JP2007070142A - Plasma-resistant electrode-buried body, and method for producing the same - Google Patents

Plasma-resistant electrode-buried body, and method for producing the same Download PDF

Info

Publication number
JP2007070142A
JP2007070142A JP2005256884A JP2005256884A JP2007070142A JP 2007070142 A JP2007070142 A JP 2007070142A JP 2005256884 A JP2005256884 A JP 2005256884A JP 2005256884 A JP2005256884 A JP 2005256884A JP 2007070142 A JP2007070142 A JP 2007070142A
Authority
JP
Japan
Prior art keywords
plasma
slurry
electrode
resistant electrode
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005256884A
Other languages
Japanese (ja)
Inventor
Tomonori Uchimaru
知紀 内丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2005256884A priority Critical patent/JP2007070142A/en
Publication of JP2007070142A publication Critical patent/JP2007070142A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma-resistant electrode-buried body in which plasma resistance is improved. <P>SOLUTION: The plasma-resistant electrode-buried body is produced by placing metal electrodes on a Y<SB>2</SB>O<SB>3</SB>calcined body, pouring Y<SB>2</SB>O<SB>3</SB>slurry thereon, drying the slurry, and thereafter joining the stacked body by hot pressing at 1,650 to 1,900°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は耐プラズマ性電極埋設体及びその製造方法に係り、特に半導体の製造工程で使用されるシリコンウェーハ等を固定する静電チャック、抵抗発熱体を埋設したセラミックスヒーターなど耐プラズマ性電極埋設体及びその製造方法に関する。   The present invention relates to a plasma-resistant electrode embedded body and a method of manufacturing the same, and more particularly to an electrostatic chuck for fixing a silicon wafer or the like used in a semiconductor manufacturing process, and a plasma-resistant electrode embedded body such as a ceramic heater embedded with a resistance heating element. And a manufacturing method thereof.

半導体の製造工程中のCVD、PVD、イオンスパッタリング、エッチングなどで耐プラズマ性電極埋設体として使用されシリコンウェーハ等を固定する静電チャックには、その基材に金属あるいは、金属成分と炭化珪素あるいは窒化アルミニウムのセラミック成分を混合した原料からなるものが用いられ、基材表面には非晶質セラミックからなる絶縁層が施され、さらに、酸化物からなる非晶質セラミックからなる絶縁膜が施されたものが提案されている(特許文献1)。この特許文献1のものは、材質の異なる複数層からなるため、使用時、膜剥離やクラックが発生し易い。   In an electrostatic chuck that is used as a plasma-resistant electrode embedded body in CVD, PVD, ion sputtering, etching, etc. during a semiconductor manufacturing process and fixes a silicon wafer or the like, a metal or a metal component and silicon carbide or A material made of a raw material mixed with a ceramic component of aluminum nitride is used. An insulating layer made of amorphous ceramic is applied to the surface of the base material, and further, an insulating film made of amorphous ceramic made of oxide is applied. Has been proposed (Patent Document 1). Since the thing of this patent document 1 consists of several layers from which a material differs, a film | membrane peeling and a crack are easy to generate | occur | produce at the time of use.

また、窒化珪素、炭化珪素、窒化アルミニウム等のセラミックス基材内に金属電極が埋設した静電チャックの製造方法として、一軸プレスによって第1のセラミックス成形体を作製し、この第1のセラミックス成形体に金属電極を載置し、さらに、この上にセラミックス粉末を充填して、一軸プレスによって加圧して、予備成形体を作製し、しかる後、この予備成形体をホットプレス焼成方法が提案されている(特許文献2)。   In addition, as a method for manufacturing an electrostatic chuck in which a metal electrode is embedded in a ceramic base material such as silicon nitride, silicon carbide, or aluminum nitride, a first ceramic molded body is manufactured by uniaxial pressing, and the first ceramic molded body A metal electrode is placed on the ceramic electrode, and further, ceramic powder is filled thereon and pressed by a uniaxial press to produce a preform. After that, a hot press firing method is proposed for the preform. (Patent Document 2).

