JPS6052008A - Method of producing ceramic dielectric material for capacitor - Google Patents

Method of producing ceramic dielectric material for capacitor

Info

Publication number
JPS6052008A
JPS6052008A JP16094483A JP16094483A JPS6052008A JP S6052008 A JPS6052008 A JP S6052008A JP 16094483 A JP16094483 A JP 16094483A JP 16094483 A JP16094483 A JP 16094483A JP S6052008 A JPS6052008 A JP S6052008A
Authority
JP
Japan
Prior art keywords
capacitor
ceramic dielectric
dielectric material
ceramic
producing ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16094483A
Other languages
Japanese (ja)
Inventor
米田 毅彦
栄田 正孝
洋一 福島
多木 宏光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16094483A priority Critical patent/JPS6052008A/en
Publication of JPS6052008A publication Critical patent/JPS6052008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルミナ(局tos )またはフォルステラ
イト(2Mg0−8iO□)を主成分とする、空孔キの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a porous material whose main component is alumina (Tos) or forsterite (2Mg0-8iO□).

従来例の構成と問題点 マイクロチップコンデンサは、微小回路素子用として作
られるため、厚さは200μm以下で、−辺の大きさも
500μm以下が主流であるチップコンデンサのことで
ある。製法としては誘電体セラミックより切断、研摩な
どの機械加工によりチップ化する方法と、誘電体を湿式
成型により厚さを調整し生シートを作製し、前記シート
を焼成後切断によりチップ化する方法がある。
Structure and Problems of Conventional Examples Since microchip capacitors are manufactured for use in microcircuit elements, they are typically chip capacitors with a thickness of 200 μm or less and a negative side size of 500 μm or less. There are two manufacturing methods: one is to cut the dielectric ceramic into chips by machining such as cutting and polishing, and the other is to wet-form the dielectric to adjust the thickness to create a green sheet, and then bake the sheet and then cut it into chips. be.

従来の大気圧下での焼成によるマイクロチップコンデン
サの製法では、機械加工時のチッピング、割れが発生し
、また加工歪みによりQの大幅な低下が起こる。またボ
アの存在により誘電率及び耐電圧特性が低下するなどの
欠点を有する。
In the conventional manufacturing method of microchip capacitors by firing under atmospheric pressure, chipping and cracking occur during machining, and machining distortion causes a significant decrease in Q. Furthermore, the presence of the bore reduces the dielectric constant and withstand voltage characteristics.

発明の目的 本発明は従来の欠点を除去し、理論密度99%TD以上
の高密度で、高い耐電圧特性、低い誘電損失、さらに優
れた機械特性を有するコンデンサ用セラミック誘電体の
製造方法を得るにある。
Purpose of the Invention The present invention eliminates the conventional drawbacks and provides a method for manufacturing a ceramic dielectric for capacitors that has a high density of 99% TD or more of theoretical density, high withstand voltage characteristics, low dielectric loss, and excellent mechanical properties. It is in.

発明の構成 本発明はコンデンサ用セラミック誘電体の製造方法にお
いて、大気圧中で焼成したアルミナセラミックまたはフ
ォルステライトセラミックを熱間静水圧プレスし、理論
密度99%TD以上としたことを特徴とする特 遣方法を一実施例とともに説明する。
Structure of the Invention The present invention provides a method for manufacturing a ceramic dielectric for a capacitor, characterized in that alumina ceramic or forsterite ceramic fired at atmospheric pressure is hot isostatically pressed to have a theoretical density of 99% TD or more. The method for transferring the data will be explained with an example.

試料の調整工程としては市販の工業川原層(純度99%
以上) (7) he2o3、Mg0 、2Mg0 ・
5i02、BaOO3、BaZrO3粉末を第1表の組
成比になるよう配合し、不純物混入時11二のためつ1
ノタン内張ポツトを用いて湿式混合し乾燥する。
The sample preparation process was carried out using commercially available industrial Kawahara layer (purity 99%).
(7) he2o3, Mg0, 2Mg0 ・
5i02, BaOO3, and BaZrO3 powders were blended to the composition ratio shown in Table 1, and when impurities were mixed in,
Wet mix using a Notan-lined pot and dry.

