JPS6050964B2 - 海水脱塩用装置に連結されている火力発電装置 - Google Patents

海水脱塩用装置に連結されている火力発電装置

Info

Publication number
JPS6050964B2
JPS6050964B2 JP52019360A JP1936077A JPS6050964B2 JP S6050964 B2 JPS6050964 B2 JP S6050964B2 JP 52019360 A JP52019360 A JP 52019360A JP 1936077 A JP1936077 A JP 1936077A JP S6050964 B2 JPS6050964 B2 JP S6050964B2
Authority
JP
Japan
Prior art keywords
boiler
seawater
heat
steam
seawater desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52019360A
Other languages
English (en)
Other versions
JPS52137547A (en
Inventor
ハンス・プフエニンゲル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri France SA
Original Assignee
BBC Brown Boveri France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri France SA filed Critical BBC Brown Boveri France SA
Publication of JPS52137547A publication Critical patent/JPS52137547A/ja
Publication of JPS6050964B2 publication Critical patent/JPS6050964B2/ja
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S159/00Concentrating evaporators
    • Y10S159/39Power plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/21Acrylic acid or ester

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は1箇のガスタービンと、このガスタービンに後
置して接続されている1箇の熱交換器とを有し、この熱
交換器中で前記のガスタービンの排ガス中にまだ含まれ
ている熱の一部が海水脱塩用装置の加熱のために利用さ
れる、火力発電装置に関する。
海水脱塩用装置の作動のためには多くの場合蒸気タービ
ンが使用され、この蒸気タービンの排蒸気が蒸溜過程用
の熱源として使用され、その際コンデンサが、冷却材と
して使用される海水を加熱する(ソ シエテ・ド・イン
タナショナル・ド・デサルマ(Socie’te’ I
ntemationalede7Dessalemen
t(SIDEM)の特別号、パリ(Paris):プロ
デユクシヨ、ドー・ドウス、パル・デサルマ(Prod
uctiond’eaudouceparDessal
ement))。
蒸溜過程用の最も経済的な温度はほぼ150℃から18
0℃までであり、これは蒸気タービンのほぼ5バールか
ら6バールまでの背圧に相当する。燃料費用が高い場合
には高価な装置を使つて燃料を節約すればまだ経済的で
あり、前記の背圧を2バールから3バールまでに下げる
ことができる。即ちこれは約120′Cから130℃ま
での蒸気温度に相当する。しばしばより経済的なのは、
蒸気タービンの代りにガスタービンを脱塩用装置用の熱
源として使用し、その際このガスタービンの排ガスが熱
交換器中で海水蒸溜用の温水の加熱用に使用されること
である(ブラウン.ボヴエリ.ミツトタイルング.ハン
ト54(BrOwnBOvertMjtteilung
Band54)(1967)9頁から16頁まで)。
しかし残念ながら前記の排ガスの温度が高く、現在のガ
スタービンにおいては通常450℃から550℃まで5
に及ぶ。この温度をガスタービンのより大きな圧力比に
よつて下げることは前述した熱的過程を著しく悪化させ
るであろう。なぜならば最適な圧力比を越えるとガスタ
ービンの出力と効率とが著しく減少するからである。ガ
スタービンの圧力比がより大きくなるということは、駆
動ガスがタービンから出て行く迄より低い終圧になり、
従つてより低い排出温度に下ることを意味する。
この温度低下は望ましいが、しかしその結果ガスタービ
ンの効率も低下する。従つてこの効率を得るために最良
の圧力比より大きくならないようにされる。それ故前述
した排ガス温度は脱塩装置に対して.はあまりにも高す
ぎ、この排ガス温度によつて蒸溜の際に高い蒸気温度が
生じ、それによつて必然的に高い蒸気圧力が生じる。
この高い蒸気圧力によつて多段のカスケード気化が極め
て高価になつて不可能にさえなる。さらに又、前記の高
温が海.”水に含まれている塩分により管の蒸皮を引き
起すであろう。しかしもし蒸溜過程用の温水の温度を約
120℃から170℃までの間の温度に下げると、ガス
タービンの流出口での有益な熱量がエントロピの増大に
より著しく価値を減少してしまう。それ故、現在使用さ
れている海水脱塩用装置は経済的に見て満足のいくもの
ではない。本発明の目的は、海水脱塩用装置の加熱用の
熱交換器が後置されて接続されているガスタービンの良
好な効率を維持しつつ、このガスタービンから排出され
る熱量を経済的に有効に利用することである。
