JPS6052067A - 超格子の構造 - Google Patents
超格子の構造Info
- Publication number
- JPS6052067A JPS6052067A JP58159813A JP15981383A JPS6052067A JP S6052067 A JPS6052067 A JP S6052067A JP 58159813 A JP58159813 A JP 58159813A JP 15981383 A JP15981383 A JP 15981383A JP S6052067 A JPS6052067 A JP S6052067A
- Authority
- JP
- Japan
- Prior art keywords
- solid layer
- semiconductor
- layer
- band width
- forbidden band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007787 solid Substances 0.000 claims abstract description 39
- 239000012535 impurity Substances 0.000 claims abstract description 24
- 239000004065 semiconductor Substances 0.000 abstract description 54
- 238000000034 method Methods 0.000 abstract description 8
- 239000000758 substrate Substances 0.000 abstract description 6
- 150000001875 compounds Chemical class 0.000 description 13
- 238000013139 quantization Methods 0.000 description 9
- 239000012212 insulator Substances 0.000 description 7
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0891—Source or drain regions of field-effect devices of field-effect transistors with Schottky gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/15—Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
- H01L29/151—Compositional structures
- H01L29/152—Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/15—Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
- H01L29/151—Compositional structures
- H01L29/152—Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
- H01L29/155—Comprising only semiconductor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/73—Bipolar junction transistors
- H01L29/737—Hetero-junction transistors
- H01L29/7371—Vertical transistors
- H01L29/7376—Resonant tunnelling transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7781—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
- H01L29/7787—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035236—Superlattices; Multiple quantum well structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035236—Superlattices; Multiple quantum well structures
