JP2019208006A - Manufacturing method of electrode embedding member - Google Patents

Manufacturing method of electrode embedding member Download PDF

Info

Publication number
JP2019208006A
JP2019208006A JP2019030679A JP2019030679A JP2019208006A JP 2019208006 A JP2019208006 A JP 2019208006A JP 2019030679 A JP2019030679 A JP 2019030679A JP 2019030679 A JP2019030679 A JP 2019030679A JP 2019208006 A JP2019208006 A JP 2019208006A
Authority
JP
Japan
Prior art keywords
metal
manufacturing
substrate
embedded
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019030679A
Other languages
Japanese (ja)
Other versions
JP7280059B2 (en
Inventor
淳 土田
Atsushi Tsuchida
淳 土田
優棋 薮花
Masaki Yabuhana
優棋 薮花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of JP2019208006A publication Critical patent/JP2019208006A/en
Application granted granted Critical
Publication of JP7280059B2 publication Critical patent/JP7280059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide a manufacturing method of an electrode embedding member, capable of suppressing trouble occurrence of a crack of a substrate.SOLUTION: A manufacturing method of an electrode embedding member 1, includes: a preparation step of preparing a metal compact 4a as a connection member 4 by pressing and molding a powder material containing a plurality of metal particles; a ceramic body manufacturing step of manufacturing a ceramic body 2c in which an inner electrode 3 and the metal compact 4a are embedded; and a substrate manufacturing step of manufacturing a substrate 2 in which the connection member 4 having a space free of metal in an inner part is embedded by burning the ceramic body 2c in which the inner electrode 3 and the metal compact 4a are embedded.SELECTED DRAWING: Figure 2

Description

本発明は、セラミックスからなる板状の基材に内部電極が埋設された電極埋設部材の製造方法に関する。   The present invention relates to a method of manufacturing an electrode embedding member in which an internal electrode is embedded in a plate-like base material made of ceramics.

従来、セラミックスからなる板状の基材に内部電極が埋設された電極埋設部材が知られている。電極埋設部材では、端子を内部電極に接続させるための挿入穴を基材に穿設するときに、内部電極を傷つけないように内部電極と端子とを接続する個所に接続部材を予め配置しておき、接続部材によって、内部電極が傷つくことを防止するなどの対策が必要となる。このような、内部電極が埋設された電極埋設部材として、セラミックス基材に埋設された内部電極に端子を接続するための接続部材が設けられた電極埋設部材が提案されている(例えば、特許文献1)。   Conventionally, an electrode embedding member in which an internal electrode is embedded in a plate-like base material made of ceramics is known. In the electrode embedding member, when the insertion hole for connecting the terminal to the internal electrode is drilled in the base material, the connection member is previously arranged at a position where the internal electrode and the terminal are connected so as not to damage the internal electrode. In addition, it is necessary to take measures such as preventing the internal electrode from being damaged by the connecting member. As such an electrode embedding member in which the internal electrode is embedded, an electrode embedding member in which a connection member for connecting a terminal to the internal electrode embedded in the ceramic substrate has been proposed (for example, Patent Documents). 1).

特開2010−34514号公報JP 2010-34514 A

しかし、特許文献1に開示された製造方法による部材では、ロウ付けなど製造プロセス中の熱の影響により、及び、使用時の温度変化が繰り返されることにより、基材と接続部材との熱膨張率の違いから基材にクラックが入り、基材の絶縁性能が担保されない虞があった。   However, in the member by the manufacturing method disclosed in Patent Document 1, the coefficient of thermal expansion between the base material and the connecting member due to the influence of heat during the manufacturing process such as brazing and repeated temperature changes during use. Due to the difference, the base material was cracked, and the insulating performance of the base material could not be ensured.

本発明は、以上の点に鑑み、基材のクラックの不具合を抑制することができる電極埋設部材の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the electrode embedding member which can suppress the malfunction of the crack of a base material in view of the above point.

[1]上記目的を達成するため、本発明の電極埋設部材の製造方法は、
表面及び裏面を有し、セラミックスからなる板状の基材と、
前記基材の表面に沿って延在し、前記基材に埋設される内部電極と、
前記内部電極に重ねて配置される接続部材と、
前記基材の裏面から前記基材内部の前記接続部材の端面まで穿設される端子穴と、
前記端子穴に配置され、前記接続部材と接続される端子と、
を備える電極埋設部材の製造方法であって、
複数の金属粒子を含む粉末原料を加圧成形することにより前記接続部材となる金属成形体を準備する準備工程と、
前記内部電極及び前記金属成形体が埋設されたセラミックス体を作製するセラミックス体作製工程と、
前記内部電極及び前記金属成形体が埋設されたセラミックス体を焼成することにより内部に金属の存在しない空間を有する前記接続部材が埋設された前記基材を作製する基材作製工程と、
を有することを特徴とする。
[1] In order to achieve the above object, the method for producing an electrode embedding member of the present invention comprises:
A plate-like substrate having a front surface and a back surface and made of ceramics;
An internal electrode extending along the surface of the substrate and embedded in the substrate;
A connecting member disposed over the internal electrode;
A terminal hole drilled from the back surface of the base material to the end face of the connection member inside the base material;
A terminal disposed in the terminal hole and connected to the connection member;
A method of manufacturing an electrode embedding member comprising:
A preparatory step of preparing a metal molded body to be the connection member by pressure-forming a powder raw material containing a plurality of metal particles;
A ceramic body manufacturing step of manufacturing a ceramic body in which the internal electrode and the metal molded body are embedded;
A base material preparation step for preparing the base material in which the connection member having a space in which no metal exists is embedded by firing the ceramic body in which the internal electrode and the metal molded body are embedded;
It is characterized by having.

