JP7519168B2 - Manufacturing method of ceramic member - Google Patents
Manufacturing method of ceramic member Download PDFInfo
- Publication number
- JP7519168B2 JP7519168B2 JP2018171651A JP2018171651A JP7519168B2 JP 7519168 B2 JP7519168 B2 JP 7519168B2 JP 2018171651 A JP2018171651 A JP 2018171651A JP 2018171651 A JP2018171651 A JP 2018171651A JP 7519168 B2 JP7519168 B2 JP 7519168B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- bodies
- electrode
- ceramic molded
- calcined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 title claims description 274
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 claims description 39
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000009694 cold isostatic pressing Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims description 2
- 238000010304 firing Methods 0.000 description 19
- 238000005238 degreasing Methods 0.000 description 16
- 238000003754 machining Methods 0.000 description 10
- 238000005336 cracking Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 239000008187 granular material Substances 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 238000005219 brazing Methods 0.000 description 4
- 238000011900 installation process Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910017398 Au—Ni Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- -1 sintering aid Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、セラミックス部材の製造方法に関する。 The present invention relates to a method for manufacturing ceramic members.
半導体製造装置において、ウエハなどの基板を表面に保持する静電チャックや、表面に載置された基板を加熱するヒータ、サセプタなどは、セラミックス焼成体からなる基材の内部に電極を内蔵したセラミックス部材を備えている。 In semiconductor manufacturing equipment, electrostatic chucks that hold substrates such as wafers on their surfaces, heaters that heat substrates placed on their surfaces, and susceptors are equipped with ceramic members that have electrodes built into the base material made of sintered ceramics.
このようなセラミックス部材は、例えば特許文献1に示されるように、冷間等方圧加圧法(CIP)によりセラミックス成形体を成形し、セラミック成形体に形成した溝内に電極を収容し、複数のセラミックス成形体を重ね合わせ、重ね合わせ方向に加圧しながら焼成することにより、電極が内蔵されたセラミックス焼成体を得ることにより製造されることが多い。 As shown in Patent Document 1, for example, such ceramic members are often manufactured by forming ceramic bodies using cold isostatic pressing (CIP), placing electrodes in grooves formed in the ceramic bodies, stacking multiple ceramic bodies, and firing them while applying pressure in the stacking direction to obtain a fired ceramic body with an embedded electrode.
しかしながら、上記従来のようにセラミックス部材を得た場合、その表面に色調差又は色むらが生じることが多いという課題がある。 However, when ceramic parts are obtained in the conventional manner described above, there is a problem that color differences or color unevenness often occur on the surface.
本発明は、かかる事情に鑑みてなされたものであり、表面における色調差又は色むらの抑制を図ることが可能なセラミックス部材の製造方法を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a method for manufacturing ceramic components that can suppress color differences or color unevenness on the surface.
本発明のセラミックス部材の製造方法は、セラミックス原料粉末を冷間等方圧加圧法を用いて成形することにより厚さ2mm以上6mm以下の板状の複数のセラミックス成形体および/又は前記複数のセラミックス成形体を仮焼したセラミックス仮焼体を作製する工程と、前記セラミックス成形体又は前記セラミックス仮焼体を複数枚積層した状態で、前記積層方向に加圧しながら加熱してセラミックス焼結体を形成する工程とを備えることを特徴とする。 The method for manufacturing a ceramic member of the present invention is characterized by comprising the steps of: forming a ceramic raw material powder using cold isostatic pressing to produce a plurality of plate-shaped ceramic molded bodies having a thickness of 2 mm to 6 mm and/or a ceramic calcined body by calcining the plurality of ceramic molded bodies; and stacking a plurality of the ceramic molded bodies or the ceramic calcined bodies and heating them while applying pressure in the stacking direction to form a ceramic sintered body.
発明者は、上記特許文献1に開示されているように、厚さの厚い(上記特許文献1では厚さが15mm、25mm)セラミックス成形体又はセラミックス仮焼体(以下、合わせてセラミックス成形体等ともいう。)を焼成すると、均一に焼成されず、色調差が生じるおそれが高いことを見出した。 The inventors have found that, as disclosed in the above Patent Document 1, when a ceramic molded body or a ceramic calcined body (hereinafter collectively referred to as a ceramic molded body, etc.) having a large thickness (15 mm or 25 mm thickness in the above Patent Document 1) is fired, it is not fired uniformly, and there is a high possibility that color differences will occur.
一方、本発明のセラミックス部材の製造方法においては、セラミックス成形体等の積層体の積層界面は脱脂や焼成等の加熱時の炉内雰囲気の影響を受けやすいが、セラミックス成形体の厚さが2mm以上6mm以下と薄いので、厚さの厚いセラミックス成形体等を用いる場合と比べて所定厚みのセラミックス焼結体を得る際に形成される積層界面が増える。これにより、焼成時の複数のセラミックス成形体等の間での物質移動やセラミックス成形体の脱脂が促進されると考えられる。その結果、各セラミックス成形体等は均一に焼成されるので、セラミックス部材の表面における色調差発生の抑制を図ることが可能となる。 On the other hand, in the method for manufacturing a ceramic member of the present invention, the lamination interfaces of laminates such as ceramic molded bodies are easily affected by the furnace atmosphere during heating such as degreasing and firing, but since the ceramic molded bodies are thin, at 2 mm to 6 mm, the number of lamination interfaces formed when obtaining a ceramic sintered body of a specified thickness increases compared to when thicker ceramic molded bodies are used. This is thought to promote material transfer between multiple ceramic molded bodies during firing and degreasing of the ceramic molded bodies. As a result, each ceramic molded body is fired uniformly, making it possible to suppress the occurrence of color differences on the surface of the ceramic member.
セラミックス成形体等の厚さが2mmより薄いとセラミックス成形体等の取り扱いが難しく、セラミックス成形体等の積層体を容易に得ることが困難になる。また、セラミックス成形体等の厚さが6mmを超えると、所定厚みのセラミックス焼結体を得る際に必要なセラミックス成形体等の積層数が相対的に少なくなる。その結果、脱脂や焼成等の加熱時における積層界面からのガスの放出や積層界面での物質移動が相対的に抑制されるために均一に焼成されず、セラミックス部材が均質となり難く、その表面の色調の不均一さを招くおそれがある。 If the thickness of the ceramic molded body is less than 2 mm, it is difficult to handle the ceramic molded body, and it is difficult to easily obtain a laminate of the ceramic molded body. If the thickness of the ceramic molded body exceeds 6 mm, the number of laminated ceramic molded bodies required to obtain a ceramic sintered body of a specified thickness is relatively small. As a result, gas emission from the laminated interface during heating such as degreasing and firing, and material transfer at the laminated interface are relatively suppressed, so the ceramic member is not fired uniformly, making it difficult to achieve a homogeneous ceramic member, and there is a risk of the surface color tone becoming uneven.
