JP7280059B2 - Method for manufacturing electrode-embedded member - Google Patents

Method for manufacturing electrode-embedded member Download PDF

Info

Publication number
JP7280059B2
JP7280059B2 JP2019030679A JP2019030679A JP7280059B2 JP 7280059 B2 JP7280059 B2 JP 7280059B2 JP 2019030679 A JP2019030679 A JP 2019030679A JP 2019030679 A JP2019030679 A JP 2019030679A JP 7280059 B2 JP7280059 B2 JP 7280059B2
Authority
JP
Japan
Prior art keywords
metal
embedded
manufacturing
electrode
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019030679A
Other languages
Japanese (ja)
Other versions
JP2019208006A (en
Inventor
淳 土田
優棋 薮花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of JP2019208006A publication Critical patent/JP2019208006A/en
Application granted granted Critical
Publication of JP7280059B2 publication Critical patent/JP7280059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、セラミックスからなる板状の基材に内部電極が埋設された電極埋設部材の製造方法に関する。 The present invention relates to a method of manufacturing an electrode-embedded member in which internal electrodes are embedded in a plate-like substrate made of ceramics.

従来、セラミックスからなる板状の基材に内部電極が埋設された電極埋設部材が知られている。電極埋設部材では、端子を内部電極に接続させるための挿入穴を基材に穿設するときに、内部電極を傷つけないように内部電極と端子とを接続する個所に接続部材を予め配置しておき、接続部材によって、内部電極が傷つくことを防止するなどの対策が必要となる。このような、内部電極が埋設された電極埋設部材として、セラミックス基材に埋設された内部電極に端子を接続するための接続部材が設けられた電極埋設部材が提案されている(例えば、特許文献1)。 2. Description of the Related Art Conventionally, there has been known an electrode-embedded member in which an internal electrode is embedded in a plate-like base material made of ceramics. In the electrode-embedded member, the connection member is arranged in advance at the location where the internal electrode and the terminal are to be connected so as not to damage the internal electrode when an insertion hole for connecting the terminal to the internal electrode is drilled in the substrate. Therefore, it is necessary to take measures such as preventing the internal electrodes from being damaged by the connection member. As such an electrode-embedded member in which an internal electrode is embedded, an electrode-embedded member provided with a connection member for connecting a terminal to an internal electrode embedded in a ceramic substrate has been proposed (see, for example, Patent Document 1).

特開2010-34514号公報JP 2010-34514 A

しかし、特許文献1に開示された製造方法による部材では、ロウ付けなど製造プロセス中の熱の影響により、及び、使用時の温度変化が繰り返されることにより、基材と接続部材との熱膨張率の違いから基材にクラックが入り、基材の絶縁性能が担保されない虞があった。 However, in the member manufactured by the manufacturing method disclosed in Patent Document 1, due to the influence of heat during the manufacturing process such as brazing, and due to repeated temperature changes during use, the coefficient of thermal expansion between the base material and the connecting member There is a risk that cracks will occur in the base material due to the difference in the thickness of the base material, and that the insulation performance of the base material will not be ensured.

本発明は、以上の点に鑑み、基材のクラックの不具合を抑制することができる電極埋設部材の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing an electrode-embedded member that can suppress problems such as cracks in the base material.

[1]上記目的を達成するため、本発明の電極埋設部材の製造方法は、
表面及び裏面を有し、セラミックスからなる板状の基材と、
前記基材の表面に沿って延在し、前記基材に埋設される内部電極と、
前記内部電極に重ねて配置される接続部材と、
前記基材の裏面から前記基材内部の前記接続部材の端面まで穿設され、前記接続部材よりも径が小さい端子穴と、
前記端子穴に配置され、前記接続部材と接続される端子と、
を備える電極埋設部材の製造方法であって、
複数の金属粒子を含む粉末原料を加圧成形することにより前記接続部材となる金属成形体を準備する準備工程と、
前記内部電極及び前記金属成形体が埋設されたセラミックス体を作製するセラミックス体作製工程と、
前記内部電極及び前記金属成形体が埋設されたセラミックス体を焼成することにより内部に金属の存在しない空間を有する前記接続部材が埋設された前記基材を作製する基材作製工程と、
を有することを特徴とする。
[1] In order to achieve the above object, the method for manufacturing an electrode-embedded member of the present invention comprises:
a plate-shaped substrate having a front surface and a back surface and made of ceramics;
an internal electrode extending along the surface of the base material and embedded in the base material;
a connection member arranged to overlap the internal electrode;
a terminal hole drilled from the back surface of the base material to the end surface of the connection member inside the base material and having a smaller diameter than the connection member ;
a terminal arranged in the terminal hole and connected to the connection member;
A method for manufacturing an electrode-embedded member comprising
A preparatory step of preparing a metal compact to be the connection member by pressure-molding a powder raw material containing a plurality of metal particles;
a ceramic body manufacturing step of manufacturing a ceramic body in which the internal electrode and the metal molded body are embedded;
a substrate manufacturing step of firing the ceramic body in which the internal electrode and the metal molded body are embedded to manufacture the substrate in which the connection member having a space in which no metal exists is embedded;
characterized by having

[2]また、本発明の他の態様の電極埋設部材の製造方法は、
表面及び裏面を有し、セラミックスからなる板状の基材と、
前記基材の表面に沿って延在し、前記基材に埋設される内部電極と、
前記内部電極に重ねて配置される接続部材と、
前記基材の裏面から前記基材内部の前記基材の端面まで穿設され、前記接続部材よりも径が小さい端子穴と、
前記端子穴に配置され、前記接続部材と接続される端子と、
を備える電極埋設部材の製造方法であって、
複数の金属粒子を含む粉末原料を加圧成形した金属成形体を仮焼することにより前記接続部材となる金属仮焼体を準備する準備工程と、
前記内部電極及び前記金属仮焼体が埋設されたセラミックス体を作製するセラミックス体作製工程と、
前記内部電極及び前記金属仮焼体が埋設されたセラミックス体を焼成することにより内部に金属の存在しない空間を有する前記接続部材が埋設された前記基材を作製する基材作製工程と、
を有することを特徴とする。
[2] A method for manufacturing an electrode-embedded member according to another aspect of the present invention comprises:
a plate-shaped substrate having a front surface and a back surface and made of ceramics;
an internal electrode extending along the surface of the base material and embedded in the base material;
a connection member arranged to overlap the internal electrode;
a terminal hole drilled from the rear surface of the base material to an end surface of the base material inside the base material and having a diameter smaller than that of the connection member ;
a terminal arranged in the terminal hole and connected to the connection member;
A method for manufacturing an electrode-embedded member comprising
a preparation step of preparing a metal calcined body to be the connection member by calcining a metal compact obtained by pressure-molding a powder raw material containing a plurality of metal particles;
a ceramic body manufacturing step of manufacturing a ceramic body in which the internal electrode and the metal calcined body are embedded;
a substrate manufacturing step of firing the ceramic body in which the internal electrode and the metal calcined body are embedded, thereby manufacturing the substrate in which the connection member having a metal-free space is embedded;
characterized by having