また、特許文献2による離型時、成形体にクラックが発生するのを防ぐために成形体原料粉末と下型間に離型用シート状物を介在させたホットプレス焼成方法が提案されている(特許文献3)。   Further, a hot press firing method is proposed in which a release sheet-like material is interposed between a molded body raw material powder and a lower mold in order to prevent cracks from occurring in the molded body during mold release according to Patent Document 2 ( Patent Document 3).

さらに、イットリア5重量%含有する窒化アルミニウム粉末を用いてセラミックス成形体を作製し、この成形体に面電極を載置し、この上に窒化アルミニウム粉末を充填し、ホットプレス焼成方法が提案されている(特許文献4)。   Furthermore, a ceramic molded body is produced using aluminum nitride powder containing 5% by weight of yttria, a surface electrode is placed on the molded body, aluminum nitride powder is filled thereon, and a hot press firing method is proposed. (Patent Document 4).

近年、より耐プラズマ性が向上した電極埋設体が要望されており、本発明者等はイットリアが他のセラミックスに比べて耐プラズマ性に優れていることに着目し、電極埋設体全体をイットリアで作製することで本発明をするに至った。また、イットリアは焼結体の強度が極めて小さく、製造時クラックの発生を生じるが、本発明者等は金属電極が載置されるベース側焼結体部となる部分に仮焼体を用い、金属電極を覆い、ウェーハ載置面が設けられた載置側焼結体部となる部分にスラリーを用いるとともに、ホットプレス焼成条件を設定し、本発明をするに至った。   In recent years, there has been a demand for an electrode embedded body with improved plasma resistance. The present inventors have focused on the fact that yttria is superior in plasma resistance compared to other ceramics, and the entire electrode embedded body is made of yttria. The production of the present invention has led to the present invention. In addition, yttria is extremely small in strength of the sintered body and causes the generation of cracks at the time of manufacture, but the present inventors use a calcined body in the portion that becomes the base-side sintered body portion on which the metal electrode is placed, The slurry is used for the portion that becomes the mounting-side sintered body portion that covers the metal electrode and is provided with the wafer mounting surface, and the hot press firing conditions are set to achieve the present invention.

特許文献2〜4に記載のホットプレス焼成方法では、全体にイットリアを用いた電極埋設体をクラックの発生なく製造することができない。
特開2005−72286号公報 特開平10−249843号公報 特開平10−264121号公報 特開平7−273164号公報
In the hot press firing methods described in Patent Documents 2 to 4, it is impossible to manufacture an electrode embedded body using yttria as a whole without generation of cracks.
JP-A-2005-72286 Japanese Patent Laid-Open No. 10-249843 Japanese Patent Laid-Open No. 10-264121 Japanese Patent Laid-Open No. 7-273164

本発明は上述した事情を考慮してなされたもので、耐プラズマ性が向上した耐プラズマ性電極埋設体を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a plasma-resistant electrode embedded body with improved plasma resistance.

また、製造時、クラックの発生がない耐プラズマ性電極埋設体の製造方法を提供することを目的とする。   Moreover, it aims at providing the manufacturing method of the plasma-resistant electrode embedded body which does not generate | occur | produce a crack at the time of manufacture.

上述した目的を達成するため、本発明に係る耐プラズマ性電極埋設体は、イットリア基材と、このイットリア基材に埋設した金属電極からなることを特徴とする。   In order to achieve the above-described object, a plasma-resistant electrode-embedded body according to the present invention comprises an yttria base material and a metal electrode embedded in the yttria base material.

また、本発明に係る耐プラズマ性電極埋設体は、Y仮焼体の上に金属電極を置き、その上にYスラリーを流し込み、このスラリー乾燥後に、その積層体を1650〜1900℃のホットプレスにより接合して製造されることを特徴とする。 In the plasma-resistant electrode-embedded body according to the present invention, a metal electrode is placed on a Y 2 O 3 calcined body, Y 2 O 3 slurry is poured thereon, and after the slurry is dried, the laminate is 1650. It is produced by bonding by hot pressing at ˜1900 ° C.