- H01L31/035254—Superlattices; Multiple quantum well structures including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table, e.g. Si-SiGe superlattices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/347—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIBVI compounds, e.g. ZnCdSe- laser
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Junction Field-Effect Transistors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Led Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
本発明は禁止帯幅が大きなP型半導体を実現できる超格
子の構造に関する。
子の構造に関する。
従来の化合物半導体への不純物のドーピング方法は、S
iやGeの単元素からなる元素半導体へのドーピングと
同様に、一様に化合物半導体中ζこ不純物を含有させる
ものである。GaAs、 InPのような禁止帯幅が2
.Oe v 以下の化合物半導体では、このようなP型
不純物を一様ζこ分有させた構造ζこよっても容易にP
型半導体を得ることができるが、Zn8e、 0d8e
トいッ7.: If −■半導体に代表される禁止帯幅
が2.Oe v以上のワイドギャップ化合物半導体では
、従来構造ではP型半導体が得られないものが多い、 従来のP型不純物をドーピングした化合物半導体の構造
について図面を用いて説明する。
iやGeの単元素からなる元素半導体へのドーピングと
同様に、一様に化合物半導体中ζこ不純物を含有させる
ものである。GaAs、 InPのような禁止帯幅が2
.Oe v 以下の化合物半導体では、このようなP型
不純物を一様ζこ分有させた構造ζこよっても容易にP
型半導体を得ることができるが、Zn8e、 0d8e
トいッ7.: If −■半導体に代表される禁止帯幅
が2.Oe v以上のワイドギャップ化合物半導体では
、従来構造ではP型半導体が得られないものが多い、 従来のP型不純物をドーピングした化合物半導体の構造
について図面を用いて説明する。
第1図は従来のP型不純物をドーピングした化合物半導
体の概略断面図である。1は半導体基板、2はP型不純
物、3はP型不純物2を均一ζこ含有し半導体基板1の
上に形成した化合物半導体層である。
体の概略断面図である。1は半導体基板、2はP型不純
物、3はP型不純物2を均一ζこ含有し半導体基板1の
上に形成した化合物半導体層である。
従来構造ではP型が得られない禁止帯幅の大きな半導体
の例としてZn8eがあり、このZn5e中へのAuの
ドーピングを説明すると次のようになる。分子線エピタ
キシ(MBE)法により基板温度を400℃とし、Zn
位置lこ置換すればP型不純物として働くと考えられる
AuをIXIOGn含有するZ n 8 eを成長させ
ても、n型のZn5e+。
の例としてZn8eがあり、このZn5e中へのAuの
ドーピングを説明すると次のようになる。分子線エピタ
キシ(MBE)法により基板温度を400℃とし、Zn
位置lこ置換すればP型不純物として働くと考えられる
AuをIXIOGn含有するZ n 8 eを成長させ
ても、n型のZn5e+。
か得られない。この理由は、添加不純物に応じてZn5
e内に固有欠陥が生じ、自己補償がなされるためである
。したがって、自己補償効果のあるZn5eでは他の成
長方法や他のP型不純物を用いても同様にP型半導体は
得られない。
e内に固有欠陥が生じ、自己補償がなされるためである
。したがって、自己補償効果のあるZn5eでは他の成
長方法や他のP型不純物を用いても同様にP型半導体は
得られない。
この解決手段としては従来構造とは異なり、P型不純物
と自己補償効果のある半導体とを空間曲に分離する新し
い構造が必要である。
と自己補償効果のある半導体とを空間曲に分離する新し
い構造が必要である。
本発明の目的は、かかる従来構造の持つ欠点を除去し、
禁止帯幅が大きなP型半導体が実現できる超格子の構造
を提供することにある。
禁止帯幅が大きなP型半導体が実現できる超格子の構造
を提供することにある。
本発明の超格子の構造は、発珪4亡1正孔波長以下の厚
さを有する第1の固体層と、該第1の固体層より電子親
オ11力と禁止帯幅との和が大きく第た積層構造を持ち
、P型不純物が第1の固体層だけに含有されていること
を特徴とする。
さを有する第1の固体層と、該第1の固体層より電子親
オ11力と禁止帯幅との和が大きく第た積層構造を持ち
、P型不純物が第1の固体層だけに含有されていること
を特徴とする。
一般に電子親和力と禁止帯幅とのオ[1が異なる半導体