第 1 表 (重量%) A 1 M203M g 0 99.8 0.2 A 2 2Mg0・SiO,、BaO03BaZrO3
9613 前記乾燥体にポリビニルアルコール水溶液をバインダに
して混合し、32メツシユパスに整粒した。この整粒粉
を50 X 50 X 30 mmの角形に1 t/7
 の加■力で成形し、これらの成形体を第1表のA1に
ついては大気中1550℃、A2については大気中13
50℃の温度で焼成した。
Table 1 (% by weight) A 1 M203M g 0 99.8 0.2 A 2 2Mg0・SiO,, BaO03BaZrO3
9613 The dried product was mixed with an aqueous polyvinyl alcohol solution as a binder and sized into 32 mesh passes. This sized powder is made into a square shape of 50 x 50 x 30 mm by 1t/7
These molded bodies were molded at 1550°C in the air for A1 in Table 1, and at 13°C in the air for A2.
It was fired at a temperature of 50°C.

前記焼成体を第2表の条件にてH工P(熱間静水圧プレ
ス)した。
The fired body was subjected to H-pressing (hot isostatic pressing) under the conditions shown in Table 2.

第 2 表 H工P温度 H工P圧力 雰囲気 A 1 1450℃ 1.500atm ArA 2 
1300℃ 11000at Arこのようにして得ら
れた誘電体磁器素体を内周刃切断機にて厚さ0.2 +
mnにスライスし、次に外周刃を用い0.5 X 0.
5 Nn角に切断しチップを得る。
Table 2 H work P temperature H work P pressure Atmosphere A 1 1450°C 1.500 atm ArA 2
1300°C 11000at Ar The dielectric porcelain body thus obtained was cut to a thickness of 0.2 + by an internal blade cutting machine.
Slice into 0.5×0.mm slices using a peripheral blade.
Cut into 5Nn squares to obtain chips.

前記チップにAu蒸着をし、マイクロチップコンデンサ
とする。前記チップコンデンサを用い、比誘電率εr 
(測定周波数i MH2)、Q(I MH2)、昇圧破
壊電比vb (V/mm )を測定した。また、セラミ
ックについては、切断時のカケ不良率、ボア分布、理論
密度比を測定した。結果を第3表に示す。比較試料はH
工P処理しないものである。
Au is deposited on the chip to form a microchip capacitor. Using the chip capacitor, the relative dielectric constant εr
(Measurement frequency i MH2), Q (I MH2), and boost breakdown voltage ratio vb (V/mm ) were measured. In addition, for ceramics, we measured the chip failure rate during cutting, bore distribution, and theoretical density ratio. The results are shown in Table 3. The comparison sample is H
It is not treated with P.

第 3 表 本発明品は、従来品と比較しεrにて約20%、QKて
約150〜200%、vbにて約20%アップするなど
優れた特性を有する。理論密度比が99%TD未満の場
合は、εrが低下するとともに機械加工時のカケ、チッ
ピングなどが発生し、マイクロチップコンデンサには不
適である。
Table 3 The products of the present invention have excellent properties, such as an increase in εr of about 20%, QK of about 150 to 200%, and vb of about 20% compared to conventional products. When the theoretical density ratio is less than 99% TD, εr decreases and chips and chipping occur during machining, making it unsuitable for microchip capacitors.

発明の効果 本発明により次のような効果が生ずる。Effect of the invention The present invention provides the following effects.

(1) 理論密度比99%TD以上の高密度セラミック
が得られる。
(1) A high-density ceramic with a theoretical density ratio of 99% TD or more can be obtained.

(2) コンデンサ特性が向上し、安定化する。(2) Capacitor characteristics are improved and stabilized.

(3) 機械特性が向上し、加工時の歩留りが向上する
(3) Improved mechanical properties and yield during processing.