さらに、発明者は、積層方向に加圧しながら加熱してセラミックス焼結体を形成する際に、内部のセラミックス成形体等に割れが加熱途中で生じ易く、その後の加熱によって割れの発生箇所が一体化されたとしても割れが存在したことに起因する色むらが完成品であるセラミックス部材の表面に生じるおそれが高いことも見出した。 The inventors also discovered that when forming a ceramic sintered body by heating while applying pressure in the stacking direction, cracks are likely to occur in the internal ceramic molding during heating, and even if the cracked areas are integrated by subsequent heating, there is a high risk that color unevenness caused by the presence of the cracks will occur on the surface of the finished ceramic component.
一方、本発明のセラミックス部材の製造方法においては、セラミックス焼結体を形成する際に、セラミックス成形体等に割れが生じても、この割れは当該セラミックス成形体等に留まり、他のセラミックス成形体等に影響を与えない。そして、割れが生じたセラミックス成形体等が焼成後のセラミックス部材の内部に位置していれば、セラミックス部材の表面における色むら発生の抑制を図ることが可能となる。 On the other hand, in the method for manufacturing a ceramic member of the present invention, even if a crack occurs in a ceramic molded body when forming a ceramic sintered body, the crack remains in the ceramic molded body and does not affect other ceramic molded bodies. Furthermore, if the ceramic molded body in which the crack occurs is located inside the ceramic member after firing, it is possible to suppress the occurrence of color unevenness on the surface of the ceramic member.
本発明のセラミックス部材の製造方法において、前記複数のセラミックス成形体又は前記複数のセラミックス仮焼体の少なくとも1枚に電極を配置する工程を備える。 The method for manufacturing a ceramic member of the present invention further comprises a step of arranging an electrode on at least one of the plurality of ceramic formed bodies or the plurality of ceramic calcined bodies.
これにより、内部に電極が埋設されたセラミックス部材を得ることが可能になる。さらに、電極が配置されたセラミックス成形体等は、積層方向に加圧しながら加熱してセラミックス焼結体を形成する際に、割れが生じ易い。しかし、この割れが生じ易いセラミックス成形体等が複数のセラミックス成形体等の積層体の内部に存在していれば、セラミックス部材の表面に色むらは発生せず、色むらの抑制を図ることが可能となる。 This makes it possible to obtain a ceramic member having electrodes embedded therein. Furthermore, ceramic molded bodies with electrodes disposed therein are prone to cracking when heated while being pressurized in the stacking direction to form a ceramic sintered body. However, if such a ceramic molded body that is prone to cracking is present inside a stack of multiple ceramic molded bodies, color unevenness will not occur on the surface of the ceramic member, and it is possible to suppress color unevenness.
また、本発明のセラミックス部材の製造方法において、前記電極を配置する、前記複数のセラミックス成形体又は前記複数のセラミックス仮焼体の少なくとも1枚に前記電極と接する導電性の塊状の接続部材を配置する工程と、前記セラミックス焼結体の一の面から前記接続部材に達する穴を形成する工程と、前記接続部材に電気的に接続され、前記穴内に少なくとも一部が位置する接続端子を設ける工程とを備える。
In addition, the method for manufacturing a ceramic member of the present invention includes the steps of arranging the electrode and arranging a conductive lump- shaped connecting member in contact with the electrode on at least one of the plurality of ceramic molded bodies or the plurality of ceramic calcined bodies; forming a hole reaching the connecting member from one surface of the ceramic sintered body; and providing a connecting terminal that is electrically connected to the connecting member and has at least a portion located within the hole.
これにより、内部に電極及びこの電極に電気的に接続された接続部材が埋設されたセラミックス部材を得ることが可能になる。さらに、セラミックス成形体等に電極又は接続部材を収容するための穴又は凹部を形成する場合、このような穴又は凹部が形成されたセラミックス成形体等を積層方向に加圧しながら加熱してセラミックス焼結体を形成する際に、割れが生じ易い。しかし、この割れが生じ易いセラミックス成形体等は複数のセラミックス成形体等の積層体の内部に存在していれば、セラミックス部材の表面に色むらが発生せず、色むらの抑制を図ることが可能となる。 This makes it possible to obtain a ceramic member having an electrode and a connection member electrically connected to the electrode embedded therein. Furthermore, when a hole or recess for accommodating an electrode or a connection member is formed in a ceramic molded body or the like, cracks are likely to occur when the ceramic molded body or the like having such a hole or recess formed therein is heated while being pressurized in the stacking direction to form a ceramic sintered body. However, if the ceramic molded body or the like that is prone to cracking is present inside a stack of multiple ceramic molded bodies or the like, color unevenness will not occur on the surface of the ceramic member, and color unevenness can be suppressed.
また、本発明のセラミックス部材の製造方法において、前記電極が配置された少なくとも1枚の前記複数のセラミックス成形体又は前記複数のセラミックス仮焼体の厚さ方向に沿った上下にそれぞれ少なくとも2枚の前記セラミックス成形体又は前記セラミックス仮焼体を積層する。 In addition, in the manufacturing method of a ceramic member of the present invention, at least two of the ceramic molded bodies or the ceramic calcined bodies are stacked above and below at least one of the plurality of ceramic molded bodies or the plurality of ceramic calcined bodies on which the electrode is arranged in the thickness direction .
これにより、電極が配置されたセラミックス成形体等は、積層方向に加圧しながら加熱してセラミックス焼結体を形成する際に、割れが生じ易いが、この割れが生じ易いセラミックス成形体等は複数のセラミックス成形体等の積層体の内部に存在しているので、セラミックス部材の表面に色むらが発生せず、色むらの抑制を図ることが可能となる。 As a result , ceramic molded bodies, etc. on which electrodes are arranged are prone to cracking when they are heated while being pressurized in the stacking direction to form a ceramic sintered body, but since the ceramic molded bodies, etc. that are prone to cracking are present inside a stack of multiple ceramic molded bodies, etc., color unevenness does not occur on the surface of the ceramic component, and it is possible to suppress color unevenness.
特に、セラミックス成形体等の加熱途中での割れは、セラミックス成形体等と電極等の他部材との境界近傍で発生することが多い。しかしながら、電極から離れたセラミックス成形体等にまで割れが伝播しないため、セラミックス部材の表面に色むらが発生せず、色むらの抑制を図ることが可能となる。 In particular, cracks occurring during heating of ceramic formed bodies and the like often occur near the boundary between the ceramic formed body and other components such as electrodes. However, because the cracks do not propagate to the ceramic formed body and the like that is far from the electrode, color unevenness does not occur on the surface of the ceramic component, making it possible to suppress color unevenness.
また、本発明のセラミックス部材の製造方法において、前記複数のセラミックス成形体又は前記複数のセラミックス仮焼体の少なくとも1枚に形成された凹部又は穴部に前記電極を配置する工程を備えることが好ましい。 The method for manufacturing a ceramic member of the present invention preferably further comprises the step of arranging the electrode in a recess or hole formed in at least one of the plurality of ceramic formed bodies or the plurality of ceramic calcined bodies.