また、本発明に係る耐プラズマ性電極埋設体の製造方法は、Y仮焼体を用意し、このY仮焼体上に金属電極を置き、その上にYスラリーを流し込み、このスラリー乾燥後に、その積層体を1650〜1900℃のホットプレスにより接合する。 A method of manufacturing a plasma resistance electrode buried body according to the present invention, Y 2 O 3 prepared calcined body, place the metal electrode to the Y 2 O 3 calcined on the body, Y 2 O 3 thereon The slurry is poured, and after the slurry is dried, the laminate is bonded by hot pressing at 1650 to 1900 ° C.

好適には、前記ホットプレス時の圧力は、0.05〜0.3ton/cm、最高温度でのキープ時間は、1〜15時間である。 Preferably, the pressure during the hot pressing is 0.05 to 0.3 ton / cm 2 , and the keeping time at the maximum temperature is 1 to 15 hours.

本発明に係る耐プラズマ性電極埋設体によれば、耐プラズマ性が向上した耐プラズマ性電極埋設体を提供することができる。   The plasma-resistant electrode embedded body according to the present invention can provide a plasma-resistant electrode embedded body with improved plasma resistance.

また、本発明に係る耐プラズマ性電極埋設体の製造方法によれば、製造時、クラックの発生がない耐プラズマ性電極埋設体の製造方法を提供することができる。   Moreover, according to the manufacturing method of the plasma-resistant electrode embedded body which concerns on this invention, the manufacturing method of the plasma-resistant electrode embedded body which does not generate | occur | produce a crack at the time of manufacture can be provided.

以下、本発明に係る耐プラズマ性電極埋設体の一実施形態について添付図面を参照して説明する。   Hereinafter, an embodiment of a plasma-resistant electrode embedded body according to the present invention will be described with reference to the accompanying drawings.

図1は本発明の耐プラズマ性電極埋設体の一実施形態としてのイットリア製静電チャックの縦断面図である。   FIG. 1 is a longitudinal sectional view of an yttria electrostatic chuck as an embodiment of the plasma-resistant electrode embedded body of the present invention.

図1に示すように、本実施形態のイットリア製静電チャック1は、全体がイットリア原料からなり、円板形状をなし、さらに、ウェーハ載置面2aが設けられた載置側焼結体部2と、この載置側焼結体部2と一体に接合するベース側焼結体部3と、両焼結体2、3間に埋設された金属電極4を具備している。   As shown in FIG. 1, the yttria electrostatic chuck 1 of the present embodiment is entirely made of yttria raw material, has a disk shape, and further has a mounting side sintered body portion provided with a wafer mounting surface 2a. 2, a base-side sintered body portion 3 that is integrally joined to the mounting-side sintered body portion 2, and a metal electrode 4 embedded between the sintered bodies 2 and 3.

なお、図中符号5は電圧供給端子である。   In the figure, reference numeral 5 denotes a voltage supply terminal.

金属電極の材質としては、Mo、W、Taのいずれか、または、これらの化合物であるのが好ましく、また、金属電極は金属線を編んだメッシュ状のものを用いて、機能上、部分的に給電用の孔またはガス貫通用の孔等を設けた形状とするのが好ましい。   The material of the metal electrode is preferably one of Mo, W, and Ta, or a compound thereof, and the metal electrode is partially functionally using a mesh-like metal wire knitted. It is preferable to provide a shape provided with a hole for feeding or a hole for gas penetration.

上記実施形態の耐プラズマ性電極埋設体によれば、耐プラズマ性の向上が実現される。   According to the plasma-resistant electrode embedded body of the above-described embodiment, improvement in plasma resistance is realized.

さらに、本実施形態のイットリア製静電チャックは、次のような工程によって製造される。   Furthermore, the yttria electrostatic chuck of the present embodiment is manufactured by the following process.

例えば、図2に示すように、ベース側焼結体部としてのY仮焼体3Aを用意し、このY仮焼体3A上に金属電極4を置き、その上に載置側焼結体部を形成するYスラリー2Aを流し込み、このスラリー乾燥後に、その積層体をホットプレスにより接合する。 For example, as shown in FIG. 2, prepared Y 2 O 3 calcined 3A as a base-side sintered body, place the metal electrode 4 on the Y 2 O 3 calcined 3A, placing thereon The Y 2 O 3 slurry 2A that forms the stationary-side sintered body portion is poured, and after the slurry is dried, the laminate is joined by hot pressing.