[2]また、本発明の他の態様の電極埋設部材の製造方法は、
表面及び裏面を有し、セラミックスからなる板状の基材と、
前記基材の表面に沿って延在し、前記基材に埋設される内部電極と、
前記内部電極に重ねて配置される接続部材と、
前記基材の裏面から前記基材内部の前記基材の端面まで穿設される端子穴と、
前記端子穴に配置され、前記接続部材と接続される端子と、
を備える電極埋設部材の製造方法であって、
複数の金属粒子を含む粉末原料を加圧成形した金属成形体を仮焼することにより前記接続部材となる金属仮焼体を準備する準備工程と、
前記内部電極及び前記金属仮焼体が埋設されたセラミックス体を作製するセラミックス体作製工程と、
前記内部電極及び前記金属仮焼体が埋設されたセラミックス体を焼成することにより内部に金属の存在しない空間を有する前記接続部材が埋設された前記基材を作製する基材作製工程と、
を有することを特徴とする。
[2] Moreover, the manufacturing method of the electrode embedding member of the other aspect of the present invention includes:
A plate-like substrate having a front surface and a back surface and made of ceramics;
An internal electrode extending along the surface of the substrate and embedded in the substrate;
A connecting member disposed over the internal electrode;
A terminal hole drilled from the back surface of the substrate to the end surface of the substrate inside the substrate;
A terminal disposed in the terminal hole and connected to the connection member;
A method of manufacturing an electrode embedding member comprising:
A preparatory step of preparing a metal calcined body that becomes the connecting member by calcining a metal molded body obtained by pressure forming a powder raw material containing a plurality of metal particles;
A ceramic body manufacturing step of manufacturing a ceramic body in which the internal electrode and the metal calcined body are embedded;
A base material preparation step for preparing the base material in which the connection member having a space in which no metal exists is embedded by firing the ceramic body in which the internal electrode and the metal calcined body are embedded;
It is characterized by having.

かかる製造方法によれば、予め金属成形体または金属仮焼体を製作することができるため、金属成形体または金属仮焼体を焼成してなる多孔体状の接続部材の形態(粒径、気孔率、平均気孔径などの金属粒子の焼結組織)及び、別の成分を金属成形体または金属仮焼体に含有させることによって接続部材と基材との密着性や熱膨張係数の調整が可能になり、その結果、ロウ付け、ホットプレス法のような製造プロセス中の熱を受ける場合、及び、電極埋設部材の使用時の熱サイクルの熱を受ける場合において基材のクラックを抑制することが容易になる。
更に、金属成形体の金属粒子と金属粒子とが適度に焼結することにより導電性などの電気的特性の低下が抑制された電極埋設部材を製造することができる。
更に接続部材の空間(開気孔)に基材を構成するセラミックスが侵入し、より接続部材と基材との密着力が向上した電極埋設部材を製造することができる。
According to such a manufacturing method, a metal molded body or a metal calcined body can be manufactured in advance, so that the form (particle size, pores) of the porous connection member formed by firing the metal molded body or the metal calcined body Sintering structure of metal particles such as rate and average pore diameter) and other components can be included in the metal molded body or metal calcined body to adjust the adhesion and thermal expansion coefficient between the connecting member and the substrate. As a result, it is possible to suppress cracks in the base material when receiving heat during the manufacturing process such as brazing and hot pressing, and when receiving heat from the heat cycle during use of the electrode embedding member. It becomes easy.
Furthermore, it is possible to manufacture an electrode embedding member in which deterioration of electrical characteristics such as conductivity is suppressed by appropriately sintering the metal particles and the metal particles of the metal molded body.
Furthermore, the ceramic which comprises a base material penetrate | invades into the space (open hole) of a connection member, and the electrode embedding member which the adhesive force of a connection member and a base material improved more can be manufactured.

[3]また、本発明の電極埋設部材において、前記準備工程では、粒度の異なる少なくとも2種類の金属粒子を混合することにより前記粉末原料を準備することが好ましい。   [3] Moreover, in the electrode embedding member of the present invention, it is preferable that in the preparation step, the powder raw material is prepared by mixing at least two types of metal particles having different particle sizes.

この工程により、金属成形体の焼結性を調節できるとともに、粒度の大きい金属により空間(開気孔)を形成すると共に粒度の小さい金属によりある程度緻密化させて、2種類の金属粒子を含有させることによって基材との密着性や熱膨張係数をより調整しやすくなり、その結果、ロウ付け、ホットプレス法のような製造プロセス中の熱を受ける場合、及び、使用時の熱サイクルの熱を受ける場合において基材のクラックをより抑制することできる。   By this process, the sinterability of the metal molded body can be adjusted, and a space (open pores) is formed by a metal having a large particle size and is densified to some extent by a metal having a small particle size to contain two kinds of metal particles. Makes it easier to adjust the adhesion to the substrate and the coefficient of thermal expansion. As a result, when receiving heat during the manufacturing process such as brazing and hot pressing, and receiving heat from the heat cycle during use In some cases, cracks in the substrate can be further suppressed.

[4]また、本発明の電極埋設部材において、前記金属成形体又は前記金属仮焼体を準備する前記準備工程は、前記金属成形体に一種類以上の前記金属粒子を使用し、一つの種類の前記金属粒子の、粒径が1〜150μmであり、全ての種類の前記金属粒子に占める体積割合が80〜100%であることが好ましい。   [4] In the electrode embedding member of the present invention, the preparation step of preparing the metal molded body or the metal calcined body uses one or more types of the metal particles in the metal molded body, The metal particles preferably have a particle size of 1 to 150 μm and a volume ratio of 80 to 100% in all types of the metal particles.

この工程により、電極埋設部材を温度差が大きいなどのより厳しい条件下で使用しても、基材にクラックが入ることを抑制することできる。   By this step, even if the electrode-embedded member is used under more severe conditions such as a large temperature difference, cracks can be suppressed from entering the base material.

本発明の電極埋設部材を模式的に示す説明図である。It is explanatory drawing which shows the electrode embedding member of this invention typically. 本発明の電極埋設部材の作製方法を示す説明図である。It is explanatory drawing which shows the preparation methods of the electrode embedding member of this invention. ホットプレス焼成前の金属粒子の状態を示す説明図である。It is explanatory drawing which shows the state of the metal particle before hot press baking. ホットプレス焼成後の金属粒子の状態を示す説明図である。It is explanatory drawing which shows the state of the metal particle after hot press baking.

以下、図面を用いて本発明の実施形態を説明する。なお、図面は、電極埋設部材1を概念的(模式的)に示すものとする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, drawing shall show the electrode embedding member 1 notionally (schematically).

図1に示すように、電極埋設部材1は、表面2a及び裏面2bを有し、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、炭化窒素(SiC)、窒化珪素(Si)などのセラミックスからなる板状の基材2と、基材2の表面2aと平行に延在し、基材2に埋設される内部電極3と、基材2の表面2aに沿って円盤状に延在する内部電極3に重ねて配置される接続部材4と、を備える。 As shown in FIG. 1, the electrode embedding member 1 has a front surface 2a and a back surface 2b, and includes aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), nitrogen carbide (SiC), and silicon nitride (Si 3 N 4). ) And the like, a plate-like base material 2 made of ceramics, an internal electrode 3 extending in parallel with the surface 2a of the base material 2 and embedded in the base material 2, and a disk shape along the surface 2a of the base material 2 And a connecting member 4 disposed so as to overlap the internal electrode 3 extending in the direction.