この場合、セラミックス成形体等に電極を収容するための穴又は凹部を形成しており、このような穴又は凹部が形成されたセラミックス成形体等は、積層方向に加圧しながら加熱してセラミックス焼結体を形成する際に、割れが生じ易い。しかし、この割れが生じ易いセラミックス成形体等は複数のセラミックス成形体等の積層体の内部に存在していれば、セラミックス部材の表面に色むらが発生せず、色むらの抑制を図ることが可能となる。 In this case, holes or recesses are formed in the ceramic molded body etc. to accommodate the electrodes, and the ceramic molded body etc. with such holes or recesses formed therein is prone to cracking when heated while being pressurized in the stacking direction to form a ceramic sintered body. However, if this crack-prone ceramic molded body etc. is present inside a stack of multiple ceramic molded bodies etc., color unevenness does not occur on the surface of the ceramic member, and it is possible to suppress color unevenness.
特に、セラミックス成形体等を加圧しながら加熱する場合、セラミックス成形体等の加熱途中での割れは、セラミックス成形体等と電極等の他部材との境界近傍で発生することが多い。しかしながら、電極から離れたセラミックス成形体等にまで割れが伝播しないため、セラミックス部材の表面に色むらが発生せず、色むらの抑制を図ることが可能となる。 In particular, when a ceramic molded body is heated while being pressurized, cracks in the ceramic molded body during heating often occur near the boundary between the ceramic molded body and other components such as the electrode. However, because the cracks do not propagate to the ceramic molded body away from the electrode, color unevenness does not occur on the surface of the ceramic component, making it possible to suppress color unevenness.
また、本発明のセラミックス部材の製造方法において、前記複数のセラミックス成形体又は前記複数のセラミックス仮焼体の少なくとも1枚に形成された凹部又は穴部に電極及び前記電極と接する導電性の接続部材を配置する工程を備えることが好ましい。 In addition, in the method for manufacturing a ceramic member of the present invention, it is preferable to further include a step of placing an electrode and a conductive connecting member in contact with the electrode in a recess or hole formed in at least one of the plurality of ceramic formed bodies or the plurality of ceramic calcined bodies.
この場合、セラミックス成形体等に電極及び接続部材を収容するための穴又は凹部を形成しており、このような穴又は凹部が形成されたセラミックス成形体等は、積層方向に加圧しながら加熱してセラミックス焼結体を形成する際に、割れが生じ易い。しかし、この割れが生じ易いセラミックス成形体等は複数のセラミックス成形体等の積層体の内部に存在していれば、セラミックス部材の表面に色むらが発生せず、色むらの抑制を図ることが可能となる。 In this case, holes or recesses are formed in the ceramic molded body etc. to accommodate the electrodes and connecting members, and the ceramic molded body etc. with such holes or recesses formed is prone to cracking when heated while being pressurized in the stacking direction to form a ceramic sintered body. However, if this crack-prone ceramic molded body etc. is present inside a stack of multiple ceramic molded bodies etc., color unevenness will not occur on the surface of the ceramic member, and it is possible to suppress color unevenness.
また、本発明のセラミックス部材の製造方法において、前記凹部又は穴部が形成された少なくとも1枚の前記セラミックス成形体又は前記セラミックス仮焼体の厚さ方向に沿った上下にそれぞれ少なくとも2枚の前記セラミックス成形体又は前記セラミックス仮焼体を積層することが好ましい。 In addition, in the method for manufacturing a ceramic member of the present invention, it is preferable to stack at least two ceramic molded bodies or ceramic calcined bodies on top and bottom of at least one ceramic molded body or ceramic calcined body in the thickness direction in which the recess or hole is formed.
この場合、電極又は接続部材を収容するために穴又は凹部が形成されたセラミックス成形体等は、積層方向に加圧しながら加熱してセラミックス焼結体を形成する際に、割れが生じ易いが。この割れが生じ易いセラミックス成形体等は複数のセラミックス成形体等の積層体の内部に存在しているので、セラミックス部材の表面に色むらが発生せず、色むらの抑制を図ることが可能となる。 In this case, ceramic molded bodies etc. in which holes or recesses are formed to accommodate electrodes or connecting members are prone to cracking when they are heated while being pressurized in the stacking direction to form a ceramic sintered body. However, because these ceramic molded bodies etc. prone to cracking are present inside a stack of multiple ceramic molded bodies etc., color unevenness does not occur on the surface of the ceramic member, making it possible to suppress color unevenness.
特に、セラミックス成形体等の加熱途中での割れは、凹部又は穴の近傍で発生することが多い。しかしながら、凹部又は穴から離れたセラミックス成形体等にまで割れが伝播しないため、セラミックス部材の表面に色むらが発生せず、色むらの抑制を図ることが可能となる。 In particular, cracks occurring during heating of ceramic formed bodies and the like often occur near recesses or holes. However, because the cracks do not propagate to the ceramic formed body and the like that are far from the recesses or holes, color unevenness does not occur on the surface of the ceramic component, making it possible to suppress color unevenness.
本発明の実施形態に係るセラミックス部材100の製造方法について図面を参照して説明する。なお、各図面は、セラミックス部材100及び構成要素などを明確化するためにデフォルメされており、実際の比率を表すものではなく、上下などの方向、セラミックス成形体等10の個数も単なる例示である。 A method for manufacturing a ceramic member 100 according to an embodiment of the present invention will be described with reference to the drawings. Note that each drawing has been deformed to clarify the ceramic member 100 and its components, and does not represent the actual proportions. The directions such as up and down and the number of ceramic formed bodies 10 are merely examples.
本発明の実施形態に係るセラミックス部材100の製造方法は、図1に示すように、セラミックス成形体等作製工程(STEP1)、電極配置工程(STEP2)、接続部材配置工程(STEP3)、積層工程(STEP4)、脱脂工程(STEP5)、焼成工程(STEP6)、接続穴形成工程(STEP7)及び接続端子設置工程(STEP8)を備えている。 As shown in FIG. 1, the method for manufacturing the ceramic member 100 according to the embodiment of the present invention includes a ceramic compact manufacturing process (STEP 1), an electrode arrangement process (STEP 2), a connection member arrangement process (STEP 3), a lamination process (STEP 4), a degreasing process (STEP 5), a firing process (STEP 6), a connection hole formation process (STEP 7), and a connection terminal installation process (STEP 8).
まず、図2に示すように、セラミックス成形体等作製工程(STEP1)においては、セラミックス原料を冷間等方圧加圧法(CIP:Cold Isostatic Pressing)を用いて成形することにより板状の複数枚のセラミックス成形体10を作製する。具体的には、窒化アルミニウム(AlN)などのセラミックス粉末にバインダ、可塑剤、焼結助剤、分散剤などを添加し、溶剤を用いて混合した後、スプレードライ乾燥をすることで、セラミックス顆粒を得る。そして、このセラミックス顆粒をCIP成形することによりインゴットを得て、このインゴットを機械加工して所定の外形に形成することによりセラミックス成形体10を作製する。 First, as shown in FIG. 2, in the ceramic molded body production process (STEP 1), ceramic raw materials are molded using cold isostatic pressing (CIP) to produce multiple plate-shaped ceramic molded bodies 10. Specifically, a binder, plasticizer, sintering aid, dispersant, etc. are added to ceramic powder such as aluminum nitride (AlN), mixed with a solvent, and then spray-dried to obtain ceramic granules. These ceramic granules are then molded using CIP to obtain an ingot, which is then machined to form into a desired shape to produce the ceramic molded body 10.