ホットプレスの温度は1650〜1900℃、圧力は0.05〜0.3ton/cm、最高温度でのキープ時間は、1〜15時間であるのが好ましい。 The temperature of hot pressing is preferably 1650 to 1900 ° C., the pressure is 0.05 to 0.3 ton / cm 2 , and the keeping time at the maximum temperature is preferably 1 to 15 hours.

温度が1650℃より低いと、スラリーを用いた部分は焼成後の密度が小さく好ましくなく、1900℃より高いと型の耐久性が劣化する。圧力が0.05ton/cmより小さいと、スラリーを用いた部分は焼成後の密度が小さく、0.3ton/cmより大きいと、型の寿命が短くなる。キープ時間が1時間より短いと、スラリーを用いた部分は焼成後の密度が小さく、15時間より長いと生産性が低下する。 If the temperature is lower than 1650 ° C., the portion using the slurry is not preferable because the density after firing is small, and if it is higher than 1900 ° C., the durability of the mold deteriorates. When the pressure is less than 0.05 ton / cm 2 , the portion using the slurry has a low density after firing, and when it is greater than 0.3 ton / cm 2 , the life of the mold is shortened. If the keep time is shorter than 1 hour, the portion using the slurry has a low density after firing, and if it is longer than 15 hours, the productivity decreases.

仮焼体の作り方としては、Yの原料粉、焼結助剤、純水、バインダーを混合したスラリーをスプレードライヤーにて、粒径100μm程度の造粒粉とし、Y造粒紛をCIPにより、成形し、脱脂後、酸化及び還元雰囲気で焼成し、加工後、円板状とする。 As a method of making the Y 2 O 3 calcined body, a slurry obtained by mixing Y 2 O 3 raw material powder, a sintering aid, pure water, and a binder is made into a granulated powder having a particle size of about 100 μm with a spray dryer. 2 O 3 granulated powder is formed by CIP, degreased, fired in an oxidizing and reducing atmosphere, and processed into a disk shape.

スラリーの作り方としては、Yの原料粉、焼結助剤、純水、分散材、樹脂ボールをポットに入れ、ポットを回転させる。 As a method for preparing the Y 2 O 3 slurry, Y 2 O 3 raw material powder, a sintering aid, pure water, a dispersion material, and resin balls are put in a pot, and the pot is rotated.

積層体は、載置側焼結体部を形成するスラリー乾燥体と、電極と、ベース側焼結体部を形成する仮焼体からなり、この仮焼体上に金属電極を置き、スラリーを流し込み、乾燥機に入れ、水分を完全に飛ばして作る。なお、金属電極仮を焼体上に載置する替わりに、スクリーン印刷法で焼結体に電極層を形成するようにしてもよい。   The laminate is composed of a slurry dried body that forms the mounting-side sintered body portion, an electrode, and a calcined body that forms the base-side sintered body portion. A metal electrode is placed on the calcined body, and the slurry is placed. Pour it, put it in a dryer and make it completely dry. Instead of placing the temporary metal electrode on the fired body, an electrode layer may be formed on the sintered body by a screen printing method.

上記本発明の耐プラズマ性電極埋設体の製造方法は以下の特徴を有する。   The method for producing a plasma-resistant electrode embedded body according to the present invention has the following characteristics.

(1)Yスラリーを用いる効果
スラリーを使用する理由は、ホットプレス前の接合界面の空隙をなくし、ホットプレス時のカーボンの侵入を防止し、強度及び性能の向上を図るためである。これに対して、酸化物の仮焼体同士をホットプレスし、焼結後の接合体の断面を観察すると接合界面が黒くなっており、これはホットプレス時に接合界面に炉内のカーボン治具からくるカーボン粉が入り込み、接合界面にカーボンが凝集し、強度及び性能が劣化する。また、本方法では、ホットプレス焼成を用いるので、スラリーを用いても、このスラリーを用いた部分は、焼成後の密度が良好な状態になる。
(1) Effect of using Y 2 O 3 slurry The reason for using the slurry is to eliminate voids at the bonding interface before hot pressing, prevent carbon from entering during hot pressing, and improve strength and performance. . On the other hand, when the oxide calcined bodies are hot-pressed and the cross-section of the sintered bonded body is observed, the bonding interface becomes black. The carbon powder coming from the material enters and agglomerates at the bonding interface, resulting in deterioration of strength and performance. Moreover, since this method uses hot press firing, even if a slurry is used, the portion using this slurry is in a state of good density after firing.