この目的は本発明において、前記の熱交換器が水路側で
互いに分離された2箇のボイラ部を有する廃熱ボイラと
して形成されており、この2箇のボイラ部の第1ボイラ
部が高い排ガス温度を利用して1箇の蒸気タービン用の
蒸気の発生用として動作し、又、前記の2箇のボイラ部
の第2ボイラ2が間接、又は直接、海水脱塩用装置のた
めの熱源を構成していることにより達成される。
前記のガスタービンを1箇の蒸気タービンに結合させる
ことにより全体の熱的な効率の上昇が達成される。
前記の蒸気タービン用の蒸気の発生用7として動作する
前記の第1ボイラ部からの排ガス流出温度はほぼ180
℃から200℃までの温度にあり、この温度は蒸気部全
体の最適な設計を可能にするものである。この180℃
〜200℃という温度は実際上から知られた値で、通常
450〜550′Cでガスノターピンから廃熱ボイラに
入る排ガスはこの廃熱ボイラー中でボイラ部6と12に
よつてこの温度迄冷却される。これによつて蒸気発生用
の第1ボイラの蒸気密度を即ち凝縮水と排出される冷却
水との間の温度差をより好ましく選定することが出来、
それによつてこの第1ボイラ部が本質的に安価になる。
この第1ボイラへの供給水の抽気蒸気即ち蒸気タービン
の抽気箇所からとり出された蒸気量の与熱を150℃か
ら170℃までの範囲の温度まで高めることが可能であ
り、これによつて蒸気過程が改良され、又、復水器が小
形になり、又、前記の蒸気タービン中の濡れ蒸気が減少
する。しかし前記の第1ボイラ部の後の低い排ガス温度
は前記の第2ボイラ部に申し分なく適合し、この第2ボ
イラ部が脱塩装置用の温水を発生するために又は、海水
の直接加熱に役立つ。本発明の装置全体によつて燃料の
ほぼ最適な利用が生じる。経済的な観点からすれば、本
発明の海水脱塩装置を有するガスタービン・蒸気タービ
ン結合装置は海水脱塩装置を有する単なるガスタービン
装置と、海水脱塩装置を有する単なる蒸気タービン設備
とを凌ぐものである。本発明の発電装置の2実施例を図
面に示し、より詳細に説明する。
この両図面においては同一の構成部を同一の符号で示す
第1図に示す発電装置においてはガスタービン群が軸流
圧縮器1と燃焼室2とガスタービン3と発電機4とから
構成されている。
このガスタービン群に後置されて、接続している廃熱ボ
イラ5は水路側で2箇の部分から構成されている。この
第1の部分である第1ボイラ部6は蒸気発生器であり、
蒸気タービン群に高圧蒸気を供給しており、この蒸気タ
ービン群が、その本質的な構成部を図示するように、蒸
気タービン7と、発電機8と、凝縮器9と、給水ポンプ
10と給水子熱器11とから構成されている。第2ボイ
ラ部12は温水の加熱用として働らき、この温水は閉じ
た水循環路13中に導入されており、且、熱交換器14
でその熱の1部を加熱されるべく海水に与える。
海水は脱塩装置16の流入口15において流入し、その
際この脱塩装置力幼スケート気化用に形成されている。
ポンプ17がこの海水を直接に接続された複数箇の凝縮
器18に送り込み、この凝縮器でこの海水が管中を通つ
て導びかれる。引き続いてこの海水は前記の熱交換器1
4中を通過するが、その際この熱交換器中で望ましい動
作温度まて加熱され、引き続いて気化器19を通過する
。この気化器も前記の凝縮器18と同様に直列に接続さ
れており、且、この凝縮器と同数箇の気化器からなつて
いる。この気化器19の終段出口でまだ残留している塩
水は流出口20から導びき出される。この種の装置の動
作は公知である。
熱交換器14中て加熱され、且、圧力下にある海水は、
まず最初に1箇の気化器19によつて幾分結合がゆるみ
、それによつて海水表面から純水が蒸発する。この蒸気
は連結導管21中を上昇して、この気化段に属する凝縮
器18中に入るが、この凝縮器は真空になつており、前
記の蒸気が冷たく、且、海水を導いている前記の管上に
凝縮する。この凝縮過程によつて同時にこの管中の海水
が幾分暖められ、その結果この海水に熱交換器14中で
はわずかに多くの熱量を供給しなければならないにすぎ
ない。前記の凝縮水は図面の矢印の方向に沿つて導管2
2を通つて次段に流れ込み、この段の気化器の蒸気と共
にこの段の凝縮器中に入り、再びここから流出して、さ
らに次の段へと進む。
こうして段階的に量が増大して得られる凝縮水は飲料水
として使用可能であり、流出部23から導びき出される
。前記のボイラ5は単なる廃熱ボイラであることが可能
であり、即ち、このボイラがガスタービンの排ガス中に
また含まれている熱のみを使用するものである。
しかし、このボイラ5に補助バーナ24が備わつている
ことも可能である。このことは、この補助バーナが常に
動作していれば、前述した蒸気タービン群をより大きな
出力用に設計することが出来るという長所を有する。さ
らに他の可能性は、前記の補助バーナを単に非常時用と
してのみ備え、例えば破損による前述したガスタービン
群の停止の際に、前記の蒸気タービンと前記の脱塩装置
との非常時運転を維持し得るようにすることである。第
2図は第1図に類似した発電装置とを示すが、海水が廃
熱ボイラ5と脱塩装置との間に接続された前記の水循環
路を介して1箇の独立した熱交換器中で加熱されるので
はなく、直接廃熱ボイラ5中で加熱され、その際第2ボ
イラ部12が海水の流路中に接続されている。
この配置は第2ボイラ部12の後での排ガスの温度が既
に比較的低く、管の蒸皮をもはや心配する必要のない場
合に特に優れているものである。
【図面の簡単な説明】
第1図は海水脱塩用装置を加熱するための温水の発生部
を有する本発明の発電装置の1実施例であり、第2図は
第1図の発電装置に類似している.が、海水の直接加熱
部を有する本発明の発電の他の1実施例である。 図中、5は廃熱ボイラ、6は第1ボイラ部、12は第2
ボイラ部、7は蒸気タービン、16は海水脱塩用装置で
ある。