かかる製造方法によれば、予め金属成形体または金属仮焼体を製作することができるため、金属成形体または金属仮焼体を焼成してなる多孔体状の接続部材の形態(粒径、気孔率、平均気孔径などの金属粒子の焼結組織)及び、別の成分を金属成形体または金属仮焼体に含有させることによって接続部材と基材との密着性や熱膨張係数の調整が可能になり、その結果、ロウ付け、ホットプレス法のような製造プロセス中の熱を受ける場合、及び、電極埋設部材の使用時の熱サイクルの熱を受ける場合において基材のクラックを抑制することが容易になる。
更に、金属成形体の金属粒子と金属粒子とが適度に焼結することにより導電性などの電気的特性の低下が抑制された電極埋設部材を製造することができる。
更に接続部材の空間(開気孔)に基材を構成するセラミックスが侵入し、より接続部材と基材との密着力が向上した電極埋設部材を製造することができる。
According to this manufacturing method, since the metal molded body or the metal calcined body can be manufactured in advance, the shape (particle diameter, pore size, The sintered structure of metal particles such as sintering ratio and average pore diameter), and by adding other components to the metal compact or metal calcined body, it is possible to adjust the adhesion between the connecting member and the base material and the thermal expansion coefficient. As a result, it is possible to suppress cracks in the base material when subjected to heat during manufacturing processes such as brazing and hot pressing, and when subjected to heat from thermal cycles during use of the electrode-embedded member. become easier.
Furthermore, the electrode-embedded member can be produced in which deterioration of electrical properties such as electrical conductivity is suppressed by appropriately sintering the metal particles of the metal compact.
Furthermore, the ceramics constituting the substrate penetrate into the spaces (open pores) of the connection member, and an electrode-embedded member can be manufactured in which the adhesion between the connection member and the substrate is further improved.

[3]また、本発明の電極埋設部材において、前記準備工程では、粒度の異なる少なくとも2種類の金属粒子を混合することにより前記粉末原料を準備することが好ましい。 [3] Further, in the electrode-embedded member of the present invention, it is preferable that in the preparation step, the powder raw material is prepared by mixing at least two types of metal particles having different particle sizes.

この工程により、金属成形体の焼結性を調節できるとともに、粒度の大きい金属により空間(開気孔)を形成すると共に粒度の小さい金属によりある程度緻密化させて、2種類の金属粒子を含有させることによって基材との密着性や熱膨張係数をより調整しやすくなり、その結果、ロウ付け、ホットプレス法のような製造プロセス中の熱を受ける場合、及び、使用時の熱サイクルの熱を受ける場合において基材のクラックをより抑制することできる。 By this process, the sinterability of the metal compact can be adjusted, and at the same time, spaces (open pores) are formed by the metal with a large grain size, and the metal with a small grain size is densified to some extent to contain two types of metal particles. makes it easier to adjust the adhesion to the base material and the coefficient of thermal expansion. In some cases, cracks in the substrate can be further suppressed.

[4]また、本発明の電極埋設部材において、前記準備工程は、前記金属成形体に一種類以上の前記金属粒子を使用し、一つの種類の前記金属粒子の、粒径が1~150μmであり、全ての種類の前記金属粒子に占める体積割合が80~100%であることが好ましい。 [4] In the electrode-embedded member of the present invention, the preparing step uses one or more types of metal particles in the metal compact, and one type of metal particles has a particle size of 1 to 150 μm. It is preferable that the volume ratio of all kinds of metal particles is 80 to 100%.

この工程により、電極埋設部材を温度差が大きいなどのより厳しい条件下で使用しても、基材にクラックが入ることを抑制することできる。 By this process, even if the electrode-embedded member is used under more severe conditions such as a large temperature difference, it is possible to suppress cracks in the base material.

本発明の電極埋設部材を模式的に示す説明図である。1 is an explanatory view schematically showing an electrode-embedded member of the present invention; FIG. 本発明の電極埋設部材の作製方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the electrode embedded member of this invention. ホットプレス焼成前の金属粒子の状態を示す説明図である。FIG. 4 is an explanatory diagram showing the state of metal particles before hot-press firing; ホットプレス焼成後の金属粒子の状態を示す説明図である。FIG. 4 is an explanatory diagram showing the state of metal particles after hot-press firing;

以下、図面を用いて本発明の実施形態を説明する。なお、図面は、電極埋設部材1を概念的(模式的)に示すものとする。 Embodiments of the present invention will be described below with reference to the drawings. The drawing conceptually (schematically) shows the electrode-embedded member 1 .

図1に示すように、電極埋設部材1は、表面2a及び裏面2bを有し、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、炭化窒素(SiC)、窒化珪素(Si)などのセラミックスからなる板状の基材2と、基材2の表面2aと平行に延在し、基材2に埋設される内部電極3と、基材2の表面2aに沿って円盤状に延在する内部電極3に重ねて配置される接続部材4と、を備える。 As shown in FIG. 1, the electrode-embedded member 1 has a front surface 2a and a back surface 2b, and is made of aluminum oxide ( Al2O3 ), aluminum nitride ( AlN ), nitrogen carbide (SiC), silicon nitride ( Si3N4 ) . ), an internal electrode 3 extending in parallel with the surface 2a of the substrate 2 and embedded in the substrate 2, and a disk-shaped substrate along the surface 2a of the substrate 2 and a connecting member 4 arranged overlapping the internal electrode 3 extending to the inner electrode 3 .