(2)Y仮焼体を用いる効果
仮焼体を用いることにより、ホットプレスの昇温中に割れても、焼結途中のため、割れた部分が埋められ、割れのない接合体をえることができる。これに対して、Y焼結体を用いるとホットプレス時に焼結体が割れる。これは、ホットプレス加圧初期において、スラリーの部分の収縮量が大きいため、Y焼結体に部分的に圧力がかかる肩当たりのような状態になり、Y焼結体の強度がその圧力に耐えられず、割れてしまう。
(2) Effect of using the Y 2 O 3 calcined body By using the Y 2 O 3 calcined body, even if it cracks during the temperature increase of the hot press, the cracked portion is buried and cracked during the sintering. It is possible to obtain a joined body without any. On the other hand, when a Y 2 O 3 sintered body is used, the sintered body breaks during hot pressing. This is because in the initial stage of hot press pressurization, the amount of shrinkage of the slurry portion is large, so that the Y 2 O 3 sintered body is in a shoulder-like state where partial pressure is applied to the Y 2 O 3 sintered body. Can not withstand that pressure and will crack.

また、スラリーを流し込み時、仮焼体が水分を吸収するので、スラリー乾燥時の割れも最小限にすることができる。   Moreover, since the calcined body absorbs moisture when the slurry is poured, cracks during drying of the slurry can be minimized.

仮焼体の平面度は、粉末の中に金属を埋設した方法に比べれば良好であり、金属電極の反りを小さくすることができる。   The flatness of the calcined body is better than a method in which a metal is embedded in the powder, and the warpage of the metal electrode can be reduced.

(3)金属電極の材質にMo、W、Taを用いる効果
ホットプレスにより、接合を行うため、電極は高融点金属が好ましい。また、高融点金属の中でも、Yと熱膨張率の近いW、Moが、焼成時のクラックの発生が少ないので特に好ましい。
(3) Effect of using Mo, W, Ta as material of metal electrode Since the bonding is performed by hot pressing, the electrode is preferably a refractory metal. Among refractory metals, W 2 and Mo, which have a thermal expansion coefficient close to that of Y 2 O 3 , are particularly preferable because they hardly cause cracks during firing.

(4)電極にメッシュ状のものを用いる効果
金属電極は、ホットプレス時に、外周方向に伸びる力が働く。これは、ホットプレス時に、縦方向はプレスにより拘束されるが、横方向はカーボン治具と乾燥したスラリー層との間に若干の隙間があるため、外周方向に移動することにより力が発生する。メッシュは、編んであることから、伸びを吸収できる。これに対して、伸びを吸収しにくい格子状のものは、金属自身が伸びるので、延性の小さい金属は切れるおそれがある。
(4) Effect of using mesh-shaped electrode The metal electrode has a force that extends in the outer peripheral direction during hot pressing. This is because during hot pressing, the vertical direction is constrained by the press, but in the horizontal direction there is a slight gap between the carbon jig and the dried slurry layer, so that force is generated by moving in the outer circumferential direction. . Since the mesh is knitted, it can absorb elongation. On the other hand, in a lattice-like material that hardly absorbs elongation, the metal itself is elongated, so that a metal with low ductility may be cut.

上記本実施形態の耐プラズマ性電極埋設体の製造方法によれば、製造時、クラックの発生がない耐プラズマ性電極埋設体の製造方法が実現される。   According to the method for manufacturing a plasma-resistant electrode embedded body of the present embodiment, a method for manufacturing a plasma-resistant electrode embedded body that does not generate cracks during manufacturing is realized.

(試験1)
(1)焼成温度を5水準(1600℃、1650℃、1700℃、1750℃、1800℃)に振り、圧力は2水準(0.1ton/cm、0.2ton/cm)、窒素雰囲気下で接合体のサンプルを作り、サンプルの誘電層部分を研削し、誘電層の厚さを1mmとした。
(Test 1)
(1) The firing temperature is shifted to 5 levels (1600 ° C, 1650 ° C, 1700 ° C, 1750 ° C, 1800 ° C), and the pressure is 2 levels (0.1 ton / cm 2 , 0.2 ton / cm 2 ) under nitrogen atmosphere Then, a sample of the joined body was prepared, the dielectric layer portion of the sample was ground, and the thickness of the dielectric layer was 1 mm.