以上のように、本発明のマイクロチップコンデンサの製
造方法は非常に優れた性能を備えており、工業的量産化
においても著しく安定であり、産業上利用し得る効果を
生ずる。
As described above, the method for manufacturing a microchip capacitor of the present invention has extremely excellent performance, is extremely stable even in industrial mass production, and produces effects that can be used industrially.

特許出願人 松下電器産業株式会社 °代理人弁理士 阿 部 功Patent applicant: Matsushita Electric Industrial Co., Ltd. °Representative Patent Attorney Isao Abe

Claims (1)

【特許請求の範囲】[Claims] 大気圧中で焼成したアルミナセラミックまたはフォルス
テライトセラミックを熱間静水圧プレスし、理論密度9
9%TD以」二としたことを特徴とするコンデンサ用セ
ラミック誘電体の製造方法。
Alumina ceramic or forsterite ceramic fired at atmospheric pressure is hot isostatically pressed, and the theoretical density is 9.
A method for manufacturing a ceramic dielectric for a capacitor, characterized in that the ceramic dielectric has a TD of 9% or more.
JP16094483A 1983-09-01 1983-09-01 Method of producing ceramic dielectric material for capacitor Pending JPS6052008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16094483A JPS6052008A (en) 1983-09-01 1983-09-01 Method of producing ceramic dielectric material for capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16094483A JPS6052008A (en) 1983-09-01 1983-09-01 Method of producing ceramic dielectric material for capacitor

Publications (1)

Publication Number Publication Date
JPS6052008A true JPS6052008A (en) 1985-03-23

Family

ID=15725588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16094483A Pending JPS6052008A (en) 1983-09-01 1983-09-01 Method of producing ceramic dielectric material for capacitor

Country Status (1)

Country Link
JP (1) JPS6052008A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985544A (en) * 1972-12-22 1974-08-16
JPS4992539A (en) * 1972-12-28 1974-09-04
JPS565376A (en) * 1979-06-21 1981-01-20 Suwa Seikosha Kk Manufacture of ceramic dielectric body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985544A (en) * 1972-12-22 1974-08-16
JPS4992539A (en) * 1972-12-28 1974-09-04
JPS565376A (en) * 1979-06-21 1981-01-20 Suwa Seikosha Kk Manufacture of ceramic dielectric body

Similar Documents

Publication Publication Date Title
EP0210874A1 (en) Thin tape for dielectric materials
JPS60195063A (en) Manufacture of ceramics
CN105541319A (en) Microwave dielectric ceramic material with medium-high dielectric constant and preparation method thereof
JPS6052008A (en) Method of producing ceramic dielectric material for capacitor
JP3302594B2 (en) Multilayer electronic component and method of manufacturing the same
JP3436770B2 (en) Method for producing microwave dielectric porcelain composition
JP4017220B2 (en) BaxSr1-xTiO3-y target material for sputtering
JPS6049149B2 (en) Manufacturing method of white alumina/ceramic for electronic parts
SU697467A1 (en) Ceramic material
JPS63222043A (en) Low-temperature sintering ceramic
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JPH0541587B2 (en)
CN113173586B (en) Cordierite microcrystalline powder and preparation method thereof, and alumina ceramic substrate and preparation method thereof
JP7280059B2 (en) Method for manufacturing electrode-embedded member
JP3083638B2 (en) How to make forsterite porcelain
JPH07109726B2 (en) Dielectric porcelain composition
JP3243832B2 (en) Manufacturing method of oxide dielectric porcelain
JP4163053B2 (en) Dielectric material and manufacturing method thereof
JPH05182521A (en) Manufacture of bzt sintered body
JP2658581B2 (en) Oxide semiconductor composition
JP3914635B2 (en) Manufacturing method of ceramic electronic component
TW408090B (en) Low-fire dielectric ceramic compositions
JPH034503B2 (en)
CN118206390A (en) Method for connecting alumina ceramics
JPS63109050A (en) Ceramic substrate