基材2には、この基材2の裏面2bから基材2内部の接続部材4の端面まで穿設される端子穴5が形成されている。また、電極埋設部材1は、端子穴5に配置されると共に円盤状の緩衝部材6を介して接続部材4に接続される棒状の端子7とを備えている。緩衝部材6と端子7とは、ロウ付けなどによって接続部材4に接合されている。 A terminal hole 5 is formed in the base material 2 so as to extend from the rear surface 2b of the base material 2 to the end face of the connection member 4 inside the base material 2. As shown in FIG. The electrode-embedded member 1 also includes a rod-shaped terminal 7 that is arranged in the terminal hole 5 and connected to the connecting member 4 via a disk-shaped cushioning member 6 . The buffer member 6 and the terminal 7 are joined to the connection member 4 by brazing or the like.

内部電極3及び接続部材4は、タングステン、モリブデン又はこれらを主成分とする合金からなる。端子5は、円柱状を呈し、コバール等の低熱膨張金属合金やニッケル、チタン、銅又はこれらを主成分とする合金からなり、接続部材4にロウ付けによって接合され、接続部材4と電気的に接続されている。 The internal electrodes 3 and connecting members 4 are made of tungsten, molybdenum, or an alloy containing these as main components. The terminal 5 has a cylindrical shape and is made of a low thermal expansion metal alloy such as Kovar, nickel, titanium, copper, or an alloy containing these as main components. It is connected.

端子穴5の径は5mmである。端子7は、直径が4.8mmであり、長さが20mmである。端子7と、端子穴5を画定する基材2の内側面11との間には、隙間12が形成されている。隙間12の幅は、0.1mmである。 The diameter of the terminal hole 5 is 5 mm. Terminal 7 has a diameter of 4.8 mm and a length of 20 mm. A gap 12 is formed between the terminal 7 and an inner surface 11 of the substrate 2 defining the terminal hole 5 . The width of the gap 12 is 0.1 mm.

次に電極埋設部材1の製造方法について説明する。電極埋設部材1の製造方法は、金属成形体4aまたは金属仮焼体を準備する準備工程と、セラミックス体2cを作製するセラミックス体作製工程と、基材2を作製する基材作製工程と、を少なくとも含む。なお、金属成形体4aまたは金属仮焼体を準備する工程の前に、粒度の異なる少なくとも2種類の金属粒子14a、14bを混合することにより粉末原料15を準備する工程を実施してもよい。 Next, a method for manufacturing the electrode-embedded member 1 will be described. The method of manufacturing the electrode-embedded member 1 includes a preparation step of preparing the metal molded body 4a or the metal calcined body, a ceramic body manufacturing step of manufacturing the ceramic body 2c, and a base material manufacturing process of manufacturing the base material 2. At least include. Before the step of preparing the metal molded body 4a or the metal calcined body, a step of preparing the powder raw material 15 by mixing at least two types of metal particles 14a and 14b with different particle sizes may be performed.

[粉末原料15を準備する工程]
図2A、図3に示すように、粉末原料15を準備する工程は、粒度の異なる少なくとも2種類の金属粒子14a、14bを混合することにより粉末原料15を得る。なお、実施形態では、粉末原料15は、2種類の金属粒子14a、14bを混合したが、これに限定されず、1種類の金属粒子14のみとする形態、3種類以上の金属粒子14を混合する形態としてもよい。
[Step of preparing powder raw material 15]
As shown in FIGS. 2A and 3, the step of preparing the powder raw material 15 obtains the powder raw material 15 by mixing at least two types of metal particles 14a and 14b with different particle sizes. In the embodiment, the powder raw material 15 is a mixture of two types of metal particles 14a and 14b, but is not limited to this. It is good also as a form which carries out.

[金属成形体4aまたは金属仮焼体を準備する準備工程]
図2Aに示すように、金属成形体4aを準備する工程は、図3に示す複数の金属粒子14を含む粉末原料15を加圧成形することにより接続部材4となる金属成形体4aを得る。
[Preparation step for preparing metal compact 4a or metal calcined body]
As shown in FIG. 2A, the step of preparing the metal molded body 4a obtains the metal molded body 4a to be the connection member 4 by pressure-molding the powder raw material 15 containing the plurality of metal particles 14 shown in FIG.

詳細には、図3に示す複数の金属粒子14にバインダー16が添加された粉末原料15を一軸プレスの金型で加圧成形することにより、接続部材4(図2D参照)となる直径10mm、厚み0.5mmの円盤状の金属成形体4aを得る。金属粒子14は、粒径の異なる、第1の金属粒子14aと、第2の金属粒子14bとを含む。なお、バインダー16を除去する目的で金型成形体4aを大気雰囲気または窒素雰囲気で200℃~600℃の温度範囲で脱脂する脱脂工程を行なってもよい。 Specifically, a powder raw material 15 in which a binder 16 is added to a plurality of metal particles 14 shown in FIG. A disk-shaped metal compact 4a having a thickness of 0.5 mm is obtained. The metal particles 14 include first metal particles 14a and second metal particles 14b having different particle sizes. For the purpose of removing the binder 16, a degreasing step may be performed in which the molded body 4a is degreased at a temperature of 200° C. to 600° C. in an air atmosphere or a nitrogen atmosphere.

なお、実施形態では、金属成形体4aは加圧成形のみ行ったが、金属成形体4aに対して窒素、アルゴン、又は真空雰囲気炉で、例えば、1000℃以上1800℃以下の温度条件で仮焼成を行い、金属成形体4aを仮焼体としても差し支えない。これが複数の金属粒子を含む粉末原料を加圧成形した金属成形体を仮焼することにより接続部材となる金属仮焼体を準備する準備工程に該当する。
なお、この準備工程では、研削や研磨加工を行うことにより金属仮焼体の外径や厚みを調整してもよい。
In the embodiment, the metal compact 4a is only pressure-molded, but the metal compact 4a is calcined in a nitrogen, argon, or vacuum atmosphere furnace under a temperature condition of, for example, 1000° C. or higher and 1800° C. or lower. may be performed and the metal molded body 4a may be used as a calcined body. This corresponds to a preparatory step of preparing a metal calcined body that will be a connecting member by calcining a metal molded body obtained by pressure-molding a powder raw material containing a plurality of metal particles.
In this preparatory step, the outer diameter and thickness of the metal calcined body may be adjusted by grinding or polishing.

[セラミックス体2cを作製するセラミックス体作製工程]
図2Bに示すように、セラミックス体2cを作製する工程は、内部電極3及び金属成形体4aが埋設されたセラミックス体2cを得る。
[Ceramic Body Manufacturing Step for Manufacturing Ceramic Body 2c]
As shown in FIG. 2B, the process of producing the ceramic body 2c obtains the ceramic body 2c in which the internal electrode 3 and the metal compact 4a are embedded.