1)サンプルを切断し、切断面を2次元測定機により、厚さのバラツキを調査した。
2)また、ホットプレス後のY脱脂粉層の密度、サンプル表面及び内部のクラックの有無の調査を行った。
1) The sample was cut and the cut surface was examined for thickness variation by a two-dimensional measuring machine.
2) Further, the density of the Y 2 O 3 defatted powder layer after hot pressing, the surface of the sample, and the presence or absence of internal cracks were investigated.

(2)上記2)及び3)の調査結果を表1に示す。

Figure 2007070142
(2) The results of 2) and 3) are shown in Table 1.
Figure 2007070142

焼成温度が本発明の範囲外の1600℃では、キープ時間、圧力に関わりなく、スラリーY部の焼成後の密度が不適であり、全体的な判定も耐プラズマ性電極埋設体として不適であった。 When the firing temperature is 1600 ° C., which is outside the range of the present invention, the density after firing of 3 parts of the slurry Y 2 O is unsuitable regardless of the keeping time and pressure, and the overall judgment is also unsuitable as a plasma-resistant electrode embedded body. Met.

これに対して、焼成温度が本発明の範囲内では、バラツキ、剥離・クラックの発生はなく、ともに良好であった。   On the other hand, when the firing temperature was within the range of the present invention, there was no variation, no occurrence of peeling / cracking, and both were good.

スラリーY部の焼成後の密度については、焼成温度が本発明の範囲内の1650℃では、キープ時間、圧力に関わりなく、一部不適であり、全体的な判定も耐プラズマ性電極埋設体として一部不適であるが、選別採用で使用可能なものが得られた。 Regarding the density after firing of 3 parts of the slurry Y 2 O, when the firing temperature is 1650 ° C. within the range of the present invention, it is partially inappropriate regardless of the keeping time and pressure, and the overall judgment is also plasma resistant electrode Although it was partially unsuitable as an embedded body, it was possible to use it by selective adoption.

また、焼成温度が本発明の範囲内の1700℃、1750℃、1800℃では、キープ時間1時間で、圧力に関わりなく、焼成後の密度が一部不適、全体的な判定も耐プラズマ性電極埋設体として一部不適であるが、キープ時間が、3時間、5時間では、焼成温度1700℃〜1800℃、圧力0.1ton/cm以上であれば、全て焼成後の密度が良好、耐プラズマ性電極埋設体として良好になった。 Further, when the firing temperature is 1700 ° C., 1750 ° C., and 1800 ° C. within the range of the present invention, the keep time is 1 hour, regardless of the pressure, the density after firing is partially inappropriate, and the overall judgment is also plasma resistant electrode Although it is partially unsuitable as an embedded body, with a keep time of 3 hours and 5 hours, if the firing temperature is 1700 ° C. to 1800 ° C. and the pressure is 0.1 ton / cm 2 or more, the density after firing is all good, It became favorable as a plasma electrode embedded body.

(試験2)
(1)比較として、本発明の製造方法と異なり、Y粉とY粉との間に電極を挟み、一軸加圧成形機により成形し、ホットプレスを行って作った接合体を作製し、試験1と同様の調査を行った。
(Test 2)
(1) For comparison, unlike the manufacturing method of the present invention, an electrode is sandwiched between Y 2 O 3 powder and Y 2 O 3 powder, formed by a uniaxial pressure molding machine, and hot-pressed. A body was prepared and the same investigation as in Test 1 was performed.

(2)結果を表2に示す。

Figure 2007070142
(2) The results are shown in Table 2.
Figure 2007070142

プレス条件が本発明の範囲にあっても、本比較例はいずれも誘電層厚さにバラツキがあり、全体的な判定も耐プラズマ性電極埋設体として不適であった。   Even if the press conditions were within the scope of the present invention, all of the comparative examples had variations in the dielectric layer thickness, and the overall judgment was unsuitable as a plasma-resistant electrode embedded body.