の積層構造において、電子親和力と禁Iヒ帯幅との和が
小さ′11:半導体の厚さが正孔波長以下になると量子
効果が顕著になり、この半導体内には新たなエネルギ準
位(量子化準位)が形成される。
の積層構造において、電子親和力と禁Iヒ帯幅との和が
小さ′11:半導体の厚さが正孔波長以下になると量子
効果が顕著になり、この半導体内には新たなエネルギ準
位(量子化準位)が形成される。
さらに、電子親和力と禁止帯幅との和が大きな半導体の
厚さがこの半導体中を量子化準位の正孔がトンネルでき
るほどに薄くなると、正孔は量子化準位において積層構
造の膜中を自由に運動できるようになる。本発明の構造
はこの条件を満たしているため、第1の固体層から発生
する正孔は量子化準位において積層構造全体に広がる。
厚さがこの半導体中を量子化準位の正孔がトンネルでき
るほどに薄くなると、正孔は量子化準位において積層構
造の膜中を自由に運動できるようになる。本発明の構造
はこの条件を満たしているため、第1の固体層から発生
する正孔は量子化準位において積層構造全体に広がる。
したがって、第1の固体層がP型半導体であれば、積層
構造全体もP型半導体とすることが可能となる。
構造全体もP型半導体とすることが可能となる。
以下、本発明について実施例を示す図面を参照して詳細
に説明する。
に説明する。
第2図は本発明の第1の実施例を示した模式的断面図で
ある。第2図において第1図と同じ番号のものは第1図
と同等物で同一機能を果すものであり、4はP型不純物
2を含有し正孔波長以下の厚さを有する第1の固体層、
5は該第1の固体層4より電子親和力と禁止帯幅との和
が大きく、第1の固体層4中の正孔がトンネル可能な厚
さを有する第2の固体層である。第1の固体層4と第2
の固体層5とが交互に積層し、積層構造を形成している
。
ある。第2図において第1図と同じ番号のものは第1図
と同等物で同一機能を果すものであり、4はP型不純物
2を含有し正孔波長以下の厚さを有する第1の固体層、
5は該第1の固体層4より電子親和力と禁止帯幅との和
が大きく、第1の固体層4中の正孔がトンネル可能な厚
さを有する第2の固体層である。第1の固体層4と第2
の固体層5とが交互に積層し、積層構造を形成している
。
本実施例を、半導体基板1としてG a A s、不純
物2.:!:L、てBe、第1の固体層4として厚さ5
AのGaA、s、第2の固体層5として厚さ15AのZ
n5eを用いて説明すると次のようlこなる。
物2.:!:L、てBe、第1の固体層4として厚さ5
AのGaA、s、第2の固体層5として厚さ15AのZ
n5eを用いて説明すると次のようlこなる。
G a A s中での室温におけるBeの活性化率はほ
ぼ100%であるので、5AのG a A s中lこは
ドープし7.zBeのほとんどが活性化してBeiとほ
ぼ同量の正孔はG a A sの充満帯端より0.7e
v低い量子化準位においてこの膜全体に広がる。()a
Asとカ Zn8eの電子親給≦は占んど等しいため、電子の量子
化準位はほとんど現われない。したがって、この膜の等
測的な禁止帯幅は2.1eV(!:なる。
ぼ100%であるので、5AのG a A s中lこは
ドープし7.zBeのほとんどが活性化してBeiとほ
ぼ同量の正孔はG a A sの充満帯端より0.7e
v低い量子化準位においてこの膜全体に広がる。()a
Asとカ Zn8eの電子親給≦は占んど等しいため、電子の量子
化準位はほとんど現われない。したがって、この膜の等
測的な禁止帯幅は2.1eV(!:なる。
結晶ル又長方法としてMBEを用い、膜全体の平均的な
りe濃度としてlXl0cm をドーピングした結果、
室温での正孔濃度として1×10crn(5) が得られた。この結果より、禁止帯幅が2.1evと大
きな半導体であるのにかかわらず、高い正孔濃度を有す
るP型半導体が得られることがわかる。
りe濃度としてlXl0cm をドーピングした結果、
室温での正孔濃度として1×10crn(5) が得られた。この結果より、禁止帯幅が2.1evと大
きな半導体であるのにかかわらず、高い正孔濃度を有す
るP型半導体が得られることがわかる。
第3図は本発明の第2の実施例を示した模式的断面図で
ある。第3図において第1、第2図と同じ番号のものは
第1、第2図さ同等物で同一機能を果すものであり、6
は不純物2を含有し正孔波長以下の厚さを有する半導体
層、7は該半導体層6より電子親和力と禁止帯幅との和
が大きく半導体層6中の正孔がトンネル可能な厚さを有
する絶縁体層である。
ある。第3図において第1、第2図と同じ番号のものは
第1、第2図さ同等物で同一機能を果すものであり、6
は不純物2を含有し正孔波長以下の厚さを有する半導体
層、7は該半導体層6より電子親和力と禁止帯幅との和
が大きく半導体層6中の正孔がトンネル可能な厚さを有
する絶縁体層である。
不純物としてB、半導体層6として厚さ5Aの81、絶