基材2には、この基材2の裏面2bから基材2内部の接続部材4の端面まで穿設される端子穴5が形成されている。また、電極埋設部材1は、端子穴5に配置されると共に円盤状の緩衝部材6を介して接続部材4に接続される棒状の端子7とを備えている。緩衝部材6と端子7とは、ロウ付けなどによって接続部材4に接合されている。   A terminal hole 5 is formed in the base material 2 so as to be drilled from the back surface 2 b of the base material 2 to the end surface of the connection member 4 inside the base material 2. The electrode embedding member 1 includes a rod-shaped terminal 7 that is disposed in the terminal hole 5 and connected to the connection member 4 via a disk-shaped buffer member 6. The buffer member 6 and the terminal 7 are joined to the connection member 4 by brazing or the like.

内部電極3及び接続部材4は、タングステン、モリブデン又はこれらを主成分とする合金からなる。端子5は、円柱状を呈し、コバール等の低熱膨張金属合金やニッケル、チタン、銅又はこれらを主成分とする合金からなり、接続部材4にロウ付けによって接合され、接続部材4と電気的に接続されている。   The internal electrode 3 and the connection member 4 are made of tungsten, molybdenum, or an alloy containing these as main components. The terminal 5 has a columnar shape and is made of a low thermal expansion metal alloy such as Kovar, nickel, titanium, copper, or an alloy containing these as a main component, and is joined to the connection member 4 by brazing and electrically connected to the connection member 4. It is connected.

端子穴5の径は5mmである。端子7は、直径が4.8mmであり、長さが20mmである。端子7と、端子穴5を画定する基材2の内側面11との間には、隙間12が形成されている。隙間12の幅は、0.1mmである。   The diameter of the terminal hole 5 is 5 mm. The terminal 7 has a diameter of 4.8 mm and a length of 20 mm. A gap 12 is formed between the terminal 7 and the inner surface 11 of the substrate 2 that defines the terminal hole 5. The width of the gap 12 is 0.1 mm.

次に電極埋設部材1の製造方法について説明する。電極埋設部材1の製造方法は、金属成形体4aまたは金属仮焼体を準備する準備工程と、セラミックス体2cを作製するセラミックス体作製工程と、基材2を作製する基材作製工程と、を少なくとも含む。なお、金属成形体4aまたは金属仮焼体を準備する工程の前に、粒度の異なる少なくとも2種類の金属粒子14a、14bを混合することにより粉末原料15を準備する工程を実施してもよい。   Next, the manufacturing method of the electrode embedding member 1 is demonstrated. The manufacturing method of the electrode embedding member 1 includes a preparation process for preparing the metal molded body 4a or the metal calcined body, a ceramic body manufacturing process for manufacturing the ceramic body 2c, and a base material manufacturing process for manufacturing the base material 2. Including at least. In addition, you may implement the process of preparing the powder raw material 15 by mixing at least 2 types of metal particles 14a and 14b from which a particle size differs before the process of preparing the metal forming body 4a or a metal calcined body.

[粉末原料15を準備する工程]
図2A、図3に示すように、粉末原料15を準備する工程は、粒度の異なる少なくとも2種類の金属粒子14a、14bを混合することにより粉末原料15を得る。なお、実施形態では、粉末原料15は、2種類の金属粒子14a、14bを混合したが、これに限定されず、1種類の金属粒子14のみとする形態、3種類以上の金属粒子14を混合する形態としてもよい。
[Step of preparing powder raw material 15]
As shown in FIGS. 2A and 3, in the step of preparing the powder raw material 15, the powder raw material 15 is obtained by mixing at least two types of metal particles 14 a and 14 b having different particle sizes. In the embodiment, the powder raw material 15 is a mixture of two types of metal particles 14a and 14b. However, the present invention is not limited to this, and a mode in which only one type of metal particle 14 is used and three or more types of metal particles 14 are mixed. It is good also as a form to do.

[金属成形体4aまたは金属仮焼体を準備する準備工程]
図2Aに示すように、金属成形体4aを準備する工程は、図3に示す複数の金属粒子14を含む粉末原料15を加圧成形することにより接続部材4となる金属成形体4aを得る。
[Preparation process for preparing the metal molded body 4a or the metal calcined body]
As shown in FIG. 2A, the step of preparing the metal molded body 4a obtains the metal molded body 4a to be the connection member 4 by press-molding the powder raw material 15 including the plurality of metal particles 14 shown in FIG.

詳細には、図3に示す複数の金属粒子14にバインダー16が添加された粉末原料15を一軸プレスの金型で加圧成形することにより、接続部材4(図2D参照)となる直径10mm、厚み0.5mmの円盤状の金属成形体4aを得る。金属粒子14は、粒径の異なる、第1の金属粒子14aと、第2の金属粒子14bとを含む。なお、バインダー16を除去する目的で金型成形体4aを大気雰囲気または窒素雰囲気で200℃〜600℃の温度範囲で脱脂する脱脂工程を行なってもよい。   Specifically, the powder raw material 15 in which the binder 16 is added to the plurality of metal particles 14 shown in FIG. 3 is pressure-molded with a uniaxial press die, whereby the diameter of the connection member 4 (see FIG. 2D) is 10 mm, A disk-shaped metal molded body 4a having a thickness of 0.5 mm is obtained. The metal particles 14 include first metal particles 14a and second metal particles 14b having different particle sizes. In addition, you may perform the degreasing process which degreases the metal mold body 4a in the temperature range of 200 to 600 degreeC by air | atmosphere atmosphere or nitrogen atmosphere in order to remove the binder 16. FIG.

なお、実施形態では、金属成形体4aは加圧成形のみ行ったが、金属成形体4aに対して窒素、アルゴン、又は真空雰囲気炉で、例えば、1000℃以上1800℃以下の温度条件で仮焼成を行い、金属成形体4aを仮焼体としても差し支えない。これが複数の金属粒子を含む粉末原料を加圧成形した金属成形体を仮焼することにより接続部材となる金属仮焼体を準備する準備工程に該当する。
なお、この準備工程では、研削や研磨加工を行うことにより金属仮焼体の外径や厚みを調整してもよい。
In the embodiment, the metal molded body 4a is only pressure-molded. However, the metal molded body 4a is temporarily fired in a nitrogen, argon, or vacuum atmosphere furnace, for example, at a temperature of 1000 ° C. or higher and 1800 ° C. or lower. The metal molded body 4a can be used as a calcined body. This corresponds to a preparation step of preparing a metal calcined body to be a connection member by calcining a metal molded body obtained by pressure-molding a powder raw material containing a plurality of metal particles.
In this preparation step, the outer diameter and thickness of the metal calcined body may be adjusted by grinding or polishing.