(試験3)
(1)本発明の方法により、使用原料をY(実施例)からAlN(比較例1)及びAl(比較例2)に替えて接合体を製作し、プラズマエッチング装置で暴露を実施し、エッチング量を調べた。
(Test 3)
(1) By using the method of the present invention, the joined raw material is manufactured by changing the used raw material from Y 2 O 3 (Example) to AlN (Comparative Example 1) and Al 2 O 3 (Comparative Example 2). Exposure was carried out and the etching amount was examined.

「エッチング条件」 ガス:F系、流量:CF4=100cc/min、
供給電力:Ps/pb=500w/40w、イオン衝撃エネルギー:88eV、
プラズマ密度:1.7×1011:Atoms/cm、ガス圧力:4mTorr
“Etching conditions” Gas: F system, flow rate: CF4 = 100 cc / min,
Supply power: Ps / pb = 500 w / 40 w, ion bombardment energy: 88 eV,
Plasma density: 1.7 × 10 11 : Atoms / cm 2 , gas pressure: 4 mTorr

(2)結果を表3に示す。

Figure 2007070142
(2) The results are shown in Table 3.
Figure 2007070142

実施例はエッチングレートが100Å/hと小さく、1000Å/hの比較例1、比較例2に比べて、耐プラズマ性が10倍優れていることがわかった。   The etching rate of the examples was as small as 100 Å / h, and it was found that the plasma resistance was 10 times better than Comparative Examples 1 and 2 at 1000 Å / h.

本発明の一実施形態としてのイットリア製静電チャックの概念図。The conceptual diagram of the yttria electrostatic chuck as one embodiment of the present invention. 本発明の一実施形態としてのイットリア製静電チャックの製造方法の概念図。The conceptual diagram of the manufacturing method of the yttria electrostatic chuck as one embodiment of the present invention.

符号の説明Explanation of symbols

1 イットリア製静電チャック
2 載置側焼結体部
3 ベース側焼結体部
4 金属電極
DESCRIPTION OF SYMBOLS 1 Yttria electrostatic chuck 2 Placement side sintered body part 3 Base side sintered body part 4 Metal electrode

Claims (4)

イットリア基材と、このイットリア基材に埋設した金属電極からなることを特徴とする耐プラズマ性電極埋設体。 A plasma-resistant electrode embedded body comprising an yttria base material and a metal electrode embedded in the yttria base material. 仮焼体の上に金属電極を置き、その上にYスラリーを流し込み、このスラリー乾燥後に、その積層体を1650〜1900℃のホットプレスにより接合して製造されることを特徴とする耐プラズマ性電極埋設体。 It is manufactured by placing a metal electrode on a Y 2 O 3 calcined body, pouring a Y 2 O 3 slurry on the Y 2 O 3 calcined body, and bonding the laminate by hot pressing at 1650 to 1900 ° C. after drying the slurry. A plasma-resistant electrode embedded body characterized by 仮焼体を用意し、このY仮焼体上に金属電極を置き、その上にYスラリーを流し込み、このスラリー乾燥後に、その積層体を1650〜1900℃のホットプレスにより接合することを特徴とする耐プラズマ性電極埋設体の製造方法。 A Y 2 O 3 calcined body is prepared, a metal electrode is placed on the Y 2 O 3 calcined body, a Y 2 O 3 slurry is poured onto the Y 2 O 3 calcined body, and after drying the slurry, the laminate is 1650-1900 ° C. A method for producing a plasma-resistant electrode-embedded body characterized by bonding by hot pressing. 前記ホットプレス時の圧力は、0.05〜0.3ton/cm、最高温度でのキープ時間は、1〜15時間であることを特徴とする請求項3に記載の耐プラズマ性電極埋設体の製造方法。 The plasma-resistant electrode embedded body according to claim 3, wherein the pressure at the time of hot pressing is 0.05 to 0.3 ton / cm 2 , and the keeping time at the maximum temperature is 1 to 15 hours. Manufacturing method.
JP2005256884A 2005-09-05 2005-09-05 Plasma-resistant electrode-buried body, and method for producing the same Pending JP2007070142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256884A JP2007070142A (en) 2005-09-05 2005-09-05 Plasma-resistant electrode-buried body, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256884A JP2007070142A (en) 2005-09-05 2005-09-05 Plasma-resistant electrode-buried body, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007070142A true JP2007070142A (en) 2007-03-22