詳細には、絶縁層を形成する。窒化アルミニウム粉末95質量%、酸化イットリウム粉末5質量%からなる粉末混合物を得て、これを型に充填して一軸加圧処理を施した。これにより、直径340mm、厚さ5mmの第一層(絶縁層)を形成した。 Specifically, an insulating layer is formed. A powder mixture consisting of 95% by mass of aluminum nitride powder and 5% by mass of yttrium oxide powder was obtained, filled in a mold and subjected to uniaxial pressure treatment. Thus, a first layer (insulating layer) having a diameter of 340 mm and a thickness of 5 mm was formed.

次に内部電極3を設置する。第一層の上に、内部電極3となる直径290mmのモリブデン製の箔(厚み0.1mm)を載置した。内部電極3の上にタングステン製、直径10mm、厚み0.5mmの円盤状の金属成形体4aまたは金属仮焼体を載せる。金属成形体4aまたは金属仮焼体は、1つの基材2に20箇所設けた。内部電極3に金属成形体4aまたは金属仮焼体を接続するときには、金属成形体4aまたは金属仮焼体が重ねられることとなる内部電極3の部分にタングステンペーストなどの導電性部材を塗布する。 Next, the internal electrodes 3 are installed. A molybdenum foil (thickness: 0.1 mm) having a diameter of 290 mm and serving as the internal electrode 3 was placed on the first layer. On the internal electrode 3, a disc-shaped metal compact 4a or metal calcined body made of tungsten and having a diameter of 10 mm and a thickness of 0.5 mm is placed. Twenty metal compacts 4 a or metal calcined bodies were provided on one substrate 2 . When connecting the metal molded body 4a or the metal calcined body to the internal electrode 3, a conductive member such as tungsten paste is applied to the portion of the internal electrode 3 where the metal molded body 4a or the metal calcined body is to be overlapped.

次に第二層を成形する。第一層の上に内部電極3及び金属成形体4aまたは金属仮焼体を覆い隠すようにセラミックス粉末を充填して一軸加圧処理し第二層の成形体とする。 A second layer is then molded. Ceramic powder is filled on the first layer so as to cover the internal electrode 3 and the metal molded body 4a or the metal calcined body, and is uniaxially pressed to form a second layer molded body.

次にヒータ電極を設置する。ウエハ保持装置としての電極埋設部材1自体を加熱する目的で所定のパターンに形成したモリブデンメッシュ(線径0.1mm、目開き50メッシュ)からなる発熱抵抗体を配置し、所定のヒータ用端子を接続する位置にヒータ端子用接続部材(タングステンペレット、直径10mm、厚さ0.5mm)を載せる。 Next, a heater electrode is installed. A heating resistor made of a molybdenum mesh (wire diameter: 0.1 mm, opening: 50 mesh) formed in a predetermined pattern is arranged for the purpose of heating the electrode-embedded member 1 itself as a wafer holding device, and a predetermined heater terminal is connected. A connecting member for a heater terminal (tungsten pellet, diameter 10 mm, thickness 0.5 mm) is placed on the connecting position.

次に、焼成前の成形体を形成する。ヒータ電極の上にセラミックス粉末を充填し一軸加圧処理して第三層を形成する。 Next, a compact before firing is formed. A ceramic powder is filled on the heater electrode and uniaxially pressed to form a third layer.

[基材2を作製する基材作製工程]
基材2を作製する工程は、内部電極3及び金属成形体4aまたは金属仮焼体が埋設されたセラミックス体2cを焼成することにより内部に金属の存在しない空間17(図4参照)を有する接続部材4が埋設された基材2を得る。金属成形体4aまたは金属仮焼体は、焼成されることで接続部材4になる。
詳細には、焼成工程を実施する。焼成工程は、第三層まで積層した積層体を10MPaの圧力で、焼成温度1800℃、焼成時間2時間でホットプレス焼成を行い、直径340mm、厚さ20mmのセラミックス焼結体を得た。
[Substrate production step for producing substrate 2]
In the process of producing the base material 2, the ceramic body 2c in which the internal electrode 3 and the metal molded body 4a or the metal calcined body is embedded is fired to form a space 17 (see FIG. 4) in which no metal is present. A base material 2 in which the member 4 is embedded is obtained. The metal molded body 4a or the metal calcined body becomes the connection member 4 by firing.
Specifically, a firing step is performed. In the sintering step, the laminate laminated up to the third layer was subjected to hot press sintering at a pressure of 10 MPa, a sintering temperature of 1800° C., and a sintering time of 2 hours to obtain a ceramic sintered body with a diameter of 340 mm and a thickness of 20 mm.

次に焼成後の加工工程を実施する。図2Cに示すように、焼成後の加工工程では、セラミックス焼結体の外面を研削、研磨加工し、内部電極3からの距離0.3mm、表面粗さRa0.4μmのウエハ載置面(表面2a)を形成した。 Next, a processing step after firing is performed. As shown in FIG. 2C, in the processing step after firing, the outer surface of the ceramic sintered body is ground and polished, and the wafer mounting surface (surface 2a) was formed.

次に端子7を接続する。焼成後のセラミックス基体の裏面2bから各接続部材4の位置に接続部材4まで到達するように穴あけ加工(直径5mm)を行い、裏面2bから接続部材4まで達する円柱状の端子穴5を形成する。端子穴5を画定する接続部材4の上に、Au-Ni系のロウ材を介して、直径4.8mm、厚み2mmのコバール製の緩衝部材6を配置する。次に、緩衝部材6の上にAu-Niに活性金属としてTiを添加したロウ材を介して直径4.8mm、長さ200mmの円柱状ニッケル製給電用の端子7を配置する。その後、真空炉により1050℃で加熱することによってロウ付けを行い、電極埋設部材1を完成させた。 Next, terminal 7 is connected. Holes (diameter 5 mm) are drilled from the rear surface 2b of the fired ceramic base so as to reach the positions of the connection members 4, and cylindrical terminal holes 5 extending from the rear surface 2b to the connection members 4 are formed. . A kovar cushioning member 6 having a diameter of 4.8 mm and a thickness of 2 mm is placed on the connection member 4 defining the terminal hole 5 via an Au—Ni brazing material. Next, a columnar nickel feed terminal 7 having a diameter of 4.8 mm and a length of 200 mm is placed on the buffer member 6 via a brazing material obtained by adding Ti as an active metal to Au--Ni. After that, brazing was performed by heating at 1050° C. in a vacuum furnace to complete the electrode-embedded member 1 .