[セラミックス体2cを作製するセラミックス体作製工程]
図2Bに示すように、セラミックス体2cを作製する工程は、内部電極3及び金属成形体4aが埋設されたセラミックス体2cを得る。
[Ceramic body manufacturing process for manufacturing ceramic body 2c]
As shown in FIG. 2B, the step of producing the ceramic body 2c obtains the ceramic body 2c in which the internal electrode 3 and the metal molded body 4a are embedded.

詳細には、絶縁層を形成する。窒化アルミニウム粉末95質量%、酸化イットリウム粉末5質量%からなる粉末混合物を得て、これを型に充填して一軸加圧処理を施した。これにより、直径340mm、厚さ5mmの第一層(絶縁層)を形成した。   Specifically, an insulating layer is formed. A powder mixture composed of 95% by mass of aluminum nitride powder and 5% by mass of yttrium oxide powder was obtained, filled in a mold, and subjected to uniaxial pressure treatment. As a result, a first layer (insulating layer) having a diameter of 340 mm and a thickness of 5 mm was formed.

次に内部電極3を設置する。第一層の上に、内部電極3となる直径290mmのモリブデン製の箔(厚み0.1mm)を載置した。内部電極3の上にタングステン製、直径10mm、厚み0.5mmの円盤状の金属成形体4aまたは金属仮焼体を載せる。金属成形体4aまたは金属仮焼体は、1つの基材2に20箇所設けた。内部電極3に金属成形体4aまたは金属仮焼体を接続するときには、金属成形体4aまたは金属仮焼体が重ねられることとなる内部電極3の部分にタングステンペーストなどの導電性部材を塗布する。   Next, the internal electrode 3 is installed. On the first layer, a 290 mm diameter molybdenum foil (thickness: 0.1 mm) serving as the internal electrode 3 was placed. On the internal electrode 3, a disk-shaped metal molded body 4a or a metal calcined body made of tungsten, having a diameter of 10 mm and a thickness of 0.5 mm is placed. The metal molded body 4 a or the metal calcined body was provided at 20 locations on one base material 2. When connecting the metal molded body 4a or the metal calcined body to the internal electrode 3, a conductive member such as tungsten paste is applied to the portion of the internal electrode 3 on which the metal molded body 4a or the metal calcined body is to be stacked.

次に第二層を成形する。第一層の上に内部電極3及び金属成形体4aまたは金属仮焼体を覆い隠すようにセラミックス粉末を充填して一軸加圧処理し第二層の成形体とする。   Next, the second layer is formed. A ceramic powder is filled on the first layer so as to cover the internal electrode 3 and the metal molded body 4a or the metal calcined body, and uniaxial pressure treatment is performed to form a second layer molded body.

次にヒータ電極を設置する。ウエハ保持装置としての電極埋設部材1自体を加熱する目的で所定のパターンに形成したモリブデンメッシュ(線径0.1mm、目開き50メッシュ)からなる発熱抵抗体を配置し、所定のヒータ用端子を接続する位置にヒータ端子用接続部材(タングステンペレット、直径10mm、厚さ0.5mm)を載せる。   Next, a heater electrode is installed. A heating resistor made of a molybdenum mesh (wire diameter: 0.1 mm, mesh opening: 50 mesh) formed in a predetermined pattern for the purpose of heating the electrode embedding member 1 itself as a wafer holding device is arranged, and a predetermined heater terminal is arranged. A connecting member for heater terminals (tungsten pellet, diameter 10 mm, thickness 0.5 mm) is placed on the connection position.

次に、焼成前の成形体を形成する。ヒータ電極の上にセラミックス粉末を充填し一軸加圧処理して第三層を形成する。   Next, a molded body before firing is formed. A ceramic powder is filled on the heater electrode, and the third layer is formed by uniaxial pressure treatment.

[基材2を作製する基材作製工程]
基材2を作製する工程は、内部電極3及び金属成形体4aまたは金属仮焼体が埋設されたセラミックス体2cを焼成することにより内部に金属の存在しない空間17(図4参照)を有する接続部材4が埋設された基材2を得る。金属成形体4aまたは金属仮焼体は、焼成されることで接続部材4になる。
詳細には、焼成工程を実施する。焼成工程は、第三層まで積層した積層体を10MPaの圧力で、焼成温度1800℃、焼成時間2時間でホットプレス焼成を行い、直径340mm、厚さ20mmのセラミックス焼結体を得た。
[Substrate production process for producing substrate 2]
The process of producing the base material 2 includes a connection 17 having a space 17 (see FIG. 4) in which no metal is present by firing the ceramic body 2c in which the internal electrode 3 and the metal molded body 4a or the metal calcined body are embedded. The base material 2 in which the member 4 is embedded is obtained. The metal molded body 4a or the metal calcined body becomes the connection member 4 by being fired.
In detail, a baking process is implemented. In the firing step, the laminated body laminated up to the third layer was subjected to hot press firing at a pressure of 10 MPa at a firing temperature of 1800 ° C. and a firing time of 2 hours to obtain a ceramic sintered body having a diameter of 340 mm and a thickness of 20 mm.

次に焼成後の加工工程を実施する。図2Cに示すように、焼成後の加工工程では、セラミックス焼結体の外面を研削、研磨加工し、内部電極3からの距離0.3mm、表面粗さRa0.4μmのウエハ載置面(表面2a)を形成した。   Next, a processing step after firing is performed. As shown in FIG. 2C, in the processing step after firing, the outer surface of the ceramic sintered body is ground and polished, and a wafer mounting surface (surface) with a distance of 0.3 mm from the internal electrode 3 and a surface roughness Ra of 0.4 μm. 2a) was formed.

次に端子7を接続する。焼成後のセラミックス基体の裏面2bから各接続部材4の位置に接続部材4まで到達するように穴あけ加工(直径5mm)を行い、裏面2bから接続部材4まで達する円柱状の端子穴5を形成する。端子穴5を画定する接続部材4の上に、Au−Ni系のロウ材を介して、直径4.8mm、厚み2mmのコバール製の緩衝部材6を配置する。次に、緩衝部材6の上にAu−Niに活性金属としてTiを添加したロウ材を介して直径4.8mm、長さ200mmの円柱状ニッケル製給電用の端子7を配置する。その後、真空炉により1050℃で加熱することによってロウ付けを行い、電極埋設部材1を完成させた。   Next, the terminal 7 is connected. Drilling processing (diameter 5 mm) is performed so as to reach the connection member 4 from the back surface 2b of the ceramic substrate after firing to form the cylindrical terminal hole 5 reaching the connection member 4 from the back surface 2b. . A Kovar cushioning member 6 having a diameter of 4.8 mm and a thickness of 2 mm is disposed on the connection member 4 defining the terminal hole 5 via an Au—Ni brazing material. Next, a cylindrical nickel power supply terminal 7 having a diameter of 4.8 mm and a length of 200 mm is disposed on the buffer member 6 via a brazing material obtained by adding Ti as an active metal to Au—Ni. Then, brazing was performed by heating at 1050 ° C. in a vacuum furnace, and the electrode embedding member 1 was completed.