縁体層7として厚さ15AのOaF、を用い、MBE法
により本構造を構成した結果、新しい正孔の量子化準位
は84の充満帯端より0.7 e v低くなり、さらに
新しい電子の量子化準位がS+の伝導帯端よりlev
高くなるため、禁止帯幅として2.8 e vが得られ
た。そして膜全俸の平均のB濃度としてlX1011m
ドープbr、=のに対し、1×10c/ILの正孔濃
度が得られた。
縁体層7として厚さ15AのOaF、を用い、MBE法
により本構造を構成した結果、新しい正孔の量子化準位
は84の充満帯端より0.7 e v低くなり、さらに
新しい電子の量子化準位がS+の伝導帯端よりlev
高くなるため、禁止帯幅として2.8 e vが得られ
た。そして膜全俸の平均のB濃度としてlX1011m
ドープbr、=のに対し、1×10c/ILの正孔濃
度が得られた。
(6)
上記の本発明の2つの実施例については、P型不純物が
第1の固体層全体に含有されているとしたが、P型不純
物のドーピングを第1の固体層全体ではなく、第1の固
体層のうち第2の固体層との界面近傍を除く領域だけと
してもよく、またP型不純物を含有しないηF;】の固
体層がデバイ長以上の厚さに積層していなけれCず積層
構造の中に存在しても良い。すなわち(責層構造中のす
べての第1の固体層中に不純物が含まれている必要は必
ずしもない。また、積層構造としては2種類の固体層を
交互にtIt層したものだけしか示さなかったが、3種
類具−ヒの固体層を積層したものであっても、正孔が量
子化準位で膜全体に広がる構造であれば良く、この構造
でもP型半導体が得られることは明らかである。3種類
の固体層を積層したものの例としては、GaA、s/A
/As/Zn5eがあり、GaAs/Zn5e糸よりも
さらに禁止帯幅の広いものが容易に実現できる。
第1の固体層全体に含有されているとしたが、P型不純
物のドーピングを第1の固体層全体ではなく、第1の固
体層のうち第2の固体層との界面近傍を除く領域だけと
してもよく、またP型不純物を含有しないηF;】の固
体層がデバイ長以上の厚さに積層していなけれCず積層
構造の中に存在しても良い。すなわち(責層構造中のす
べての第1の固体層中に不純物が含まれている必要は必
ずしもない。また、積層構造としては2種類の固体層を
交互にtIt層したものだけしか示さなかったが、3種
類具−ヒの固体層を積層したものであっても、正孔が量
子化準位で膜全体に広がる構造であれば良く、この構造
でもP型半導体が得られることは明らかである。3種類
の固体層を積層したものの例としては、GaA、s/A
/As/Zn5eがあり、GaAs/Zn5e糸よりも
さらに禁止帯幅の広いものが容易に実現できる。
第1の固体層中に含有するP型不純物としては、第1の
固体層がSi、’Ge等の元紫半導体ではB。
固体層がSi、’Ge等の元紫半導体ではB。
A、ll 、 Ga 、 In 、 T/等、GaA、
s、 InP等の■−■化合物半導体ではHe、Mg、
Zn、Od、0等、ZnTe、0dTeのIT−VI化
合物半導体ではAu。
s、 InP等の■−■化合物半導体ではHe、Mg、
Zn、Od、0等、ZnTe、0dTeのIT−VI化
合物半導体ではAu。
Ag、Ou 等であっても良い。
本発明の実施例では積層する固体層として格子整合のさ
れた半導体または絶縁体について述べたが、一般に積層
構造においては各層の界面において格子不整合によるス
トレスが緩和されるため、格子整合のとれてない半導体
または絶縁体の積層構造でも本発明を実現することは可
能である。さらfこ、Miscibility Gap
に相当する組成(InGaAsSb、InAsPSb等
)で予想される光学的および電気的特性を有するP型半
導体も本発明ζこより実現することができる。
れた半導体または絶縁体について述べたが、一般に積層
構造においては各層の界面において格子不整合によるス
トレスが緩和されるため、格子整合のとれてない半導体
または絶縁体の積層構造でも本発明を実現することは可
能である。さらfこ、Miscibility Gap
に相当する組成(InGaAsSb、InAsPSb等
)で予想される光学的および電気的特性を有するP型半
導体も本発明ζこより実現することができる。
本発明の構造は実施例で示した材料以外のあらゆる半導
体および絶縁体の組合せに対し適用可能である。例えば
、TI−■化合物半導体間の組合せではZn’11.’
e/(jdse、 m−VとIf−Wの化合物半導体の
組合せではG a ’、P / Z n S 、 I
n P / Od S 、その他の半導体の組合せ占し
ては0uGaSe2/Zn8e、半導体と絶縁体の、a
I合せでは8 i /Mg0−A40Bスピネル化合物
、Ga Plo a F2 f、iどかある。
体および絶縁体の組合せに対し適用可能である。例えば
、TI−■化合物半導体間の組合せではZn’11.’