セラミックス成形体等作製工程(STEP1)には、得られたセラミックス成形体10を脱脂してセラミックス仮焼体を作製する脱脂工程が含まれていてもよい。以下、セラミックス成形体等作製工程(STEP1)において作製されるセラミックス成形体又はセラミックス仮焼体を合わせて、セラミックス成形体等10ともいう。 The ceramic molded body, etc., production process (STEP 1) may include a degreasing process in which the obtained ceramic molded body 10 is degreased to produce a ceramic calcined body. Hereinafter, the ceramic molded body or the ceramic calcined body produced in the ceramic molded body, etc., production process (STEP 1) will be collectively referred to as the ceramic molded body, etc. 10.
セラミックス成形体等10の厚さは、2mm以上6mm以下、より好ましくは2mm以上5mm以下であり、全体に亘って一定であることが好ましい。 The thickness of the ceramic molded body 10 is preferably 2 mm or more and 6 mm or less, more preferably 2 mm or more and 5 mm or less, and is preferably constant throughout.
電極配置工程(STEP2)においては、セラミックス成形体等10の少なくとも1枚に電極20を配置する。 In the electrode placement process (STEP 2), an electrode 20 is placed on at least one of the ceramic molded bodies 10.
電極20の配置は、予めセラミックス成形体等作製工程(STEP1)において、セラミックス成形体等10の一の表面(図2における上面)11に凹部12を機械加工によって形成し、この凹部12にモリブデン(Mo)、タングステン(W)又はこれらの合金などの導電性材料からなる箔、メッシュ状などの電極20を収容することによって行う。また、図示しないが、セラミックス成形体等10の一の表面に導電性ペーストの印刷などによって塗布することにより電極を形成してもよい。 The electrode 20 is arranged by forming a recess 12 by machining on one surface (upper surface in FIG. 2) 11 of the ceramic molded body 10 in advance in the ceramic molded body manufacturing process (STEP 1), and accommodating an electrode 20 in the form of a foil, mesh, or the like, made of a conductive material such as molybdenum (Mo), tungsten (W), or an alloy thereof, in this recess 12. In addition, although not shown, an electrode may be formed by applying a conductive paste to one surface of the ceramic molded body 10 by printing, etc.
なお、後述する積層工程(STEP4)において、電極20が形成されたセラミックス成形体等10の上下には別のセラミックス成形体等10が少なくとも1層以上、好ましくは2層以上配置されていてもよい。 In addition, in the stacking step (STEP 4) described later, at least one layer, preferably two layers, of other ceramic molded bodies 10 may be arranged above and below the ceramic molded body 10 on which the electrode 20 is formed.
さらに、図示しないが、セラミックス成形体等10に貫通孔を形成して、後述する積層工程(STEP4)においてセラミックス成形体等10を積層してセラミックス積層体40(図3参照)を形成する際に、この貫通孔内に箔、メッシュ状などの電極20を収容してもよい。 Furthermore, although not shown, a through hole may be formed in the ceramic molded body 10, and a foil, mesh, or other electrode 20 may be housed in the through hole when the ceramic molded bodies 10 are stacked to form the ceramic laminate 40 (see FIG. 3) in the stacking step (STEP 4) described below.
接続部材配置工程(STEP3)においては、セラミックス成形体等10の少なくとも1枚に接続部材30を配置する。 In the connection member placement process (STEP 3), a connection member 30 is placed on at least one of the ceramic molded bodies 10.
接続部材30の配置は、予めセラミックス成形体等作製工程(STEP1)において、セラミックス成形体等10の一の表面(図2における上面)11に凹部13を機械加工によって形成し、この凹部13にモリブデン(Mo)、タングステン(W)又はこれらの合金などの導電性材料からなる塊状の接続部材30を収容することによって行う。 The connection member 30 is arranged in advance in the ceramic compact manufacturing process (STEP 1) by forming a recess 13 by machining on one surface 11 (the upper surface in FIG. 2) of the ceramic compact 10, and placing a lump-shaped connection member 30 made of a conductive material such as molybdenum (Mo), tungsten (W), or an alloy of these in this recess 13.
図2に示すように、凹部12を形成したセラミックス成形体等10に凹部13を形成してもよく、この場合、凹部12,13は一体化している。そして、凹部13に接続部材30が配置され、その後、凹部12に電極20が配置されることにより、電極20と接続部材30は接触して配置されることになる。 As shown in FIG. 2, a recess 13 may be formed in a ceramic molded body 10 having a recess 12 formed therein. In this case, the recesses 12 and 13 are integrated. Then, a connection member 30 is placed in the recess 13, and then an electrode 20 is placed in the recess 12, so that the electrode 20 and the connection member 30 are placed in contact with each other.
なお、図示しないが、セラミックス成形体等10に貫通孔を形成して、後述する積層工程(STEP4)においてセラミックス成形体等10を積層してセラミックス積層体40(図3参照)を形成する際に、この貫通孔内に接続部材を収容してもよい。また、電極20を収容する孔と接続部材30を収容する孔とが一体化されてなる貫通孔を形成してもよい。 Although not shown, a through hole may be formed in the ceramic molded body 10, and a connection member may be accommodated in the through hole when the ceramic molded bodies 10 are stacked to form the ceramic laminate 40 (see FIG. 3) in the stacking step (STEP 4) described below. Also, a through hole may be formed in which a hole that accommodates the electrode 20 and a hole that accommodates the connection member 30 are integrated.
積層工程(STEP4)においては、セラミックス成形体等10を複数枚厚み方向(上下方向)に積層してセラミックス積層体40を得る。 In the stacking step (STEP 4), multiple ceramic molded bodies 10 are stacked in the thickness direction (vertical direction) to obtain a ceramic laminate 40.
このとき、電極20を配置したセラミックス成形体等10と接続部材30を配置したセラミックス成形体等10が別個である場合には、電極20と接続部材30とが接触するように、電極20が配置されたセラミックス成形体等10と接続部材30が配置されたセラミックス成形体等10とが隣接するように積層する。さらに、電極20又は接続部材30が配置されたセラミックス成形体等10の厚さ方向に沿った上下にそれぞれ少なくとも2枚のセラミックス成形体等10が存在するように積層する。 At this time, if the ceramic formed body 10 with the electrode 20 arranged thereon and the ceramic formed body 10 with the connection member 30 arranged thereon are separate, the ceramic formed body 10 with the electrode 20 arranged thereon and the ceramic formed body 10 with the connection member 30 arranged thereon are stacked so that they are adjacent to each other and the electrodes 20 and the connection member 30 are in contact with each other. Furthermore, the ceramic formed bodies 10 are stacked so that there are at least two ceramic formed bodies 10 above and below the ceramic formed body 10 with the electrode 20 or the connection member 30 arranged thereon in the thickness direction.