Claims (1)

  1. 【特許請求の範囲】 1 1箇のガスタービンと、このガスタービンに後置し
    て接続されている1箇の熱交換器とを有し、この熱交換
    器中で前記のガスタービンの排ガス中にまだ含まれてい
    る熱の1部が海水脱塩用装置の加熱のために利用され、
    また、前記の熱交換器が水路側で互いに分離された2個
    のボイラ部6、12を有する廃熱ボイラ5として形成さ
    れており、この2箇のボイラ部の第1ボイラ部6が高い
    排ガス温度を利用して1箇の蒸気タービン7用の蒸気の
    発生用として動作する火力発電装置において、前記の2
    箇のボイラ部の第2ボイラ部12が間接又は直接的に海
    水脱塩のための段階式気化装置15〜23用熱源を構成
    していることを特徴とする発電装置。 2 前記の第2ボイラ部12が前記の海水脱塩用装置1
    6の加熱用の温水を供給していることを特徴とする特許
    請求の範囲第1項に記載の発電装置。 3 第2ボイラ部12が海水の直接加熱用として働いて
    いることを特徴とする特許請求の範囲第1項に記載の発
    電装置。 4 前記の廃熱ボイラ5中に1箇の補助バーナ24が備
    わつており、この補助バーナによつて前記のガスタービ
    ン3の停止状態の際に前記の蒸気タービン7と前記の海
    水脱塩用装置16との非常時運転が可能となつているこ
    とを特徴とする特許請求の範囲第1項に記載の発電装置
JP52019360A 1976-05-14 1977-02-25 海水脱塩用装置に連結されている火力発電装置 Expired JPS6050964B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH605276A CH593424A5 (ja) 1976-05-14 1976-05-14
CH6052/76 1976-05-14

Publications (2)

Publication Number Publication Date
JPS52137547A JPS52137547A (en) 1977-11-17
JPS6050964B2 true JPS6050964B2 (ja) 1985-11-11

Family

ID=4303456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52019360A Expired JPS6050964B2 (ja) 1976-05-14 1977-02-25 海水脱塩用装置に連結されている火力発電装置

Country Status (8)