e/(jdse、 m−VとIf−Wの化合物半導体の
組合せではG a ’、P / Z n S 、 I
n P / Od S 、その他の半導体の組合せ占し
ては0uGaSe2/Zn8e、半導体と絶縁体の、a
I合せでは8 i /Mg0−A40Bスピネル化合物
、Ga Plo a F2 f、iどかある。
本発明の構造を得る方法としては、原理的にはどんな結
晶成長方法でi)っても良いが、数Xの膜厚制御性が必
要となるため、MBB法やMOOVD(1’vieta
l Organic ChemicalVaporDe
position)法が適している。中でもM IJ
E法は原料の入った炉から出る分子線をシャッタの開閉
だけで制御できるため、遷移層が数Aの急峻な界面を容
易に実現することができ、さらにコンビーータによる自
動制御が容易であるため最も適した方法である。
晶成長方法でi)っても良いが、数Xの膜厚制御性が必
要となるため、MBB法やMOOVD(1’vieta
l Organic ChemicalVaporDe
position)法が適している。中でもM IJ
E法は原料の入った炉から出る分子線をシャッタの開閉
だけで制御できるため、遷移層が数Aの急峻な界面を容
易に実現することができ、さらにコンビーータによる自
動制御が容易であるため最も適した方法である。
本発明Jこより禁止帯幅が広いP型半導体を実現できる
ので本発明を用いたP型半導体により青色発光の光デバ
イスや高温での使用が可能なトランスポートデバイスが
実現できる。
ので本発明を用いたP型半導体により青色発光の光デバ
イスや高温での使用が可能なトランスポートデバイスが
実現できる。
第1図は従来構造のP型不純物をドープした半導体の模
式的断面図、第2.第3図は本発明の第(9) 1、第2の実施例を示した模式的断面図である。 1・・・半導体基板、 2・・・P型不純物、3・・・
化合物半導体層、 4・・・第1の半導体層、5・・・
第2の半導体層、 6・・・半導体層、7・・・絶縁体
層。 代理人り「理士内 原 晋 (10)
式的断面図、第2.第3図は本発明の第(9) 1、第2の実施例を示した模式的断面図である。 1・・・半導体基板、 2・・・P型不純物、3・・・
化合物半導体層、 4・・・第1の半導体層、5・・・
第2の半導体層、 6・・・半導体層、7・・・絶縁体
層。 代理人り「理士内 原 晋 (10)
Claims (1)
- 正孔波長以下の厚さを有する第1の固体層と、該第1の
固体層より電子親和力と禁止帯幅との和が大きく第1の
固体層中の正孔がトンネル可能な厚さを有する第2の固
体層の少なくとも2種類の固体層を交互に積層した積層
構造を持ち、P型不純物が第1の固体層だけに含有され
ていることを特徴とする超格子の構造。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58159813A JPS6052067A (ja) | 1983-08-31 | 1983-08-31 | 超格子の構造 |
US06/624,333 US4695857A (en) | 1983-06-24 | 1984-06-25 | Superlattice semiconductor having high carrier density |
DE8484304300T DE3480631D1 (de) | 1983-06-24 | 1984-06-25 | Halbleiterstruktur mit uebergitter hoher traegerdichte. |
EP84304300A EP0133342B1 (en) | 1983-06-24 | 1984-06-25 | A superlattice type semiconductor structure having a high carrier density |
US07/043,046 US4792832A (en) | 1983-06-24 | 1987-04-24 | Superlattice semiconductor having high carrier density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58159813A JPS6052067A (ja) | 1983-08-31 | 1983-08-31 | 超格子の構造 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6052067A true JPS6052067A (ja) | 1985-03-23 |
JPH037139B2 JPH037139B2 (ja) | 1991-01-31 |
Family
ID=15701806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58159813A Granted JPS6052067A (ja) | 1983-06-24 | 1983-08-31 | 超格子の構造 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6052067A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61144078A (ja) * | 1984-12-17 | 1986-07-01 | Toshiba Corp | 半導体発光素子 |
JPS6294923A (ja) * | 1985-10-22 | 1987-05-01 | Nec Corp | 半導体材料への不純物ド−ピング方法 |
JPS62179714A (ja) * | 1986-02-04 | 1987-08-06 | Sony Corp | 化合物半導体 |
JPH01296679A (ja) * | 1988-05-24 | 1989-11-30 | Nippon Telegr & Teleph Corp <Ntt> | 半導体装置 |