なお、ロウ材に活性金属としてTiを添加してもよく、Ag系のロウ材を用いることも
できる。
Note that Ti may be added to the brazing material as an active metal, and an Ag-based brazing material may also be used.

次に、以上に述べた電極埋設部材1の製造法の効果を説明する。
かかる製造方法によれば、予め金属成形体4a(または金属仮焼体)を製作することができるため、金属成形体4aまたは金属仮焼体を焼成してなる多孔体状の接続部材4の形態(粒径、気孔率、平均気孔径などの金属粒子の焼結組織)や、別の成分を金属成形体4aまたは金属仮焼体に含有させることによって接続部材4と基材2との密着性や熱膨張係数の調整が可能になり、その結果、ロウ付け、ホットプレス法のような製造プロセス中の熱を受ける場合、及び、電極埋設部材1の使用時の熱サイクルの熱を受ける場合において基材2のクラックを抑制することが容易になる。
Next, the effect of the manufacturing method of the electrode-embedded member 1 described above will be described.
According to this manufacturing method, since the metal molded body 4a (or the metal calcined body) can be manufactured in advance, the configuration of the porous connecting member 4 obtained by firing the metal molded body 4a or the metal calcined body (sintered structure of metal particles such as particle size, porosity, average pore diameter) and other components are included in the metal molded body 4a or the metal calcined body to improve the adhesion between the connecting member 4 and the base material 2. and the thermal expansion coefficient can be adjusted. It becomes easier to suppress cracks in the base material 2 .

更に、金属成形体4aの金属粒子14と金属粒子14とが適度に焼結することにより導電性などの電気的特性の低下が抑制された電極埋設部材1を製造することができる。 Furthermore, the metal particles 14 of the metal molded body 4a are sintered appropriately to produce the electrode-embedded member 1 in which deterioration of electrical properties such as conductivity is suppressed.

更に接続部材4の空間17(開気孔)に基材2を構成するセラミックスが侵入し、より接続部材4と基材2との密着力が向上した電極埋設部材1を製造することができる。 Furthermore, the ceramics forming the base material 2 enter the spaces 17 (open pores) of the connection member 4, so that the electrode-embedded member 1 with improved adhesion between the connection member 4 and the base material 2 can be manufactured.

粒度の異なる少なくとも2種類の金属粒子14a、14bを混合する粉末原料15を準備する工程を含むことにより、2種類の金属粒子14a、14bを含有させることによって基材2との密着性や熱膨張係数をより調整しやすくなり、その結果、ロウ付け、ホットプレス法のような製造プロセス中の熱を受ける場合、及び、使用時の熱サイクルの熱を受ける場合において基材2のクラックをより抑制することできる。 By including the step of preparing the powder raw material 15 by mixing at least two types of metal particles 14a and 14b with different particle sizes, the two types of metal particles 14a and 14b are included to improve adhesion with the substrate 2 and thermal expansion. It becomes easier to adjust the coefficient, and as a result, cracks in the base material 2 are more suppressed when subjected to heat during manufacturing processes such as brazing and hot pressing, and when subjected to heat from heat cycles during use. can do

次に、接続部材4について説明する。
図4に示すように、接続部材4は、金属粒子14(図3参照)と金属粒子14とが一部で焼結し、金属粒子14がいわゆるネッキングして焼結している状態であり、内部に金属(金属粒子14)の存在しない空間17が形成されている。
Next, the connecting member 4 will be described.
As shown in FIG. 4, the connecting member 4 is in a state in which the metal particles 14 (see FIG. 3) and the metal particles 14 are partly sintered, and the metal particles 14 are so-called necked and sintered. A space 17 in which no metal (metal particles 14) exists is formed.

通常、金属粒子14の焼結時にはネッキング部が成長して緻密化が進行するところ、本発明は緻密化を抑制するために、金属粒子14に粗粒を用いることで焼結時でも内部に空間17が形成される。 Normally, when the metal particles 14 are sintered, the necking portion grows and densification progresses. 17 is formed.

このため、接続部材4を金属粒子14からなる多孔体状の構成にすることができる。多孔体状にすることにより接続部材4と基材2を構成するセラミックスの物性の差によって誘起される膨張率や収縮率の差を小さく抑制でき、その結果、焼結時およびロウ付け時に両者間に働く応力を抑制し、基材2のクラック、接続部材2のクラック等の不具合を抑制することができる。 For this reason, the connection member 4 can be configured to have a porous structure made of the metal particles 14 . By making it porous, the difference in expansion rate and contraction rate induced by the difference in the physical properties of the ceramics constituting the connection member 4 and the base material 2 can be suppressed. It is possible to suppress defects such as cracks in the base material 2 and cracks in the connection member 2.

次に、金属粒子14の粒径と混合比率とを変えて作製した接続部材4を使用し、電極埋設部材1の評価を行った。 Next, the electrode-embedded member 1 was evaluated using the connection member 4 produced by changing the particle size and mixing ratio of the metal particles 14 .

評価方法としては、作製した電極埋設部材1を600℃まで加熱した後、室温まで冷却する熱サイクルを10回繰り返した後、目視でクラックの発生の有無を確認した。その後、端子7の引張試験を行い、クラックの発生の有無を電極埋設部材1の断面の走査型電子顕微鏡観察(SEM観察)により確認した。端子7の直上の基材2の表面2a側にクラックが発生した箇所数をカウントし、接続部材4の20個中の0個を好適と評価し、1個以上のクラックが入っていたものを不適と評価とした。 As an evaluation method, after heating the fabricated electrode-embedded member 1 to 600° C. and then cooling it to room temperature, a thermal cycle was repeated 10 times, and then the occurrence of cracks was visually confirmed. After that, the terminal 7 was subjected to a tensile test, and the presence or absence of crack generation was confirmed by scanning electron microscope observation (SEM observation) of the cross section of the electrode-embedded member 1 . The number of locations where cracks occurred on the surface 2a side of the base material 2 directly above the terminal 7 was counted, and 0 out of 20 connecting members 4 were evaluated as suitable, and those with 1 or more cracks were evaluated. It was evaluated as unsuitable.