Country Link
US (1) US4094747A (ja)
JP (1) JPS6050964B2 (ja)
CH (1) CH593424A5 (ja)
DE (1) DE2625760C2 (ja)
FR (1) FR2351252A1 (ja)
GB (1) GB1518486A (ja)
IT (1) IT1084680B (ja)
SE (1) SE436911B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256115B2 (ja) * 1986-02-19 1990-11-29 Suzuki Mfg

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2439035A1 (fr) * 1978-10-18 1980-05-16 Cem Comp Electro Mec Procede et dispositif pour concentrer des solutions
DE3020297A1 (de) * 1980-05-28 1981-12-10 Kraftwerk Union AG, 4330 Mülheim Anlage zur erzeugung von ueberhitztem prozessdampf aus salzhaltigem rohwasser
NL8203867A (nl) * 1982-01-27 1983-08-16 Energiagazdalkodasi Intezet Werkwijze en inrichting voor het doeltreffend veranderen van het totaalvermogen bij een met een samengestelde (gas-stoom) kringloop plaats vindende aandrijving van de produktiemachine-eenheden van krachtstations en drukverhoger-(compressor) stations van aardgas- en aardolietransportleidingen.
DE3635707A1 (de) * 1986-10-21 1988-04-28 Bbc Brown Boveri & Cie Verfahren und anlage zum gewinnen von suesswasser aus salzhaltigem rohwasser
US5096543A (en) * 1990-09-27 1992-03-17 Kamyr, Inc. Carrier gas apparatus for evaporation and condensation
JPH0489804U (ja) * 1991-04-17 1992-08-05
US5366514A (en) * 1992-12-30 1994-11-22 Texas Brine Corporation Salt plant evaporation
US5346592A (en) * 1993-08-11 1994-09-13 Madani Anas A Combined water purification and power of generating plant
US5622605A (en) * 1993-11-05 1997-04-22 Simpson; Gary D. Process for desalinating water while producing power
US5513494A (en) * 1993-12-14 1996-05-07 Otec Developments Ocean thermal energy conversion (OTEC) system
US5582691A (en) * 1993-12-14 1996-12-10 Flynn; Robert J. Ocean thermal energy conversion (OTEC) system
ES2108612B1 (es) * 1994-08-12 1998-07-01 Cia Sevillana De Electricidad Planta dual optimizada de generacion de energia electrica y desalacion de agua.
WO1999033751A1 (en) * 1997-12-25 1999-07-08 Ebara Corporation Desalination method and desalination apparatus
IT1319608B1 (it) * 2000-12-21 2003-10-20 Abb Ricerca Spa Impianto per il trattamento dei rifiuti energeticamente ottimizzato
EP1413554A1 (de) * 2002-10-23 2004-04-28 Siemens Aktiengesellschaft Gas- und Dampfkraftwerk zur Wasserentsalzung
CN100436781C (zh) * 2002-11-18 2008-11-26 格雷戈里·B·瑞安 用于水巴氏消毒和发电的系统及方法
AU2003295494B2 (en) * 2002-11-18 2010-12-23 Gregory B. Ryan System and method for water pasteurization and power generation
US7073337B2 (en) * 2003-05-30 2006-07-11 General Electric Company Combined power generation and desalinization apparatus and related method
US7799178B2 (en) * 2005-01-07 2010-09-21 Black & Veatch Holding Company Distillation process
US7922873B2 (en) * 2005-10-15 2011-04-12 St Germain Girard Charles Method and apparatus for desalinating water combined with power generation
US8328995B2 (en) * 2006-02-14 2012-12-11 Black & Veatch Holding Company Method for producing a distillate stream from a water stream containing at least one dissolved solid
US8776522B2 (en) 2008-04-15 2014-07-15 Morningside Venture Investments Limited Water reclamation system and method
DE102009013570A1 (de) * 2009-03-17 2010-09-30 Siemens Aktiengesellschaft Kraftwerksanlage mit zwei Kreisläufen sowie ein Verfahren zum Betrieb einer Kraftwerksanlage
US8545681B2 (en) * 2009-12-23 2013-10-01 General Electric Company Waste heat driven desalination process
DE102011085666A1 (de) * 2011-11-03 2013-05-08 Siemens Aktiengesellschaft Gasturbinenanlage mit Abwasserverdampfer
US9028653B2 (en) * 2012-04-13 2015-05-12 Korea Institute Of Energy Research Evaporative desalination device of multi stage and multi effect using solar heat
US10053374B2 (en) * 2012-08-16 2018-08-21 University Of South Florida Systems and methods for water desalination and power generation
US10118108B2 (en) 2014-04-22 2018-11-06 General Electric Company System and method of distillation process and turbine engine intercooler
US10024195B2 (en) 2015-02-19 2018-07-17 General Electric Company System and method for heating make-up working fluid of a steam system with engine fluid waste heat
EP3130383A1 (de) * 2015-08-14 2017-02-15 Siemens Aktiengesellschaft Kraftwerksanlage mit thermischer meerwasserentsalzungseinrichtung
US9664140B2 (en) * 2015-09-23 2017-05-30 Pasteurization Technology Group Inc. Combined heat and power system with electrical and thermal energy storage
US10487695B2 (en) 2015-10-23 2019-11-26 General Electric Company System and method of interfacing intercooled gas turbine engine with distillation process
US10961874B2 (en) 2016-03-06 2021-03-30 Husham Al-Ghizzy Enhanced thermoutilizer
US11112118B2 (en) * 2016-06-27 2021-09-07 General Electric Company Gas turbine lower heating value methods and systems
DE102018207875A1 (de) * 2018-05-18 2019-11-21 Siemens Aktiengesellschaft Kombinierte Nutzung von Abwärme und Abwasser/Sole zur Trinkwasserproduktion in Gas- und Dampf-Kraftwerken