なお、ロウ材に活性金属としてTiを添加してもよく、Ag系のロウ材を用いることも
できる。
Note that Ti may be added as an active metal to the brazing material, and an Ag-based brazing material can also be used.

次に、以上に述べた電極埋設部材1の製造法の効果を説明する。
かかる製造方法によれば、予め金属成形体4a(または金属仮焼体)を製作することができるため、金属成形体4aまたは金属仮焼体を焼成してなる多孔体状の接続部材4の形態(粒径、気孔率、平均気孔径などの金属粒子の焼結組織)や、別の成分を金属成形体4aまたは金属仮焼体に含有させることによって接続部材4と基材2との密着性や熱膨張係数の調整が可能になり、その結果、ロウ付け、ホットプレス法のような製造プロセス中の熱を受ける場合、及び、電極埋設部材1の使用時の熱サイクルの熱を受ける場合において基材2のクラックを抑制することが容易になる。
Next, the effect of the manufacturing method of the electrode embedding member 1 described above will be described.
According to this manufacturing method, since the metal molded body 4a (or the metal calcined body) can be manufactured in advance, the form of the porous connection member 4 formed by firing the metal molded body 4a or the metal calcined body. (Sintered structure of metal particles such as particle diameter, porosity, average pore diameter, etc.) and the adhesion between the connecting member 4 and the substrate 2 by incorporating another component into the metal molded body 4a or the metal calcined body And the thermal expansion coefficient can be adjusted, and as a result, when receiving heat during the manufacturing process such as brazing and hot pressing, and when receiving heat from the heat cycle when the electrode-embedded member 1 is used. It becomes easy to suppress the crack of the base material 2.

更に、金属成形体4aの金属粒子14と金属粒子14とが適度に焼結することにより導電性などの電気的特性の低下が抑制された電極埋設部材1を製造することができる。   Furthermore, the electrode embedding member 1 in which a decrease in electrical characteristics such as conductivity is suppressed can be manufactured by appropriately sintering the metal particles 14 and the metal particles 14 of the metal molded body 4a.

更に接続部材4の空間17(開気孔)に基材2を構成するセラミックスが侵入し、より接続部材4と基材2との密着力が向上した電極埋設部材1を製造することができる。   Furthermore, the ceramic which comprises the base material 2 penetrate | invades in the space 17 (open hole) of the connection member 4, and the electrode embedding member 1 which the adhesive force of the connection member 4 and the base material 2 improved more can be manufactured.

粒度の異なる少なくとも2種類の金属粒子14a、14bを混合する粉末原料15を準備する工程を含むことにより、2種類の金属粒子14a、14bを含有させることによって基材2との密着性や熱膨張係数をより調整しやすくなり、その結果、ロウ付け、ホットプレス法のような製造プロセス中の熱を受ける場合、及び、使用時の熱サイクルの熱を受ける場合において基材2のクラックをより抑制することできる。   By including a step of preparing a powder raw material 15 for mixing at least two types of metal particles 14a and 14b having different particle sizes, the adhesion and thermal expansion with the substrate 2 can be achieved by including the two types of metal particles 14a and 14b. The coefficient can be adjusted more easily. As a result, cracks in the base material 2 are further suppressed when receiving heat during the manufacturing process such as brazing and hot pressing, and when receiving heat from the heat cycle during use. Can do.

次に、接続部材4について説明する。
図4に示すように、接続部材4は、金属粒子14(図3参照)と金属粒子14とが一部で焼結し、金属粒子14がいわゆるネッキングして焼結している状態であり、内部に金属(金属粒子14)の存在しない空間17が形成されている。
Next, the connection member 4 will be described.
As shown in FIG. 4, the connection member 4 is a state in which the metal particles 14 (see FIG. 3) and the metal particles 14 are partially sintered, and the metal particles 14 are so-called necked and sintered, A space 17 in which no metal (metal particles 14) is present is formed inside.

通常、金属粒子14の焼結時にはネッキング部が成長して緻密化が進行するところ、本発明は緻密化を抑制するために、金属粒子14に粗粒を用いることで焼結時でも内部に空間17が形成される。   Normally, when the metal particles 14 are sintered, the necking portion grows and densification progresses. In order to suppress the densification, the present invention uses coarse particles for the metal particles 14 so that a space is formed inside even during sintering. 17 is formed.

このため、接続部材4を金属粒子14からなる多孔体状の構成にすることができる。多孔体状にすることにより接続部材4と基材2を構成するセラミックスの物性の差によって誘起される膨張率や収縮率の差を小さく抑制でき、その結果、焼結時およびロウ付け時に両者間に働く応力を抑制し、基材2のクラック、接続部材2のクラック等の不具合を抑制することができる。   For this reason, the connection member 4 can be made into a porous structure composed of the metal particles 14. By making the porous body, the difference in expansion coefficient and shrinkage ratio induced by the difference in the physical properties of the ceramics composing the connecting member 4 and the base material 2 can be suppressed, and as a result, between sintering and brazing. It is possible to suppress the stress acting on the substrate 2 and to suppress problems such as cracks in the base material 2 and cracks in the connection member 2.

次に、金属粒子14の粒径と混合比率とを変えて作製した接続部材4を使用し、電極埋設部材1の評価を行った。   Next, the connection member 4 produced by changing the particle size and the mixing ratio of the metal particles 14 was used to evaluate the electrode embedding member 1.

評価方法としては、作製した電極埋設部材1を600℃まで加熱した後、室温まで冷却する熱サイクルを10回繰り返した後、目視でクラックの発生の有無を確認した。その後、端子7の引張試験を行い、クラックの発生の有無を電極埋設部材1の断面の走査型電子顕微鏡観察(SEM観察)により確認した。端子7の直上の基材2の表面2a側にクラックが発生した箇所数をカウントし、接続部材4の20個中の0個を好適と評価し、1個以上のクラックが入っていたものを不適と評価とした。   As an evaluation method, after heating the produced electrode embedding member 1 to 600 ° C. and repeating a thermal cycle of cooling to room temperature 10 times, the presence or absence of cracks was visually confirmed. Then, the tensile test of the terminal 7 was done and the presence or absence of the generation | occurrence | production of a crack was confirmed by scanning electron microscope observation (SEM observation) of the cross section of the electrode embedding member 1. Count the number of places where cracks occurred on the surface 2a side of the base material 2 immediately above the terminals 7, and evaluate that 0 out of 20 of the connection members 4 are suitable, and those having one or more cracks It was evaluated as inappropriate.

