion secondary battery porous layer, lithium ion secondary battery porous layer, lithium ion secondary battery separator, and lithium ion secondary battery
WO2022163591A1 (en) Composition for electrochemical element functional layer, laminate for electrochemical element, and electrochemical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830872

Country of ref document: EP

Kind code of ref document: A1