脱脂工程(STEP5)においては、セラミックス積層体40からバインダ成分を脱脂してセラミックス仮焼体(不図示)を得る。具体的には、セラミックス積層体40を焼成炉内に入れ、炉内を大気雰囲気とした所定温度で常圧焼成して脱脂する。 In the degreasing step (STEP 5), the binder components are degreased from the ceramic laminate 40 to obtain a ceramic calcined body (not shown). Specifically, the ceramic laminate 40 is placed in a firing furnace and degreased by firing at normal pressure at a predetermined temperature with the furnace in an air atmosphere.
なお、STEP1に脱脂工程を設け、この脱脂工程において各セラミックス成形体10を脱脂(仮焼)してセラミックス仮焼体を得てもよい。この場合、STEP2以降の工程におけるセラミックス成形体等10はセラミックス仮焼体となる。さらに、この場合、STEP5を省略することができる場合がある。 In addition, a degreasing step may be provided in STEP 1, and each ceramic molded body 10 may be degreased (calcined) in this degreasing step to obtain a ceramic calcined body. In this case, the ceramic molded bodies 10 in the steps from STEP 2 onwards become ceramic calcined bodies. Furthermore, in this case, STEP 5 may be omitted.
焼成工程(STEP6)においては、セラミックス積層体40から得られるセラミックス仮焼体をホットプレスにより焼成する。具体的には、セラミックス仮焼体をホットプレス焼成炉に入れ、セラミックス仮焼体40を積層方向(上下方向)に所定圧力で加圧しながら不活性雰囲気又は真空雰囲気において所定温度で所定時間加熱する。これにより、図4に示すように、セラミックス仮焼体は一体化してセラミックス焼結体50となる。そして、このセラミックス焼結体50には、互い接続された電極20及び接続部材30が埋設されている。 In the firing step (STEP 6), the ceramic calcined body obtained from the ceramic laminate 40 is fired by hot pressing. Specifically, the ceramic calcined body is placed in a hot press firing furnace, and the ceramic calcined body 40 is heated at a predetermined temperature for a predetermined time in an inert atmosphere or vacuum atmosphere while being pressurized at a predetermined pressure in the stacking direction (vertical direction). As a result, the ceramic calcined body is integrated into a ceramic sintered body 50 as shown in FIG. 4. The electrodes 20 and connecting members 30 connected to each other are embedded in this ceramic sintered body 50.
なお、セラミックス積層体40を同じ炉で加熱することにより、脱脂工程(STEP5)と焼成工程(STEP6)とを連続的に行ってもよい。例えば、湿潤水素ガス雰囲気での脱脂の後、還元雰囲気で常圧焼成することにより、脱脂工程(STEP5)と焼成工程(STEP6)とを連続的に行うことができる。 The degreasing step (STEP 5) and the firing step (STEP 6) may be performed consecutively by heating the ceramic laminate 40 in the same furnace. For example, the degreasing step (STEP 5) and the firing step (STEP 6) can be performed consecutively by degreasing in a wet hydrogen gas atmosphere and then firing at normal pressure in a reducing atmosphere.
接続穴形成工程(STEP7)においては、セラミックス焼結体50の接続部材30側の面51(図4における下面)から接続部材30に達する接続穴52を機械加工によって形成する。すなわち、接続穴52を形成することにより接続部材30の端面の少なくとも一部を露出させる。なお、セラミックス焼結体50の外形を適宜所望の形状とするために機械加工をしてもよい。 In the connection hole forming process (STEP 7), a connection hole 52 is formed by machining from the surface 51 (the lower surface in FIG. 4) of the ceramic sintered body 50 on the connection member 30 side to the connection member 30. That is, by forming the connection hole 52, at least a part of the end surface of the connection member 30 is exposed. Note that machining may be performed to appropriately shape the outer shape of the ceramic sintered body 50 into a desired shape.
接続端子設置工程(STEP8)においては、接続部材30に電気的に接続され、接続穴52内に少なくとも一部が位置する接続端子60を設ける。接続端子60は、チタン(Ti)、ニッケル(Ni)などの耐熱性、耐酸性及び導電性の優れた金属から形成されており、本実施形態では、丸棒状となっている。接続部材30と接続端子60とは例えばろう付けなどによって接続される。また、タングステンやモリブデン又はこれらの合金からなる第2の接続部材を接続部材30と接続端子60との間に介在させることによりろう付け時の残留応力を緩和させてもよい。 In the connection terminal installation process (STEP 8), a connection terminal 60 is provided that is electrically connected to the connection member 30 and at least a portion of which is located within the connection hole 52. The connection terminal 60 is made of a metal with excellent heat resistance, acid resistance, and electrical conductivity, such as titanium (Ti) or nickel (Ni), and in this embodiment, is in the shape of a round bar. The connection member 30 and the connection terminal 60 are connected by brazing, for example. Residual stress during brazing may also be alleviated by interposing a second connection member made of tungsten, molybdenum, or an alloy thereof between the connection member 30 and the connection terminal 60.
なお、図示しないが、接続部材30の露出した表面にニッケル(Ni)などのメッキを行ってメッキ層を設け、このメッキ層にろう付けなどによって接続端子60を接続してもよい。そして、図示しないが、接続端子には、その下端側に図示しない電源が電気的に接続される。 Although not shown, the exposed surface of the connection member 30 may be plated with nickel (Ni) or the like to provide a plating layer, and the connection terminal 60 may be connected to this plating layer by brazing or the like. Although not shown, a power source (not shown) is electrically connected to the lower end side of the connection terminal.
これにより、図4に示すようなセラミックス部材100が完成する。 This completes the ceramic member 100 as shown in Figure 4.
発明者は、上記特許文献1に開示されているように、厚さの厚い(上記特許文献1では厚さが15mm、25mm)セラミックス成形体を焼成すると、均一に焼成されず、色調差が発生するおそれが高いことを見出した。 The inventors discovered that, as disclosed in the above Patent Document 1, when firing a ceramic molded body with a large thickness (15 mm and 25 mm in the above Patent Document 1), it is not fired uniformly and there is a high possibility that color differences will occur.
一方、本実施形態においては、セラミックス成形体等10の厚さが2mm以上6mm以下と薄く、これらは均一に焼成されるので、セラミックス部材100の表面における色調差の発生の抑制を図ることが可能となる。 On the other hand, in this embodiment, the ceramic molded body 10 is thin, at 2 mm or more and 6 mm or less, and is fired uniformly, making it possible to suppress the occurrence of color differences on the surface of the ceramic member 100.
さらに、発明者は、焼成工程(STEP6)におけるホットプレスの際に、セラミックス成形体等10に割れが生じ易く、その後の焼成過程において一体化されたとしても割れが存在したことに起因する色むらが完成品であるセラミックス部材100の表面に生じるおそれが高いことも見出した。 The inventors have also found that cracks are likely to occur in the ceramic molded body 10 during the hot pressing in the firing process (STEP 6), and that even if the molded body is integrated in the subsequent firing process, there is a high possibility that uneven coloring due to the presence of the cracks will occur on the surface of the finished ceramic member 100.