実施例1~実施例5は、第1の金属粒子14aをタングステンの粗粒とし、第2の金属粒子14bをタングステンの粉末とし、それぞれの粒径と混合比率(体積混合比率)を変えた金属成形体4aを作製し、上記製造方法で電極埋設部材1としたものである。 In Examples 1 to 5, the first metal particles 14a are tungsten coarse particles, the second metal particles 14b are tungsten powder, and the particle size and mixing ratio (volume mixing ratio) of each metal are changed. The molded body 4a is produced and used as the electrode-embedded member 1 by the manufacturing method described above.

実施例6は、タングステンの粗粒である第1の金属粒子14aのみを用いて金属成形体4aを作製した後、窒素雰囲気、1500℃の条件で金属成形体4aを仮焼し、直径10mm、厚さ0.5mmの円盤状に加工した金属仮焼体を実施例1~5の金属成形体4aに代えて用いたことを除いて、上記製造方法と同様の方法で電極埋設部材1を製造したものである。 In Example 6, after the metal compact 4a was produced using only the first metal particles 14a, which are tungsten coarse particles, the metal compact 4a was calcined under the conditions of 1500° C. in a nitrogen atmosphere. The electrode-embedded member 1 was manufactured in the same manner as described above, except that a metal calcined body processed into a disk shape with a thickness of 0.5 mm was used in place of the metal molded body 4a of Examples 1 to 5. It is what I did.

比較例1では金属成形体4aに代えて直径10mm、厚さ0.5mmの円板状のタングステンからなるペレットを用いたことを除いて、上記製造方法で電極埋設部材1としたものである。 In Comparative Example 1, the electrode-embedded member 1 was produced by the above manufacturing method, except that a disk-shaped tungsten pellet having a diameter of 10 mm and a thickness of 0.5 mm was used in place of the metal compact 4a.

なお、粒径の測定は、原料粉末(金属粒子14a、14b)では、一般の粒度分布測定器(レーザー解析法、重力沈降法)、走査型電子顕微鏡観察(SEM観察)、粒度ゲージなどを使用して確認する。また、表1では第1の金属粒子14aと第2の金属粒子14bの粒径の範囲を記しているが、粒子径の累積分布により求めるd90をこの範囲の上限値、d10をこの範囲に下限値とし、この範囲の中央値を代表粒径とした。また、電極埋設部材1では、その断面のSEM観察で確認する。 In addition, for the raw material powders (metal particles 14a and 14b), the particle size is measured using a general particle size distribution analyzer (laser analysis method, gravity sedimentation method), scanning electron microscope observation (SEM observation), particle size gauge, etc. to confirm. Table 1 shows the range of particle diameters of the first metal particles 14a and the second metal particles 14b. and the median value of this range was taken as the representative particle size. Moreover, the electrode-embedded member 1 is confirmed by SEM observation of its cross section.

下表は、以上の評価結果を示している。 The table below shows the above evaluation results.

Figure 0007280059000001
Figure 0007280059000001

この結果、実施例1~4までは、クラック発生箇所数が0個となり信頼性が高いことが分かった。実施例5は、クラック発生箇所数が1個であり、信頼性が実施例1~4と比べて低いことが分かった。これは、タングステンの粒子径が0.6~1μmであり、タングステン粒子同士の焼結が進み、焼成後はバルク体のようなり、タングステンが緻密に焼結し過ぎたため、基材2と接続部材4との間において、熱膨張係数の差による応力によってクラックが発生したと推測される。 As a result, it was found that in Examples 1 to 4, the number of crack generation locations was 0, and the reliability was high. In Example 5, the number of cracks was one, and it was found that the reliability was lower than in Examples 1-4. This is because the tungsten particles have a particle diameter of 0.6 to 1 μm, and the sintering of the tungsten particles proceeds, and after firing, it looks like a bulk body, and the tungsten is too densely sintered. 4, the cracks are presumed to have occurred due to the stress due to the difference in thermal expansion coefficient.

実施例6は、クラック発生箇所が0個となり信頼性が高いことが分かった。これは第1の金属粒子の代表粒径が実施例5より若干大きかったこと、及び金属仮焼体を埋設することにより接続部材4の内部に金属の存在しない空間を予め作製しておくことができたため、接続部材4周囲に誘起される応力の緩和効果が固まったためと推測される。 In Example 6, no cracks were generated, indicating high reliability. This is because the representative particle diameter of the first metal particles was slightly larger than that in Example 5, and that a metal-free space was previously created inside the connecting member 4 by embedding the metal calcined body. It is presumed that this is because the relaxation effect of the stress induced around the connection member 4 has been solidified.

比較例1は、従来の電極埋設部材に適用されていた例であり、クラック発生箇所数が4個であり、信頼性が著しく低く実用的でないことが分かった。これは、ペレットを構成するタングステンの組織が1800度の焼成温度により粒成長が進み過ぎたため、ペレットの強度が低下し、ペレット自体にクラックが入るとともに、基材2と接続部材4との間において、熱膨張係数の差による応力によってクラックが発生したと推測される。 Comparative Example 1 is an example applied to a conventional electrode-embedded member, and the number of cracks generated was 4. It was found that the reliability was extremely low and not practical. This is because the grain growth of the tungsten structure constituting the pellet progressed too much due to the sintering temperature of 1800 degrees, the strength of the pellet decreased, cracks occurred in the pellet itself, and between the base material 2 and the connecting member 4 , it is presumed that the cracks were caused by the stress due to the difference in thermal expansion coefficient.

このように、金属成形体4aまたは金属仮焼体を準備する準備工程は、金属成形体4aに一種類以上の金属粒子14aを使用し、一つの種類の金属粒子14aの、粒径が1~150μmであり、混合比率(全ての種類の金属粒子14に占める体積割合)が80~100%であることで、電極埋設部材1を温度差が大きいなどのより厳しい条件下で使用しても、基材2にクラックが入ることを抑制することできる。 Thus, in the preparation step of preparing the metal compact 4a or the metal calcined body, one or more types of metal particles 14a are used in the metal compact 4a, and the particle size of one type of metal particles 14a is 1 to 1. 150 μm, and the mixing ratio (volume ratio of all kinds of metal particles 14) is 80 to 100%, so that the electrode-embedded member 1 can be used under severe conditions such as a large temperature difference. It is possible to suppress cracks in the base material 2 .