JP2021027242A (ja) * | 2019-08-07 | 2021-02-22 | キヤノン株式会社 | 光電変換装置、放射線撮像システム、光電変換システム、移動体 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5742116A (en) * | 1980-08-26 | 1982-03-09 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor superlattice crystal |
JPS57164573A (en) * | 1982-02-26 | 1982-10-09 | Hitachi Ltd | Semiconductor device |
JPS5815892A (ja) * | 1981-07-17 | 1983-01-29 | 松下電器産業株式会社 | 一槽式脱水洗濯機 |
-
1983
- 1983-08-31 JP JP58159813A patent/JPS6052067A/ja active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5742116A (en) * | 1980-08-26 | 1982-03-09 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor superlattice crystal |
JPS5815892A (ja) * | 1981-07-17 | 1983-01-29 | 松下電器産業株式会社 | 一槽式脱水洗濯機 |
JPS57164573A (en) * | 1982-02-26 | 1982-10-09 | Hitachi Ltd | Semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61144078A (ja) * | 1984-12-17 | 1986-07-01 | Toshiba Corp | 半導体発光素子 |
JPS6294923A (ja) * | 1985-10-22 | 1987-05-01 | Nec Corp | 半導体材料への不純物ド−ピング方法 |
JPS62179714A (ja) * | 1986-02-04 | 1987-08-06 | Sony Corp | 化合物半導体 |
JPH01296679A (ja) * | 1988-05-24 | 1989-11-30 | Nippon Telegr & Teleph Corp <Ntt> | 半導体装置 |
JP2021027242A (ja) * | 2019-08-07 | 2021-02-22 | キヤノン株式会社 | 光電変換装置、放射線撮像システム、光電変換システム、移動体 |
Also Published As
Publication number | Publication date |
---|---|
JPH037139B2 (ja) | 1991-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4695857A (en) | Superlattice semiconductor having high carrier density | |
US4992837A (en) | Light emitting semiconductor device | |
JPH0834314B2 (ja) | 超格子デバイス | |
JPH0821748B2 (ja) | 半導体レ−ザ装置 | |
US4794606A (en) | Opto-electronic device | |
US4841531A (en) | Semiconductor laser device | |
EP0176087B1 (en) | Semiconductor superlattice structure | |
US5475700A (en) | Laser diode with electron and hole confinement and barrier layers | |
US5490953A (en) | Semiconductor compound | |
JPH0315334B2 (ja) | ||
JPS6052067A (ja) | 超格子の構造 | |
US5989339A (en) | MBE system and semiconductor device fabricated, using same | |
JPH0632340B2 (ja) | 半導体発光素子 | |
US4833507A (en) | Electron emission device | |
US5377214A (en) | Tensile strained blue green II-VI quantum well Laser | |
JP2000058964A (ja) | 量子井戸構造光半導体素子 | |
JP3768790B2 (ja) | 量子ドット構造体及びそれを有する半導体デバイス装置 | |
US9929293B1 (en) | Superlattice photodetector having improved carrier mobility | |
US5302847A (en) | Semiconductor heterostructure having a capping layer preventing deleterious effects of As-P exchange | |
Usami et al. | Gas source molecular beam epitaxy growth of GaAs/InGaP superlattice as optical confinement layers in 0.98 μm InGaAs/InGaP strained quantum well lasers | |
US5491709A (en) | Semiconductor laser device | |
JPH06204457A (ja) | 多重量子障壁ショットキー接合素子 | |
JPH0851251A (ja) | 光半導体装置 | |
JPH02133979A (ja) | 半導体発光素子 | |
JPH07131118A (ja) | 短波長発光素子 |