実施例1〜実施例5は、第1の金属粒子14aをタングステンの粗粒とし、第2の金属粒子14bをタングステンの粉末とし、それぞれの粒径と混合比率(体積混合比率)を変えた金属成形体4aを作製し、上記製造方法で電極埋設部材1としたものである。   In the first to fifth embodiments, the first metal particles 14a are made of tungsten coarse particles, the second metal particles 14b are made of tungsten powder, and their respective particle sizes and mixing ratios (volume mixing ratios) are changed. The molded body 4a is produced and used as the electrode embedding member 1 by the above manufacturing method.

実施例6は、タングステンの粗粒である第1の金属粒子14aのみを用いて金属成形体4aを作製した後、窒素雰囲気、1500℃の条件で金属成形体4aを仮焼し、直径10mm、厚さ0.5mmの円盤状に加工した金属仮焼体を実施例1〜5の金属成形体4aに代えて用いたことを除いて、上記製造方法と同様の方法で電極埋設部材1を製造したものである。   In Example 6, after forming the metal molded body 4a using only the first metal particles 14a that are coarse particles of tungsten, the metal molded body 4a was calcined under conditions of nitrogen atmosphere and 1500 ° C., and the diameter was 10 mm. The electrode embedding member 1 is manufactured by a method similar to the above manufacturing method except that a metal calcined body processed into a disk shape having a thickness of 0.5 mm is used instead of the metal molded body 4a of Examples 1 to 5. It is a thing.

比較例1では金属成形体4aに代えて直径10mm、厚さ0.5mmの円板状のタングステンからなるペレットを用いたことを除いて、上記製造方法で電極埋設部材1としたものである。   In Comparative Example 1, the electrode embedding member 1 was formed by the above-described manufacturing method except that a pellet made of disk-shaped tungsten having a diameter of 10 mm and a thickness of 0.5 mm was used instead of the metal molded body 4a.

なお、粒径の測定は、原料粉末(金属粒子14a、14b)では、一般の粒度分布測定器(レーザー解析法、重力沈降法)、走査型電子顕微鏡観察(SEM観察)、粒度ゲージなどを使用して確認する。また、表1では第1の金属粒子14aと第2の金属粒子14bの粒径の範囲を記しているが、粒子径の累積分布により求めるd90をこの範囲の上限値、d10をこの範囲に下限値とし、この範囲の中央値を代表粒径とした。また、電極埋設部材1では、その断面のSEM観察で確認する。   For the measurement of particle size, for raw material powders (metal particles 14a and 14b), a general particle size distribution measuring device (laser analysis method, gravity sedimentation method), scanning electron microscope observation (SEM observation), particle size gauge, etc. are used. And confirm. Moreover, in Table 1, although the range of the particle size of the first metal particle 14a and the second metal particle 14b is described, d90 obtained by the cumulative distribution of the particle size is an upper limit value of this range, and d10 is a lower limit of the range. The median value in this range was the representative particle size. Moreover, in the electrode embedding member 1, it confirms by the SEM observation of the cross section.

下表は、以上の評価結果を示している。   The table below shows the above evaluation results.

Figure 2019208006
Figure 2019208006

この結果、実施例1〜4までは、クラック発生箇所数が0個となり信頼性が高いことが分かった。実施例5は、クラック発生箇所数が1個であり、信頼性が実施例1〜4と比べて低いことが分かった。これは、タングステンの粒子径が0.6〜1μmであり、タングステン粒子同士の焼結が進み、焼成後はバルク体のようなり、タングステンが緻密に焼結し過ぎたため、基材2と接続部材4との間において、熱膨張係数の差による応力によってクラックが発生したと推測される。   As a result, in Examples 1 to 4, it was found that the number of crack occurrences was 0 and the reliability was high. In Example 5, the number of cracks was one, and it was found that the reliability was low compared to Examples 1-4. This is because the tungsten particle diameter is 0.6 to 1 μm, the sintering of the tungsten particles proceeds, and after firing, it looks like a bulk body, and the tungsten is sintered too densely. 4, it is estimated that cracks were generated due to the stress due to the difference in thermal expansion coefficient.

実施例6は、クラック発生箇所が0個となり信頼性が高いことが分かった。これは第1の金属粒子の代表粒径が実施例5より若干大きかったこと、及び金属仮焼体を埋設することにより接続部材4の内部に金属の存在しない空間を予め作製しておくことができたため、接続部材4周囲に誘起される応力の緩和効果が固まったためと推測される。   In Example 6, it was found that the number of cracks was zero and the reliability was high. This is because the representative particle size of the first metal particles was slightly larger than that of Example 5, and a space in which no metal was present was prepared in advance in the connection member 4 by embedding a metal calcined body. This is presumably because the effect of mitigating the stress induced around the connection member 4 has hardened.

比較例1は、従来の電極埋設部材に適用されていた例であり、クラック発生箇所数が4個であり、信頼性が著しく低く実用的でないことが分かった。これは、ペレットを構成するタングステンの組織が1800度の焼成温度により粒成長が進み過ぎたため、ペレットの強度が低下し、ペレット自体にクラックが入るとともに、基材2と接続部材4との間において、熱膨張係数の差による応力によってクラックが発生したと推測される。   Comparative Example 1 was an example applied to a conventional electrode embedding member, and the number of cracks was 4 and it was found that the reliability was extremely low and impractical. This is because the structure of the tungsten constituting the pellet was excessively grain-grown by the firing temperature of 1800 degrees, so that the strength of the pellet was reduced, the pellet itself was cracked, and between the substrate 2 and the connecting member 4 It is presumed that cracks were generated by the stress due to the difference in thermal expansion coefficient.

このように、金属成形体4aまたは金属仮焼体を準備する準備工程は、金属成形体4aに一種類以上の金属粒子14aを使用し、一つの種類の金属粒子14aの、粒径が1〜150μmであり、混合比率(全ての種類の金属粒子14に占める体積割合)が80〜100%であることで、電極埋設部材1を温度差が大きいなどのより厳しい条件下で使用しても、基材2にクラックが入ることを抑制することできる。   Thus, the preparatory process of preparing the metal molded body 4a or the metal calcined body uses one or more types of metal particles 14a in the metal molded body 4a, and the particle size of one type of metal particles 14a is 1 to 1. 150 μm, and the mixing ratio (volume ratio of all kinds of metal particles 14) is 80 to 100%, so that the electrode-embedded member 1 can be used under more severe conditions such as a large temperature difference, It can suppress that the base material 2 enters a crack.