なお、いわゆるグリーンシート積層品は一般に印刷により電極を形成するためタングステンの粒子径が1μm以下に調整されるため、粒子径が小さく焼結しやすい。また、電極の外縁部は印刷により厚みが薄くなり鋭角状になる。そのため、焼結後の組織は元の粒子径が分からなくなり一体化(緻密化)するとともに、電極の外縁部に応力が生じ易い形態となる。 In the so-called green sheet laminated product, the electrodes are generally formed by printing, and the grain size of tungsten is adjusted to 1 μm or less. Further, the thickness of the outer edge of the electrode is reduced by printing and becomes sharp. As a result, the structure after sintering loses its original grain size and integrates (densifies), and takes a form in which stress is likely to occur at the outer edge of the electrode.

それに対して、粒子径が相対的に大きい粒状体(グリーンシート積層品のタングステンペーストの粒子径より大きい粒子径の粒状体)は、粒子径が大きく焼結温度がより高く必要となり、一体化(緻密化)までなかなか状態変化が進まない結果、組織は多孔状(粒子がネッキングして一部焼結した状態)となる。また、接続部材4となる金属成形体4aまたは金属仮焼体に機械加工を施すことにより、接続部材4となる金属成形体4aまたは金属仮焼体の厚みや外形を整えることができ、焼成後の接続部材4における応力集中を抑制することができる。 On the other hand, granules with a relatively large particle size (granules with a particle size larger than the particle size of the tungsten paste of the green sheet laminate) have a large particle size and require a higher sintering temperature, which leads to integration ( As a result, the structure becomes porous (a state in which particles are necked and partially sintered). Further, by subjecting the metal molded body 4a or the metal calcined body to be the connection member 4 to machining, the thickness and outer shape of the metal molded body 4a or the metal calcined body to be the connection member 4 can be adjusted, and after firing stress concentration in the connection member 4 can be suppressed.

なお、実施形態では、接続部材4および緩衝部材6をタングステン、モリブデン又はこれらを主成分とする合金からなるバルク体としたが、これに限定されず、端子7よりも平均線膨張係数が小さい値の材料を使用すれば、他の一般的な材料であっても差し支えない。 In the embodiment, the connecting member 4 and the buffering member 6 are bulk bodies made of tungsten, molybdenum, or an alloy containing these as main components, but are not limited to this, and have a smaller average linear expansion coefficient than the terminal 7. Other common materials may be used as long as the material of .

なお、実施形態では、隙間12の幅を0.1mmとしたが、これに限定されず、隙間12の幅は0.01mm、0.05mm、0.2mmなど間隙が設けられていればよく、さらには端子7が端子穴5に接触して間隙が0であっても差し支えない。また、端子7の直径を4.6mm、5mm等その他の値に変更し、端子穴5の径を4.9mm、5.1mm等その他の値に変更してもよい。 Although the width of the gap 12 is set to 0.1 mm in the embodiment, the width of the gap 12 is not limited to this. Furthermore, it does not matter if the terminal 7 is in contact with the terminal hole 5 and the gap is zero. Also, the diameter of the terminal 7 may be changed to other values such as 4.6 mm and 5 mm, and the diameter of the terminal hole 5 may be changed to other values such as 4.9 mm and 5.1 mm.

1 … 電極埋設部材
2 … 基材
2c… セラミックス体
3 … 内部電極
4 … 接続部材
4a… 金属成形体
5 … 端子穴
7 … 端子
14… 金属粒子
14a… 第1の金属粒子(粗粒)
14b… 第2の金属粒子(粉末)
17… 空間
DESCRIPTION OF SYMBOLS 1... Electrode-embedded member 2... Base material 2c... Ceramic body 3... Internal electrode 4... Connection member 4a... Metal compact 5... Terminal hole 7... Terminal 14... Metal particle 14a... First metal particle (coarse particle)
14b... second metal particles (powder)
17. Space

Claims (4)

表面及び裏面を有し、セラミックスからなる板状の基材と、
前記基材の表面に沿って延在し、前記基材に埋設される内部電極と、
前記内部電極に重ねて配置される接続部材と、
前記基材の裏面から前記基材内部の前記接続部材の端面まで穿設され、前記接続部材よりも径が小さい端子穴と、
前記端子穴に配置され、前記接続部材と接続される端子と、
を備える電極埋設部材の製造方法であって、
複数の金属粒子を含む粉末原料を加圧成形することにより前記接続部材となる金属成形体を準備する準備工程と、
前記内部電極及び前記金属成形体が埋設されたセラミックス体を作製するセラミックス体作製工程と、
前記内部電極及び前記金属成形体が埋設されたセラミックス体を焼成することにより内部に金属の存在しない空間を有する前記接続部材が埋設された前記基材を作製する基材作製工程と、
を有することを特徴とする電極埋設部材の製造方法。
a plate-shaped substrate having a front surface and a back surface and made of ceramics;
an internal electrode extending along the surface of the base material and embedded in the base material;
a connection member arranged to overlap the internal electrode;
a terminal hole drilled from the back surface of the base material to the end surface of the connection member inside the base material and having a smaller diameter than the connection member ;
a terminal arranged in the terminal hole and connected to the connection member;
A method for manufacturing an electrode-embedded member comprising
A preparatory step of preparing a metal compact to be the connection member by pressure-molding a powder raw material containing a plurality of metal particles;
a ceramic body manufacturing step of manufacturing a ceramic body in which the internal electrode and the metal molded body are embedded;
a substrate manufacturing step of firing the ceramic body in which the internal electrode and the metal molded body are embedded to manufacture the substrate in which the connection member having a space in which no metal exists is embedded;
A method for manufacturing an electrode-embedded member, comprising:
表面及び裏面を有し、セラミックスからなる板状の基材と、
前記基材の表面に沿って延在し、前記基材に埋設される内部電極と、
前記内部電極に重ねて配置される接続部材と、
前記基材の裏面から前記基材内部の前記基材の端面まで穿設され、前記接続部材よりも径が小さい端子穴と、
前記端子穴に配置され、前記接続部材と接続される端子と、
を備える電極埋設部材の製造方法であって、
複数の金属粒子を含む粉末原料を加圧成形した金属成形体を仮焼することにより前記接続部材となる金属仮焼体を準備する準備工程と、
前記内部電極及び前記金属仮焼体が埋設されたセラミックス体を作製するセラミックス体作製工程と、
前記内部電極及び前記金属仮焼体が埋設されたセラミックス体を焼成することにより内部に金属の存在しない空間を有する前記接続部材が埋設された前記基材を作製する基材作製工程と、
を有することを特徴とする電極埋設部材の製造方法。
a plate-shaped substrate having a front surface and a back surface and made of ceramics;
an internal electrode extending along the surface of the base material and embedded in the base material;
a connection member arranged to overlap the internal electrode;
a terminal hole drilled from the rear surface of the base material to an end surface of the base material inside the base material and having a diameter smaller than that of the connection member ;
a terminal arranged in the terminal hole and connected to the connection member;
A method for manufacturing an electrode-embedded member comprising
a preparation step of preparing a metal calcined body to be the connection member by calcining a metal compact obtained by pressure-molding a powder raw material containing a plurality of metal particles;
a ceramic body manufacturing step of manufacturing a ceramic body in which the internal electrode and the metal calcined body are embedded;
a substrate manufacturing step of firing the ceramic body in which the internal electrode and the metal calcined body are embedded, thereby manufacturing the substrate in which the connection member having a metal-free space is embedded;
A method for manufacturing an electrode-embedded member, comprising:
請求項1又は請求項2に記載の電極埋設部材の製造方法であって、
前記準備工程では、粒度の異なる少なくとも2 種類の金属粒子を混合することにより前記粉末原料を準備することを特徴とする電極埋設部材の製造方法。
A method for manufacturing an electrode-embedded member according to claim 1 or 2,
A method of manufacturing an electrode-embedded member, wherein in the preparing step, the powder raw material is prepared by mixing at least two kinds of metal particles having different particle sizes.
請求項1から請求項3の何れか1項に記載の電極埋設部材の製造方法であって、
前記準備工程は、前記金属成形体に一種類以上の前記金属粒子を使用し、
一つの種類の前記金属粒子の、粒径が1~150μmであり、全ての種類の前記金属粒子に占める体積割合が80~100%であることを特徴とする電極埋設部材の製造方法。
A method for manufacturing an electrode-embedded member according to any one of claims 1 to 3, comprising:
The preparing step uses one or more kinds of the metal particles in the metal compact,
A method for manufacturing an electrode-embedded member, wherein the particle size of one kind of the metal particles is 1 to 150 μm, and the volume ratio of all the kinds of the metal particles is 80 to 100%.
JP2019030679A 2018-05-29 2019-02-22 Method for manufacturing electrode-embedded member Active JP7280059B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018102763 2018-05-29
JP2018102763 2018-05-29