一方、本実施形態においては、焼成工程(STEP6)において、電極20や接続部材30を収容するための凹部12,13や孔が形成されているセラミックス成形体等10に割れが生じても、この割れは当該セラミックス成形体等10に留まり、他のセラミックス成形体等10に影響を与えない。そして、割れが生じたセラミックス成形体等10はセラミックス部材100の表面ではなく内部に位置している。これらにより、セラミックス部材100の表面における色むら発生の抑制を図ることが可能となる。 On the other hand, in this embodiment, even if a crack occurs in the ceramic formed body 10 in which the recesses 12, 13 and holes for accommodating the electrodes 20 and the connecting members 30 are formed during the firing process (STEP 6), the crack remains in the ceramic formed body 10 and does not affect other ceramic formed bodies 10. Furthermore, the ceramic formed body 10 in which the crack occurs is located inside the ceramic member 100, not on its surface. This makes it possible to suppress the occurrence of color unevenness on the surface of the ceramic member 100.
以下、本発明の実施例及び比較例を具体的に挙げて、図1などを参照して本発明を説明する。 The present invention will be explained below with specific examples and comparative examples, with reference to Figure 1, etc.
(実施例1)
まず、図2に示すように、セラミックス成形体等作製工程(STEP1)として、窒化アルミニウム(AlN)粉末95質量%に焼結助剤として酸化イットリウム(Y2O3)を5質量%添加し、溶剤を用いて混合した後、スプレードライ乾燥して、セラミックス顆粒を得た。そして、このセラミックス顆粒を、1ton/cm2の圧力でCIP成形することにより、セラミックス成形体のインゴットを得た。そして、このインゴットを機械加工して、直径340mm、厚さ5mmの円板状のセラミックス成形体10を複数枚得た。
Example 1
First, as shown in Fig. 2, in the ceramic molded body production process (STEP 1), 5 mass% of yttrium oxide ( Y2O3 ) as a sintering aid was added to 95 mass% of aluminum nitride ( AlN ) powder, mixed using a solvent, and then spray-dried to obtain ceramic granules. The ceramic granules were then subjected to CIP molding at a pressure of 1 ton/ cm2 to obtain an ingot of a ceramic molded body. The ingot was then machined to obtain multiple disc-shaped ceramic molded bodies 10 with a diameter of 340 mm and a thickness of 5 mm.
そして、1枚のセラミックス成形体10の一の表面11に、その中心を中心とした直径300mm、深さ1mmの凹部12を機械加工によって形成した。さらに、この凹部12の中心を中心とした直径8mm、深さ0.5mmの凹部13を機械加工によって形成した。 A recess 12 with a diameter of 300 mm and a depth of 1 mm was formed by machining on one surface 11 of one ceramic molded body 10, centered on the center. Furthermore, a recess 13 with a diameter of 8 mm and a depth of 0.5 mm was formed by machining on the center of this recess 12.
次に、電極配置工程(STEP2)及び接続部材配置工程(STEP3)として、凹部13に、直径8mm、厚さ0.5mmの円板状のタングステンペレットからなる接続部材30を配置すると共に、凹部12に、線径0.1mmのモリブデンワイヤを平織してなるメッシュを直径294mmの円形状に裁断してなる電極20を配置した。メッシュサイズは#50であった。 Next, in the electrode placement step (STEP 2) and the connection member placement step (STEP 3), a connection member 30 consisting of a disk-shaped tungsten pellet with a diameter of 8 mm and a thickness of 0.5 mm was placed in the recess 13, and an electrode 20 consisting of a mesh made of plain-woven molybdenum wire with a wire diameter of 0.1 mm cut into a circle with a diameter of 294 mm was placed in the recess 12. The mesh size was #50.
次に、積層工程(STEP4)として、合計10枚のセラミック成形体10を厚さ方向に積層してセラミックス積層体40を得た。電極20及び接続部材30を配置したセラミックス成形体等10の上に3枚、下に6枚、それぞれセラミックス成形体10を積層した。 Next, in the stacking step (STEP 4), a total of 10 ceramic molded bodies 10 were stacked in the thickness direction to obtain a ceramic laminate 40. Three ceramic molded bodies 10 were stacked on top of the ceramic molded body 10 on which the electrodes 20 and connection members 30 were arranged, and six ceramic molded bodies 10 were stacked on the bottom.
次に、脱脂工程(STEP5)として、セラミックス積層体40を脱脂炉内に入れ、大気雰囲気で炉内温度500℃を1時間維持して脱脂して、セラミックス仮焼体の積層体を得た。 Next, in the degreasing step (STEP 5), the ceramic laminate 40 was placed in a degreasing furnace, and the temperature inside the furnace was maintained at 500°C in an air atmosphere for 1 hour to degrease the laminate, thereby obtaining a laminate of a ceramic calcined body.
次に、焼成工程(STEP6)として、セラミックス仮焼体の積層体をカーボン型内に移設し、これをホットプレス炉内に入れ、積層方向に1MPa以上の圧力で加圧しながらアルゴン雰囲気において炉内温度1800℃を2時間維持して焼成し、セラミックス焼結体50を得た。 Next, in the firing process (STEP 6), the ceramic calcined body stack was transferred into a carbon mold, which was then placed in a hot press furnace. The stack was pressed in the stacking direction at a pressure of 1 MPa or more while being fired in an argon atmosphere at a furnace temperature of 1800°C for 2 hours, yielding a ceramic sintered body 50.
次に、セラミックス焼結体50の外形全面に対して研削加工及び研磨加工を行う、直径320mm厚さ25mmの円板状に形成した。このとき、電極20の上面からセラミックス焼結体50の上面までの距離(絶縁体厚さ)は0.3mmであった。そして、セラミックス焼結体50の上面はウエハ載置面であり、その表面粗さRaは0.4μmであった。 Next, the entire outer surface of the ceramic sintered body 50 was ground and polished to form a disk shape with a diameter of 320 mm and a thickness of 25 mm. At this time, the distance from the upper surface of the electrode 20 to the upper surface of the ceramic sintered body 50 (insulator thickness) was 0.3 mm. The upper surface of the ceramic sintered body 50 was the wafer mounting surface, and its surface roughness Ra was 0.4 μm.
次に、接続穴形成工程(STEP7)として、セラミックス焼結体50の接続部材30側の面51から接続部材30に達する、直径5mmの断面円形状の接続穴52を機械加工によって形成した。 Next, in the connection hole forming process (STEP 7), a connection hole 52 with a circular cross section and a diameter of 5 mm was formed by machining from the surface 51 of the ceramic sintered body 50 facing the connection member 30 to the connection member 30.
次に、接続端子設置工程(STEP8)として、直径5mm、厚さ2mmの円板状のコバール製の緩衝部材(不図示)、及び直径5mm、長さ30mmの円柱状のニッケル製の接続端子60を準備した。 Next, for the connection terminal installation process (STEP 8), a disk-shaped Kovar buffer member (not shown) with a diameter of 5 mm and a thickness of 2 mm and a cylindrical nickel connection terminal 60 with a diameter of 5 mm and a length of 30 mm were prepared.