なお、いわゆるグリーンシート積層品は一般に印刷により電極を形成するためタングステンの粒子径が1μm以下に調整されるため、粒子径が小さく焼結しやすい。また、電極の外縁部は印刷により厚みが薄くなり鋭角状になる。そのため、焼結後の組織は元の粒子径が分からなくなり一体化(緻密化)するとともに、電極の外縁部に応力が生じ易い形態となる。   In addition, since the so-called green sheet laminated product generally forms electrodes by printing, the particle diameter of tungsten is adjusted to 1 μm or less, so the particle diameter is small and easy to sinter. Further, the outer edge portion of the electrode is thinned by printing to become an acute angle. Therefore, the sintered structure is integrated (densified) because the original particle diameter is not known, and stress is easily generated at the outer edge of the electrode.

それに対して、粒子径が相対的に大きい粒状体(グリーンシート積層品のタングステンペーストの粒子径より大きい粒子径の粒状体)は、粒子径が大きく焼結温度がより高く必要となり、一体化(緻密化)までなかなか状態変化が進まない結果、組織は多孔状(粒子がネッキングして一部焼結した状態)となる。また、接続部材4となる金属成形体4aまたは金属仮焼体に機械加工を施すことにより、接続部材4となる金属成形体4aまたは金属仮焼体の厚みや外形を整えることができ、焼成後の接続部材4における応力集中を抑制することができる。   On the other hand, a granule having a relatively large particle size (a granule having a particle size larger than that of the tungsten paste of the green sheet laminate product) requires a larger particle size and a higher sintering temperature. As a result of the state change hardly progressing to (densification), the structure becomes porous (particles are necked and partially sintered). Moreover, the thickness and the external shape of the metal molded body 4a or the metal calcined body to be the connection member 4 can be adjusted by machining the metal molded body 4a or the metal calcined body to be the connecting member 4, and after firing. The stress concentration in the connecting member 4 can be suppressed.

なお、実施形態では、接続部材4および緩衝部材6をタングステン、モリブデン又はこれらを主成分とする合金からなるバルク体としたが、これに限定されず、端子7よりも平均線膨張係数が小さい値の材料を使用すれば、他の一般的な材料であっても差し支えない。   In the embodiment, the connection member 4 and the buffer member 6 are bulk bodies made of tungsten, molybdenum, or an alloy containing these as a main component. However, the present invention is not limited to this, and the average linear expansion coefficient is smaller than that of the terminal 7. If other materials are used, other general materials can be used.

なお、実施形態では、隙間12の幅を0.1mmとしたが、これに限定されず、隙間12の幅は0.01mm、0.05mm、0.2mmなど間隙が設けられていればよく、さらには端子7が端子穴5に接触して間隙が0であっても差し支えない。また、端子7の直径を4.6mm、5mm等その他の値に変更し、端子穴5の径を4.9mm、5.1mm等その他の値に変更してもよい。   In the embodiment, the width of the gap 12 is 0.1 mm. However, the present invention is not limited to this, and the gap 12 may have a width of 0.01 mm, 0.05 mm, 0.2 mm, or the like. Furthermore, it does not matter even if the terminal 7 contacts the terminal hole 5 and the gap is zero. Moreover, the diameter of the terminal 7 may be changed to other values such as 4.6 mm and 5 mm, and the diameter of the terminal hole 5 may be changed to other values such as 4.9 mm and 5.1 mm.

1 … 電極埋設部材
2 … 基材
2c… セラミックス体
3 … 内部電極
4 … 接続部材
4a… 金属成形体
5 … 端子穴
7 … 端子
14… 金属粒子
14a… 第1の金属粒子(粗粒)
14b… 第2の金属粒子(粉末)
17… 空間
DESCRIPTION OF SYMBOLS 1 ... Electrode embedding member 2 ... Base material 2c ... Ceramic body 3 ... Internal electrode 4 ... Connection member 4a ... Metal molding 5 ... Terminal hole 7 ... Terminal 14 ... Metal particle 14a ... 1st metal particle (coarse particle)
14b ... 2nd metal particle (powder)
17 ... Space

Claims (4)

表面及び裏面を有し、セラミックスからなる板状の基材と、
前記基材の表面に沿って延在し、前記基材に埋設される内部電極と、
前記内部電極に重ねて配置される接続部材と、
前記基材の裏面から前記基材内部の前記接続部材の端面まで穿設される端子穴と、
前記端子穴に配置され、前記接続部材と接続される端子と、
を備える電極埋設部材の製造方法であって、
複数の金属粒子を含む粉末原料を加圧成形することにより前記接続部材となる金属成形体を準備する準備工程と、
前記内部電極及び前記金属成形体が埋設されたセラミックス体を作製するセラミックス体作製工程と、
前記内部電極及び前記金属成形体が埋設されたセラミックス体を焼成することにより内部に金属の存在しない空間を有する前記接続部材が埋設された前記基材を作製する基材作製工程と、
を有することを特徴とする電極埋設部材の製造方法。
A plate-like substrate having a front surface and a back surface and made of ceramics;
An internal electrode extending along the surface of the substrate and embedded in the substrate;
A connecting member disposed over the internal electrode;
A terminal hole drilled from the back surface of the base material to the end face of the connection member inside the base material;
A terminal disposed in the terminal hole and connected to the connection member;
A method of manufacturing an electrode embedding member comprising:
A preparatory step of preparing a metal molded body to be the connection member by pressure-forming a powder raw material containing a plurality of metal particles;
A ceramic body manufacturing step of manufacturing a ceramic body in which the internal electrode and the metal molded body are embedded;
A base material preparation step of preparing the base material in which the connection member having a space in which no metal exists therein is embedded by firing the ceramic body in which the internal electrode and the metal molded body are embedded;
A method for producing an electrode embedding member comprising:
表面及び裏面を有し、セラミックスからなる板状の基材と、
前記基材の表面に沿って延在し、前記基材に埋設される内部電極と、
前記内部電極に重ねて配置される接続部材と、
前記基材の裏面から前記基材内部の前記基材の端面まで穿設される端子穴と、
前記端子穴に配置され、前記接続部材と接続される端子と、
を備える電極埋設部材の製造方法であって、
複数の金属粒子を含む粉末原料を加圧成形した金属成形体を仮焼することにより前記接続部材となる金属仮焼体を準備する準備工程と、
前記内部電極及び前記金属仮焼体が埋設されたセラミックス体を作製するセラミックス体作製工程と、
前記内部電極及び前記金属仮焼体が埋設されたセラミックス体を焼成することにより内部に金属の存在しない空間を有する前記接続部材が埋設された前記基材を作製する基材作製工程と、
を有することを特徴とする電極埋設部材の製造方法。
A plate-like substrate having a front surface and a back surface and made of ceramics;
An internal electrode extending along the surface of the substrate and embedded in the substrate;
A connecting member disposed over the internal electrode;
A terminal hole drilled from the back surface of the substrate to the end surface of the substrate inside the substrate;
A terminal disposed in the terminal hole and connected to the connection member;
A method of manufacturing an electrode embedding member comprising:
A preparatory step of preparing a metal calcined body that becomes the connecting member by calcining a metal molded body obtained by pressure forming a powder raw material containing a plurality of metal particles;
A ceramic body manufacturing step of manufacturing a ceramic body in which the internal electrode and the metal calcined body are embedded;
A base material preparation step for preparing the base material in which the connection member having a space in which no metal exists is embedded by firing the ceramic body in which the internal electrode and the metal calcined body are embedded;
A method for producing an electrode embedding member comprising:
請求項1又は請求項2に記載の電極埋設部材の製造方法であって、
前記準備工程では、粒度の異なる少なくとも2種類の金属粒子を混合することにより前記粉末原料を準備することを特徴とする電極埋設部材の製造方法。
It is a manufacturing method of the electrode embedding member according to claim 1 or 2,
In the preparation step, the powder raw material is prepared by mixing at least two kinds of metal particles having different particle sizes.
請求項1から請求項3の何れか1項に記載の電極埋設部材の製造方法であって、
前記金属成形体又は前記金属仮焼体を準備する前記準備工程は、前記金属成形体に一種類以上の前記金属粒子を使用し、
一つの種類の前記金属粒子の、粒径が1〜150μmであり、全ての種類の前記金属粒子に占める体積割合が80〜100%であることを特徴とする電極埋設部材の製造方法。
It is a manufacturing method of the electrode embedding member according to any one of claims 1 to 3,
The preparation step of preparing the metal formed body or the metal calcined body uses one or more kinds of the metal particles in the metal formed body,
One type of the metal particles have a particle size of 1 to 150 μm, and the volume ratio of all types of the metal particles is 80 to 100%.
JP2019030679A 2018-05-29 2019-02-22 Method for manufacturing electrode-embedded member Active JP7280059B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018102763 2018-05-29
JP2018102763 2018-05-29