Publications (2)

Publication Number Publication Date
JP2019208006A JP2019208006A (en) 2019-12-05
JP7280059B2 true JP7280059B2 (en) 2023-05-23

Family

ID=68767630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019030679A Active JP7280059B2 (en) 2018-05-29 2019-02-22 Method for manufacturing electrode-embedded member

Country Status (1)

Country Link
JP (1) JP7280059B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176236A (en) 2000-12-07 2002-06-21 Murata Mfg Co Ltd Composition for via hole conductor and multilayer ceramic substrate and its producing method
JP2002293655A (en) 2001-03-29 2002-10-09 Ngk Insulators Ltd Jointing structure of metal terminal and ceramic member, jointing structure of metal member and ceramic member and jointing material for jointing metal terminal and ceramic member
JP2009060103A (en) 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
JP3154930U (en) 2009-08-19 2009-10-29 日本碍子株式会社 Ceramic parts with built-in electrodes
JP2011086919A (en) 2009-09-17 2011-04-28 Ngk Insulators Ltd Electrostatic chuck and manufacturing method of the same
WO2015133576A1 (en) 2014-03-07 2015-09-11 日本碍子株式会社 Joined body manufacturing method and joined body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0396806B1 (en) * 1989-05-12 1994-02-02 Ibm Deutschland Gmbh Glass-ceramic structure and method for making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176236A (en) 2000-12-07 2002-06-21 Murata Mfg Co Ltd Composition for via hole conductor and multilayer ceramic substrate and its producing method
JP2002293655A (en) 2001-03-29 2002-10-09 Ngk Insulators Ltd Jointing structure of metal terminal and ceramic member, jointing structure of metal member and ceramic member and jointing material for jointing metal terminal and ceramic member
JP2009060103A (en) 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
JP3154930U (en) 2009-08-19 2009-10-29 日本碍子株式会社 Ceramic parts with built-in electrodes
JP2011086919A (en) 2009-09-17 2011-04-28 Ngk Insulators Ltd Electrostatic chuck and manufacturing method of the same
WO2015133576A1 (en) 2014-03-07 2015-09-11 日本碍子株式会社 Joined body manufacturing method and joined body

Also Published As

Publication number Publication date
JP2019208006A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
JP5926870B1 (en) Ceramic structure, member for substrate holding device, and method for producing ceramic structure
TWI445682B (en) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
KR102368742B1 (en) Holding device and manufacturing method of holding device
CN111902383B (en) Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
CN107135560B (en) Ceramic structure, method for producing the same, and member for semiconductor manufacturing apparatus
JP7280059B2 (en) Method for manufacturing electrode-embedded member
JP6654210B2 (en) How to make a mold for sintering
CN114180942B (en) Composite sintered body, semiconductor manufacturing apparatus member, and method for manufacturing composite sintered body
JP2002110772A (en) Electrode built-in ceramic and its manufacturing method
KR20210052250A (en) Composite sintered body and method of manufacturing composite sintered body
JP2020040865A (en) Manufacturing method of ceramic member
JP2022096106A (en) Electrode embedded member, manufacturing method of the same, and substrate holding member
JP7109258B2 (en) Method for manufacturing electrode-embedded member
KR102657287B1 (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
US11869796B2 (en) Electrode-embedded member and method for manufacturing same, electrostatic chuck, and ceramic heater
JP6898792B2 (en) Ceramic members and their manufacturing methods
JP5718780B2 (en) Silicon carbide joined body and manufacturing method thereof
JP5252595B2 (en) Method for manufacturing titanium silicon carbide
JP2022066856A (en) Substrate holding member
JP2022096105A (en) Electrode embedded member, manufacturing method of the same, and substrate holding member
JP4450638B2 (en) Manufacturing method of electrostatic chuck
JP2023116214A (en) Electrode embedded member and method of manufacturing the same
JP2020177735A (en) Manufacturing method of electrode embedded member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230511

R150 Certificate of patent or registration of utility model

Ref document number: 7280059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150