そして、接続部材30と緩衝部材との間及び緩衝部材と接続端子60との間にAu-Ni系ろう材を介在させ、この状態で真空炉内に入れて、炉内を1050℃まで加熱させた。これにより、接続部材30、緩衝部材及び接続端子60が接続され、セラミックス部材100が完成した。 Then, Au-Ni brazing material was placed between the connection member 30 and the buffer member, and between the buffer member and the connection terminal 60, and in this state, the assembly was placed in a vacuum furnace and heated to 1050°C. This connected the connection member 30, the buffer member, and the connection terminal 60, completing the ceramic member 100.
そして、セラミックス部材100の上面(ウエハ載置面)における10か所の色差は3.0であった。ここで、色差は、国際照明委員会(CIE)が定義したL*a*b*色空間における色差ΔE*を用いており、コニカミノルタ社製のCM-700dを用いてDE2000色差式の値を計測した。 The color difference at 10 points on the top surface (wafer mounting surface) of the ceramic member 100 was 3.0. The color difference used here is the color difference ΔE* in the L*a*b* color space defined by the International Commission on Illumination (CIE), and the value was measured using the DE2000 color difference formula using a CM-700d manufactured by Konica Minolta.
また、実験者による目視によっては、セラミックス部材100の何れの表面にも色むらは確認できなかった。 In addition, when visually inspected by the experimenter, no color unevenness was observed on any of the surfaces of the ceramic member 100.
(実施例2)
STEP1において機械加工後に500℃、4時間以上の脱脂工程を追加し、STEP5の脱脂工程を省略した点を除いて実施例1と同一の工程でセラミックス部材100を作製した。セラミックス部材100の上面(ウエハ載置面)における10か所の式差は2.4であった。また、実験者による目視によっては、セラミックス部材100の何れの表面にも色むらは確認できなかった。
Example 2
The ceramic member 100 was produced in the same manner as in Example 1, except that in STEP 1, a degreasing step at 500° C. for 4 hours or more was added after machining, and the degreasing step in STEP 5 was omitted. The color difference at 10 points on the upper surface (wafer mounting surface) of the ceramic member 100 was 2.4. In addition, no color unevenness was confirmed on any surface of the ceramic member 100 by visual inspection by an experimenter.
(比較例)
まず、セラミックス成形体等作製工程(STEP1)として、実施例と同じセラミックス顆粒を用いて、1ton/cm2の圧力でCIP成形することにより、セラミックス成形体のインゴットを得た。そして、このインゴットを機械加工して、直径340mm、厚さ15mmの円板状の第1のセラミックス成形体と、直径340mm、厚さ25mmの円板状の第2のセラミックス成形体とを得た。
Comparative Example
First, in the ceramic molded body production step (STEP 1), the same ceramic granules as in the example were used and subjected to CIP molding at a pressure of 1 ton/cm 2 to obtain an ingot of a ceramic molded body. Then, this ingot was machined to obtain a first ceramic molded body in a disk shape with a diameter of 340 mm and a thickness of 15 mm, and a second ceramic molded body in a disk shape with a diameter of 340 mm and a thickness of 25 mm.
そして、第1のセラミック成形体の一の表面に、その中心を中心とした直径300mm、深さ1mmの第1の凹部を機械加工によって形成した。さらに、この第1の凹部の中心を中心とした直径8mm、深さ0.5mmの第2の凹部を機械加工によって形成した。 A first recess having a diameter of 300 mm and a depth of 1 mm was then formed by machining on one surface of the first ceramic molded body, centered on the center of the body. Furthermore, a second recess having a diameter of 8 mm and a depth of 0.5 mm was formed by machining, centered on the center of the first recess.
次に、電極配置工程(STEP2)及び接続部材配置工程(STEP3)として、第2の凹部に、実施例1と同じ接続部材30を配置すると共に、第1の凹部に実施例1と同じ電極20を配置した。 Next, in the electrode placement process (STEP 2) and the connection member placement process (STEP 3), the same connection member 30 as in Example 1 was placed in the second recess, and the same electrode 20 as in Example 1 was placed in the first recess.
次に、積層工程(STEP4)として、第1及び第2のセラミック成形体を厚さ方向に積層してセラミックス積層体を得た。 Next, in the lamination process (STEP 4), the first and second ceramic compacts were laminated in the thickness direction to obtain a ceramic laminate.
次に、脱脂工程(STEP5)及び焼成工程(STEP6)として、実施例と同じ上限でセラミックス積層体を加熱し、セラミックス焼結体を得た。 Next, in the degreasing process (STEP 5) and the firing process (STEP 6), the ceramic laminate was heated at the same upper limit as in the example to obtain a ceramic sintered body.
次に、セラミックス焼結体の外形全面に対して研削加工及び研磨加工を行う、直径320mm厚さ25mmの円板状に形成した。このとき、電極20の上面からセラミックス焼結体50の上面までの距離(絶縁体厚さ)は0.3mmであった。そして、セラミックス焼結体50の上面はウエハ載置面であり、その表面粗さRaは0.4μmであった。 Next, the entire outer surface of the ceramic sintered body was ground and polished to form a disk shape with a diameter of 320 mm and a thickness of 25 mm. At this time, the distance from the upper surface of the electrode 20 to the upper surface of the ceramic sintered body 50 (insulator thickness) was 0.3 mm. The upper surface of the ceramic sintered body 50 was the wafer mounting surface, and its surface roughness Ra was 0.4 μm.
次に、接続穴形成工程(STEP7)として、実施例と同じ接続穴52を機械加工によってセラミックス焼結体を形成した。さらに、接続端子設置工程(STEP8)として、実施例と同じ緩衝部材及び接続端子60を、実施例と同じようにしてセラミックス焼結体50に設け、セラミックス部材が完成した。 Next, in the connection hole forming process (STEP 7), the same connection hole 52 as in the example was machined to form the ceramic sintered body. Furthermore, in the connection terminal installation process (STEP 8), the same buffer member and connection terminal 60 as in the example were provided in the ceramic sintered body 50 in the same manner as in the example, completing the ceramic member.
そして、セラミックス部材の上面における10か所の色差を実施例と同様に測定したところ、5.2であり、実施例と比較して大きかった。また、実験者によるセラミックス部材を目視したところ、上面に線状の色むらが確認された。 The color difference at 10 points on the top surface of the ceramic member was measured in the same manner as in the example, and was found to be 5.2, which was larger than in the example. In addition, when the experimenter visually inspected the ceramic member, linear color unevenness was confirmed on the top surface.