Publications (2)

Publication Number Publication Date
JP2019208006A true JP2019208006A (en) 2019-12-05
JP7280059B2 JP7280059B2 (en) 2023-05-23

Family

ID=68767630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019030679A Active JP7280059B2 (en) 2018-05-29 2019-02-22 Method for manufacturing electrode-embedded member

Country Status (1)

Country Link
JP (1) JP7280059B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319295A (en) * 1989-05-12 1991-01-28 Internatl Business Mach Corp <Ibm> Glass-ceramic structure and forming method thereof
JP2002176236A (en) * 2000-12-07 2002-06-21 Murata Mfg Co Ltd Composition for via hole conductor and multilayer ceramic substrate and its producing method
JP2002293655A (en) * 2001-03-29 2002-10-09 Ngk Insulators Ltd Jointing structure of metal terminal and ceramic member, jointing structure of metal member and ceramic member and jointing material for jointing metal terminal and ceramic member
JP2009060103A (en) * 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
JP3154930U (en) * 2009-08-19 2009-10-29 日本碍子株式会社 Ceramic parts with built-in electrodes
JP2011086919A (en) * 2009-09-17 2011-04-28 Ngk Insulators Ltd Electrostatic chuck and manufacturing method of the same
WO2015133576A1 (en) * 2014-03-07 2015-09-11 日本碍子株式会社 Joined body manufacturing method and joined body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319295A (en) * 1989-05-12 1991-01-28 Internatl Business Mach Corp <Ibm> Glass-ceramic structure and forming method thereof
JP2002176236A (en) * 2000-12-07 2002-06-21 Murata Mfg Co Ltd Composition for via hole conductor and multilayer ceramic substrate and its producing method
JP2002293655A (en) * 2001-03-29 2002-10-09 Ngk Insulators Ltd Jointing structure of metal terminal and ceramic member, jointing structure of metal member and ceramic member and jointing material for jointing metal terminal and ceramic member
JP2009060103A (en) * 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
JP3154930U (en) * 2009-08-19 2009-10-29 日本碍子株式会社 Ceramic parts with built-in electrodes
JP2011086919A (en) * 2009-09-17 2011-04-28 Ngk Insulators Ltd Electrostatic chuck and manufacturing method of the same
WO2015133576A1 (en) * 2014-03-07 2015-09-11 日本碍子株式会社 Joined body manufacturing method and joined body

Also Published As

Publication number Publication date
JP7280059B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
JP5926870B1 (en) Ceramic structure, member for substrate holding device, and method for producing ceramic structure
TWI445682B (en) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
KR102657287B1 (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
CN111567139B (en) Holding device and method for manufacturing holding device
CN112313191B (en) Silicon nitride sintered body, silicon nitride substrate, and silicon nitride circuit substrate
JP6654210B2 (en) How to make a mold for sintering
JP5396176B2 (en) Wafer mounting table and manufacturing method thereof
CN114600237A (en) Bonded substrate and method for manufacturing bonded substrate
JP7519168B2 (en) Manufacturing method of ceramic member
JP2019208006A (en) Manufacturing method of electrode embedding member
JP6672244B2 (en) Manufacturing method of ceramic joined body
CN114180942B (en) Composite sintered body, semiconductor manufacturing apparatus member, and method for manufacturing composite sintered body
JP4515562B2 (en) Manufacturing method of ceramic circuit board
US11869796B2 (en) Electrode-embedded member and method for manufacturing same, electrostatic chuck, and ceramic heater
JP7109258B2 (en) Method for manufacturing electrode-embedded member
JP2022096106A (en) Electrode embedded member, manufacturing method of the same, and substrate holding member
JP6898792B2 (en) Ceramic members and their manufacturing methods
JP5245081B2 (en) High hardness high density cubic boron nitride sintered body and method for producing the same
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP2022096105A (en) Electrode embedded member, manufacturing method of the same, and substrate holding member
JP2023116214A (en) Electrode embedded member and method of manufacturing the same
JP2022066856A (en) Substrate holding member
JP2020177735A (en) Manufacturing method of electrode embedded member
JP2024021400A (en) Ceramic heater and method of manufacturing the same
JP2021170567A (en) Holding device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230511

R150 Certificate of patent or registration of utility model

Ref document number: 7280059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150