Family

ID=37931922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256884A Pending JP2007070142A (en) 2005-09-05 2005-09-05 Plasma-resistant electrode-buried body, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007070142A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034256A (en) * 2008-07-29 2010-02-12 Ngk Spark Plug Co Ltd Electrostatic chuck
US20120250212A1 (en) * 2011-03-30 2012-10-04 Ngk Insulators, Ltd. Method for producing electrostatic chuck and electrostatic chuck
JP2012216816A (en) * 2011-03-30 2012-11-08 Ngk Insulators Ltd Method for manufacturing electrostatic chuck, and electrostatic chuck
US9387178B2 (en) 2010-11-30 2016-07-12 Actavis, Inc. Modified release tranexamic acid formulation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034256A (en) * 2008-07-29 2010-02-12 Ngk Spark Plug Co Ltd Electrostatic chuck
US9387178B2 (en) 2010-11-30 2016-07-12 Actavis, Inc. Modified release tranexamic acid formulation
US20120250212A1 (en) * 2011-03-30 2012-10-04 Ngk Insulators, Ltd. Method for producing electrostatic chuck and electrostatic chuck
CN102731072A (en) * 2011-03-30 2012-10-17 日本碍子株式会社 Method for producing electrostatic chuck and electrostatic chuck
JP2012209499A (en) * 2011-03-30 2012-10-25 Ngk Insulators Ltd Method for manufacturing electrostatic chuck and electrostatic chuck
JP2012216816A (en) * 2011-03-30 2012-11-08 Ngk Insulators Ltd Method for manufacturing electrostatic chuck, and electrostatic chuck
US9394206B2 (en) 2011-03-30 2016-07-19 Ngk Insulators, Ltd. Method for producing electrostatic chuck and electrostatic chuck
US9650302B2 (en) 2011-03-30 2017-05-16 Ngk Insulators, Ltd. Method for producing electrostatic chuck and electrostatic chuck
KR101813289B1 (en) * 2011-03-30 2017-12-28 엔지케이 인슐레이터 엘티디 Method for producing electrostatic chuck and electrostatic chuck
KR101929053B1 (en) 2011-03-30 2018-12-13 엔지케이 인슐레이터 엘티디 Method for producing electrostatic chuck and electrostatic chuck

Similar Documents

Publication Publication Date Title
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
JP4467453B2 (en) Ceramic member and manufacturing method thereof
KR100618530B1 (en) Electrostatic chucks and process for producing the same, and alumina sintered member and process for producing the same
JP3975944B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP4482472B2 (en) Electrostatic chuck and manufacturing method thereof
JP2008135737A (en) Electrostatic chuck, and manufacturing method of electrostatic chuck
JP4482535B2 (en) Heating device
JP2007070142A (en) Plasma-resistant electrode-buried body, and method for producing the same
JP7245296B2 (en) Method for manufacturing parts for semiconductor manufacturing equipment
JP2005203734A (en) Ceramic article with embedded metal member and method of manufacturing the same
US7633738B2 (en) Electrostatic chuck and manufacturing method thereof
JP2008047881A (en) Electrostatic chuck with heater
JP4590368B2 (en) Manufacturing method of electrostatic chuck
JP2004288887A (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus carrying the same
CN112750692A (en) Composite sintered body and method for producing composite sintered body
JP4111013B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP2009221028A (en) Yttrium oxide material, and member for semiconductor manufacturing apparatus
JP2006319344A (en) Wafer holder for semiconductor production system and semiconductor production system mounting same
JP4522963B2 (en) Heating device
JP2022096105A (en) Electrode embedded member, manufacturing method of the same, and substrate holding member
JP2004266104A (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device mounting the same
JP2004289137A (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus carrying the same
JP2004253665A (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus mounting it
JP2022048078A (en) Composite sintered body, semiconductor manufacturing device member, and manufacturing method of composite sintered body
JP2022055875A (en) Substrate holding member and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711