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1182021A (en) * 1966-02-18 1970-02-25 Achille Etienne Jean Chocquet Improvements in and relating to the Evaporation of Liquids
US3489652A (en) * 1966-04-18 1970-01-13 American Mach & Foundry Desalination process by multi-effect,multi-stage flash distillation combined with power generation
US3438202A (en) * 1967-10-27 1969-04-15 Saline Water Conversion Corp Condensing power plant system
US3681920A (en) * 1969-01-20 1972-08-08 Atomenergi Ab Method and means for generating electricity and vaporizing a liquid in a thermal power station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256115B2 (ja) * 1986-02-19 1990-11-29 Suzuki Mfg

Also Published As

Publication number Publication date
IT1084680B (it) 1985-05-28
SE7705457L (sv) 1977-11-15
CH593424A5 (ja) 1977-11-30
DE2625760C2 (de) 1984-08-09
SE436911B (sv) 1985-01-28
FR2351252B1 (ja) 1980-10-24
US4094747A (en) 1978-06-13
DE2625760A1 (de) 1978-04-20
JPS52137547A (en) 1977-11-17
FR2351252A1 (fr) 1977-12-09
GB1518486A (en) 1978-07-19

Similar Documents

Publication Publication Date Title
JPS6050964B2 (ja) 海水脱塩用装置に連結されている火力発電装置
US4231226A (en) Method and apparatus for vaporizing liquid natural gases
RU2126491C1 (ru) Устройство для охлаждения средства охлаждения газовой турбины газо- паротурбинной установки
US6233940B1 (en) Dual-pressure stem injection partial-regeneration-cycle gas turbine system
JP6730004B2 (ja) 蒸留プロセス及びタービンエンジンインタークーラのシステム及び方法
JPH094417A (ja) 複合サイクル・システム
JPH01253531A (ja) 機械的エネルギ発生装置
US3461667A (en) Method and apparatus for mixing gas and steam in a gas turbine plant
US3006146A (en) Closed-cycle power plant
SU1521284A3 (ru) Энергетическа установка
US3597328A (en) Combined plant installation for producing electrical power and fresh water from brine
JPH09177566A (ja) 発電所のための冷却空気用冷却器
JPH09203304A (ja) 廃棄物を燃料とする複合発電システム
US3451220A (en) Closed-cycle turbine power plant and distillation plant
RU2276813C1 (ru) Ядерная энергоустановка кудрявцева и паровая турбина кудрявцева
RU2298681C2 (ru) Турбинное устройство и способ работы турбинного устройства
GB1601832A (en) Internal combustion engine plant
RU2409746C2 (ru) Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной
JP2000161018A (ja) 水―アンモニア混合流体による排熱回収発電方法及び装置
JP3697476B2 (ja) ガス圧力エネルギを利用した複合発電システム
JP2012189008A (ja) 火力発電プラント
JPS628606B2 (ja)
RU2561770C2 (ru) Способ работы парогазовой установки
JP7121185B2 (ja) 天然ガス再ガス化を含む発電プラント
RU167924U1 (ru) Бинарная парогазовая установка