10…セラミックス成形体等(セラミックス成形体、セラミックス仮焼体)、 11…一の表面、上面、 12,13…凹部、 20…電極、 30…接続部材、 40…セラミックス積層体、 50…セラミックス焼結体、 51…接続部材側の面、下面、 52…接続穴(穴)、 60…接続端子、 100…セラミックス部材。 10...ceramic molded body, etc. (ceramic molded body, ceramic calcined body), 11...first surface, upper surface, 12, 13...recess, 20...electrode, 30...connecting member, 40...ceramic laminate, 50...ceramic sintered body, 51...connecting member side surface, lower surface, 52...connecting hole (hole), 60...connecting terminal, 100...ceramic member.
Claims (4)
前記複数のセラミックス成形体又は前記複数のセラミックス仮焼体の少なくとも1枚に電極を配置する工程と、
前記電極を配置する、前記複数のセラミックス成形体又は前記複数のセラミックス仮焼体の少なくとも1枚に前記電極と接する導電性の塊状の接続部材を配置する工程と、
前記セラミックス成形体又は前記セラミックス仮焼体を複数枚積層した状態で、前記積層方向に加圧しながら加熱してセラミックス焼結体を形成する工程と、
前記セラミックス焼結体の一の面から前記接続部材に達する穴を形成する工程と、
前記接続部材に電気的に接続され、前記穴内に少なくとも一部が位置する接続端子を設ける工程とを備え、
前記電極が配置された少なくとも1枚の前記複数のセラミックス成形体又は前記複数のセラミックス仮焼体の厚さ方向に沿った上下にそれぞれ少なくとも2枚の前記セラミックス成形体又は前記セラミックス仮焼体を積層することを特徴とするセラミックス部材の製造方法。 A step of forming a ceramic raw material powder using a cold isostatic pressing method to prepare a plurality of plate-shaped ceramic molded bodies having a thickness of 2 mm to 6 mm and/or a ceramic calcined body obtained by calcining the plurality of ceramic molded bodies;
A step of disposing an electrode on at least one of the plurality of ceramic molded bodies or the plurality of ceramic calcined bodies;
a step of arranging the electrodes and arranging a conductive lump-shaped connecting member in contact with the electrodes on at least one of the plurality of ceramic molded bodies or the plurality of ceramic calcined bodies;
a step of forming a ceramic sintered body by heating a plurality of the ceramic compacts or the ceramic calcined bodies stacked together while applying pressure in the stacking direction;
forming a hole from one surface of the ceramic sintered body to the connecting member;
providing a connection terminal electrically connected to the connection member and at least a portion of which is located within the hole;
A method for manufacturing a ceramic member, characterized in that at least two of the ceramic molded bodies or the ceramic calcined bodies are stacked above and below in the thickness direction of at least one of the plurality of ceramic molded bodies or the plurality of ceramic calcined bodies on which the electrode is arranged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018171651A JP7519168B2 (en) | 2018-09-13 | 2018-09-13 | Manufacturing method of ceramic member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018171651A JP7519168B2 (en) | 2018-09-13 | 2018-09-13 | Manufacturing method of ceramic member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020040865A JP2020040865A (en) | 2020-03-19 |
JP7519168B2 true JP7519168B2 (en) | 2024-07-19 |
Family
ID=69797500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018171651A Active JP7519168B2 (en) | 2018-09-13 | 2018-09-13 | Manufacturing method of ceramic member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7519168B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7521783B2 (en) | 2020-07-02 | 2024-07-24 | 日本特殊陶業株式会社 | Manufacturing method of AlN sintered member, manufacturing method of electrode-embedded member, and electrode-embedded member |
CN116368727A (en) * | 2020-12-28 | 2023-06-30 | 住友大阪水泥股份有限公司 | Ceramic joint body and electrostatic chuck device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000208597A (en) | 1991-10-16 | 2000-07-28 | Ibiden Co Ltd | Ceramic substrate |
JP2003152062A (en) | 2001-11-13 | 2003-05-23 | Nihon Ceratec Co Ltd | Electrostatic chuck |
JP2004335151A (en) | 2003-04-30 | 2004-11-25 | Ibiden Co Ltd | Ceramic heater |
JP2011086919A (en) | 2009-09-17 | 2011-04-28 | Ngk Insulators Ltd | Electrostatic chuck and manufacturing method of the same |
JP2014093467A (en) | 2012-11-06 | 2014-05-19 | Taiheiyo Cement Corp | Method for manufacturing electrode built-in type ceramic sintered body |
-
2018
- 2018-09-13 JP JP2018171651A patent/JP7519168B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000208597A (en) | 1991-10-16 | 2000-07-28 | Ibiden Co Ltd | Ceramic substrate |
JP2003152062A (en) | 2001-11-13 | 2003-05-23 | Nihon Ceratec Co Ltd | Electrostatic chuck |
JP2004335151A (en) | 2003-04-30 | 2004-11-25 | Ibiden Co Ltd | Ceramic heater |
JP2011086919A (en) | 2009-09-17 | 2011-04-28 | Ngk Insulators Ltd | Electrostatic chuck and manufacturing method of the same |
JP2014093467A (en) | 2012-11-06 | 2014-05-19 | Taiheiyo Cement Corp | Method for manufacturing electrode built-in type ceramic sintered body |
Also Published As
Publication number | Publication date |
---|---|
JP2020040865A (en) | 2020-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101099891B1 (en) | Body having a junction and method of manufacturing the same | |
US11091398B2 (en) | Method for manufacturing large ceramic co-fired articles | |
JP7519168B2 (en) | Manufacturing method of ceramic member | |
JP6389802B2 (en) | Heating apparatus and manufacturing method thereof | |
WO2019131611A1 (en) | Ceramic device | |
JP6438352B2 (en) | Heating device | |
JP7058580B2 (en) | Manufacturing method of ceramic parts | |
JP2007070142A (en) | Plasma-resistant electrode-buried body, and method for producing the same | |
JP2019094233A (en) | Method for producing ceramic joined body | |
US11869796B2 (en) | Electrode-embedded member and method for manufacturing same, electrostatic chuck, and ceramic heater | |
JP2017191910A (en) | Board holding device and manufacturing method thereof | |
JP2020126913A (en) | Ceramic member | |
CN112259490A (en) | Electrostatic chuck with heating function and preparation method thereof | |
JPH09306642A (en) | Ceramic heater | |
JP7109258B2 (en) | Method for manufacturing electrode-embedded member | |
JP7311975B2 (en) | Manufacturing method of ceramic member | |
JP2017147126A (en) | Manufacturing method for ceramic heater | |
JP2020177735A (en) | Manufacturing method of electrode embedded member | |
JP2022096105A (en) | Electrode embedded member, manufacturing method of the same, and substrate holding member | |
JP2023050778A (en) | Joined body, production method of the same, and electrode-embedded member | |
JP2024021400A (en) | Ceramic heater and method of manufacturing the same | |
JP2024152961A (en) | Method for manufacturing ceramic sintered body, method for manufacturing electrode-embedded member, and electrode-embedded member | |
KR100794960B1 (en) | Hybrid type heater manufacturing method | |
JP2023116214A (en) | Electrode embedded member and method of manufacturing the same | |
JP2019208006A (en) | Manufacturing method of electrode embedding member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220825 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20221129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230227 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20230227 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230306 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20230307 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20230602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7519168 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |