JPS6049593B2 - Aluminum base laminate for printed wiring boards and its manufacturing method - Google Patents

Aluminum base laminate for printed wiring boards and its manufacturing method

Info

Publication number
JPS6049593B2
JPS6049593B2 JP4771981A JP4771981A JPS6049593B2 JP S6049593 B2 JPS6049593 B2 JP S6049593B2 JP 4771981 A JP4771981 A JP 4771981A JP 4771981 A JP4771981 A JP 4771981A JP S6049593 B2 JPS6049593 B2 JP S6049593B2
Authority
JP
Japan
Prior art keywords
aluminum base
resin layer
base material
printed wiring
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4771981A
Other languages
Japanese (ja)
Other versions
JPS57160631A (en
Inventor
敏夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP4771981A priority Critical patent/JPS6049593B2/en
Publication of JPS57160631A publication Critical patent/JPS57160631A/en
Publication of JPS6049593B2 publication Critical patent/JPS6049593B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】 本発明は印刷配線板(プリント基板)を製造するのに
用いられるアルミニウム基材積層板とその製法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum base laminate used for manufacturing printed wiring boards (printed circuit boards) and a method for manufacturing the same.

詳しくはアルミニウム基材と樹脂層とが強固に接着され
ている印刷配線板用アルミニウム基材積層板とその製法
に関するものてある。 印刷配線板は一枚の絶縁板上の
片面または両面に銅箔を用いて配線路を形成し、電子部
品を取付けて機器を構成している。
Specifically, the present invention relates to an aluminum base laminate for printed wiring boards in which an aluminum base material and a resin layer are firmly bonded together, and a method for manufacturing the same. A printed wiring board is a single insulating board, on one or both sides of which a wiring path is formed using copper foil, and electronic components are attached to form a device.

近年その中でも電子部品を高密度で実装する多層印刷配
線板が多く使用され、この配線板の放熱を効率良く行う
ため絶縁板にアルミニウム板を密着させることが提案さ
れている。しかしながら従来の密着方法では、絶縁板と
アルミニウム板とを強固に接着させることができず、電
子機器の使用中剥れてしまう恐れがあり、未だ実用的な
絶縁板とアルミニウム板との積層板は見出されていなか
つた。そこで本発明者は絶縁板とアルミニウム板とを強
固に接着させる方法につき鋭意検討を重ねた結果、アル
ミニウム板表面にあらかじめ特定条件の凹凸を形成させ
ておき、しかる後絶縁板となるべき樹脂層を特別の方法
で接着させれば良いことを見出し本発明を完成した。
In recent years, multilayer printed wiring boards on which electronic components are mounted at high density have been widely used, and it has been proposed to bond an aluminum plate to an insulating board in order to efficiently dissipate heat from these wiring boards. However, with the conventional adhesion method, it is not possible to firmly bond the insulating plate and the aluminum plate, and there is a risk that the insulating plate and the aluminum plate will peel off while the electronic device is in use. It had not been discovered. Therefore, the inventor of the present invention has conducted extensive research on a method for firmly adhering an insulating plate and an aluminum plate. As a result, the inventors first form irregularities under specific conditions on the surface of the aluminum plate in advance, and then apply a resin layer that will become the insulating plate. The present invention was completed by discovering that it can be bonded using a special method.

すなわち本発明の目的は、絶縁板となる樹脂層と放熱板
となるアルミニウム板とが強固に一体化された印刷配線
板用の積層板とその製法を提供することにあり、かかる
目的は、樹脂層とアルミニウム基材(アルミニウムその
ものの基材の他に、アルミニウム合金の基材も含む。
That is, an object of the present invention is to provide a laminate for a printed wiring board in which a resin layer serving as an insulating plate and an aluminum plate serving as a heat dissipation plate are firmly integrated, and a method for manufacturing the same. layers and aluminum substrates (including substrates of aluminum itself, as well as substrates of aluminum alloys).

以下同じ)とが積層された印刷配線板用アルミニウム基
材積層板において、アルミニウム基材表面が平均粗さ2
μ以上に粗面化されており、さらにその粗面化された表
面に孔径100〜450Aの微細孔が設けられ、樹脂層
が該微細孔の内側まで侵入して樹脂層とアルミニウム基
材とが強固に接着されている積層板と、該積層板を製造
するに当り、微細孔を設けたアルミニウム基材表面に接
着性のある熱硬化性樹脂層を熱圧着させる方法により達
成することができる。以下に本発明積層板を図面と共に
詳細に説明するに、本発明積層板を構成するアルミニウ
ム基材1表面は、平均粗さ2μ(つまり第1図において
凹凸の山2から谷3までの深さ1が2μ)以上で、凹凸
の山2から山2までの孔ピッチ(第1図においてピッチ
S)が約10〜500μに粗面化されている。
In an aluminum base laminate for printed wiring boards, in which the aluminum base material surface is laminated with
The surface is roughened to a diameter greater than μ, and micropores with a diameter of 100 to 450A are provided on the roughened surface, and the resin layer penetrates to the inside of the micropores to connect the resin layer and the aluminum base material. This can be achieved by a method in which a laminate is firmly bonded, and in manufacturing the laminate, an adhesive thermosetting resin layer is thermocompression bonded to the surface of an aluminum base material provided with micropores. The laminate of the present invention will be explained in detail below with reference to the drawings. 1 is 2μ) or more, and the hole pitch from peak 2 to peak 2 of the unevenness (pitch S in FIG. 1) is roughened to about 10 to 500μ.

Iは2μ以上であれば良いが、その上限は粗面化された
表面へ熱圧着により樹脂層が充分に侵入しえない、たと
え侵入しえたとしても接着強度が不充分などの理由より
30p以下であることが好ましい。またIが2μよりも
小さいと接着力が不充分となつてしまう。それぞれの山
2及び谷3には、更に孔径100〜450A1好ましく
は200〜350Aの微細孔4が無数設けられている。
この場合孔径が100Aよりも小さいと樹脂層5が微細
孔4内側まて侵入しにくく、また450Aよりも大きい
と樹脂層5の侵入は容易になるが、侵入しても樹脂層5
とアルミニウム基材1との充分な接着強度は得られない
。なお孔4の深さは通常0.2〜1.0μである。この
ように粗面化し微細孔4が設けられたアルミニウム基材
1の上側には樹脂層5が接着されており、上述のように
樹脂層5の1部は第2図のように微細孔4の内側まで隙
間なく侵入している。ここで用いられる樹脂層5として
は、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂
、ポリイミド、シリコン樹脂、ポリテトラフルオロエチ
レン等の接着性のある熱硬化性樹脂をグラスファイバー
、不織布等に含浸させたものが使用される。このうちエ
ポキシ樹脂を用いる場合は分子量500〜10001エ
ポキシ当量150〜600のものを硬化剤として芳香族
アミンを用いるのが好ましい。上述のような構成の積層
板は、従来周知の方法により樹脂層5上面に銅箔を貼着
し、回路に応じてエッチングを施し印刷配線板とされる
。このような印刷配線板は樹脂層5の1部が狭い微細孔
4内側まて侵入して樹脂層5とアルミニウム基材1とが
接着されているため、使用中容易なことではアルミニウ
ム基材1が剥れす、電子機器を振動の多い苛酷な条件下
でも安心して使用できる。上述のような本発明積層板は
例えは第3図に図示するようにして製造される。まず脱
脂工程イとしてアルミニウム基材1を通常の脱脂剤に浸
漬することによつて、表面汚染物質を除去する。次にア
ルミニウム基材はエッチング工程口で平均粗さ2μ以上
に粗面化する。エッチングの方法には特に限定されなく
、例えばNaOHl重クロム酸ソーダ、HCl等を用い
た化学的エッチング;ヘヤーライン、サンドブラスト、
ショットブラスト、ボールグレイニング等の機械的エッ
チング;NaCl、NH4Cl溶液中で交流又は直流を
用いた電気化学的エッチングで行うことができる。粗面
化の程度はエッチング方法によつて異なり、例えばNa
OHを用いた化学的エッチングでは粗さIが約2μ、孔
ピッチSが約200μとなり、NHlCl溶液を用いた
電気化学的エッチングでは粗さlが約4μ、孔ピッチが
約100μとなり、HClを用いた電気化学的エッチン
グでは粗さ1が約5μ、孔ピッチが約10μとなる。粗
面化により生成した深さlが2μ以上で、ピッチSが約
10〜500μの凹凸表面には次の微細孔生成工程ハで
、孔径100〜450Aの微細孔4が設けられる。
I should be 2μ or more, but the upper limit is 30p or less because the resin layer cannot sufficiently penetrate into the roughened surface by thermocompression bonding, and even if it can penetrate, the adhesive strength is insufficient. It is preferable that Moreover, if I is smaller than 2μ, the adhesive force will be insufficient. Each of the peaks 2 and valleys 3 is further provided with numerous micropores 4 having a diameter of 100 to 450A, preferably 200 to 350A.
In this case, if the pore diameter is smaller than 100A, it will be difficult for the resin layer 5 to penetrate into the inside of the micropore 4, and if it is larger than 450A, the resin layer 5 will penetrate easily, but even if it penetrates, the resin layer 5
Sufficient adhesive strength between the aluminum base material 1 and the aluminum base material 1 cannot be obtained. Note that the depth of the hole 4 is usually 0.2 to 1.0 μ. A resin layer 5 is adhered to the upper side of the aluminum base material 1 which has been roughened and has micropores 4, and as described above, a part of the resin layer 5 has micropores 4 as shown in FIG. It has invaded the inside of the body without any gaps. The resin layer 5 used here is made by impregnating glass fiber, nonwoven fabric, etc. with an adhesive thermosetting resin such as epoxy resin, phenol resin, polyester resin, polyimide, silicone resin, or polytetrafluoroethylene. used. Among these, when using an epoxy resin, it is preferable to use an aromatic amine having a molecular weight of 500 to 10,000 and an epoxy equivalent of 150 to 600 as a curing agent. The laminate having the above-mentioned structure is made into a printed wiring board by pasting copper foil on the upper surface of the resin layer 5 by a conventionally known method and etching it according to the circuit. In such a printed wiring board, a part of the resin layer 5 penetrates into the inside of the narrow micropore 4 and the resin layer 5 and the aluminum base material 1 are bonded together. No peeling, allowing electronic devices to be used safely even under harsh conditions with a lot of vibration. The laminate of the present invention as described above is manufactured, for example, as shown in FIG. First, as a degreasing step (a), surface contaminants are removed by immersing the aluminum base material 1 in a common degreasing agent. Next, the aluminum base material is roughened to an average roughness of 2 μm or more in an etching process. The etching method is not particularly limited, and includes, for example, chemical etching using NaOH, sodium dichromate, HCl, etc.; hairline, sandblasting,
Mechanical etching such as shot blasting or ball graining; electrochemical etching using alternating current or direct current in a NaCl or NH4Cl solution can be performed. The degree of surface roughening varies depending on the etching method; for example, Na
Chemical etching using OH resulted in a roughness I of approximately 2 μ and a hole pitch S of approximately 200 μ; electrochemical etching using an NHLCl solution resulted in a roughness I of approximately 4 μ and a hole pitch of approximately 100 μ; In the case of electrochemical etching, the roughness 1 is about 5μ and the hole pitch is about 10μ. In the next micropore generation step (c), micropores 4 having a diameter of 100 to 450A are provided on the uneven surface having a depth l of 2μ or more and a pitch S of about 10 to 500μ, which is generated by roughening.

微細孔4を設けるには、例えば多孔質アルマイト(耐食
性酸化皮膜)を生成させれば良く、電解液としてリン酸
を用いると孔径約330Aの微細孔4を有する多孔質ア
ルマイトが生成し、またクロム酸を用いると約240A
、シユウ酸を用いると約170A、硫酸を用いると約1
20Aの微細孔4を有する多孔質アルマイトがそれぞれ
生成する。次に樹脂層圧着工程二でアルミニウム基材1
上に絶縁材となる樹脂層5を熱圧着により強固に接着す
る。
In order to provide the micropores 4, for example, porous alumite (corrosion-resistant oxide film) may be produced, and if phosphoric acid is used as the electrolyte, porous alumite having micropores 4 with a pore diameter of approximately 330A is produced, and chromium Approximately 240A when using acid
, about 170A when using oxalic acid, about 1 when using sulfuric acid.
Porous alumite having micropores 4 of 20A is produced respectively. Next, in the resin layer pressure bonding step 2, the aluminum base material 1
A resin layer 5 serving as an insulating material is firmly bonded thereon by thermocompression bonding.

熱圧着は樹脂層5の成分である接着性のある熱硬化性樹
脂が微細孔4内側まで溶融して侵入するまで行われ、例
えば樹脂層4としてエポキシ樹脂を含浸したグラスファ
イバーを用いた場合には、温度120〜180゜C1圧
力50k91cItて60〜12紛間行われる。なおこ
の樹脂層圧着工程二の前にシランカップリング剤で処理
しておくと樹脂層5の接着がより緊密に行うことができ
好ましい。使用できるシランカップリング剤としては、
ビニルトリクロロシラン、ビニルトリチオキシシラン、
ビニルトリス(β−メトキシエトキシ)シラン、β−(
3,4−エポキシシクロヘキシル)エチルトリメトキシ
シラン、γ−グリシドキシプロピルトリメトキシシラン
、γ−メタクルロキシプロピル?トリメトキシシラン、
N−β−(アミノエチル)−γ−アミノプロピルメチル
ジメトキシシラン、N−β−(アミノエチル)−γ−ア
ミノプロピルトリメトキシシラン等を用いることができ
、これらをアルコールと水との混合物100重量部に5
〜1唾量部添加し、プライマーとして基材1表面に塗布
し、十分に風乾させれば良い。以上のような方法により
本発明の積層板を製造することができ、この積層板が優
れた性質を示すことは前述の通りである。
Thermocompression bonding is performed until the adhesive thermosetting resin, which is a component of the resin layer 5, melts and penetrates into the inside of the micropores 4. For example, when glass fiber impregnated with epoxy resin is used as the resin layer 4, The process is carried out at a temperature of 120 to 180°C and a pressure of 50k91cIt for 60 to 12 minutes. Note that it is preferable to treat the resin layer 5 with a silane coupling agent before this resin layer pressure bonding step 2, since the resin layer 5 can be bonded more tightly. Silane coupling agents that can be used include:
vinyltrichlorosilane, vinyltrithioxysilane,
Vinyltris(β-methoxyethoxy)silane, β-(
3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyl? trimethoxysilane,
N-β-(aminoethyl)-γ-aminopropylmethyldimethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, etc. can be used, and these can be mixed with alcohol and water at 100% by weight. Part 5
~1 part of saliva may be added, applied as a primer to the surface of the base material 1, and sufficiently air-dried. As described above, the laminate of the present invention can be produced by the method described above, and this laminate exhibits excellent properties.

実施例 基材として長さ300TI0rL1巾1071Un1厚
さ2?のアルミニウム板JISAlO5O−H24を用
い、脱脂剤「デイプソールAI−47」の50℃3%水
溶液に3分間浸漬することによつて表面を脱脂し、次表
の条件で粗面化し、更に微細孔を設け、グラスファイバ
ーに分子量900エポキシ当量450〜500のエポキ
シ樹脂商品名「エピコート1001」(シェル化学)を
、グラスファイバーに含浸硬化させた厚さ100μの樹
脂層を150℃圧力50k91C71fで12吟間熱圧
着し、それの接着強度を測定した。
Example base material: Length 300TI0rL1 Width 1071Un1 Thickness 2? Using an aluminum plate JISAAlO5O-H24, the surface was degreased by immersing it in a 3% aqueous solution of the degreaser "Dipsol AI-47" at 50°C for 3 minutes, and the surface was roughened under the conditions shown in the table below. A resin layer with a thickness of 100 μm obtained by impregnating glass fiber with an epoxy resin trade name “Epicote 1001” (Shell Chemical Co., Ltd.) having a molecular weight of 900 and an epoxy equivalent of 450 to 500 and hardening it was heated at 150°C and a pressure of 50k91C71f for 12 minutes. It was crimped and its adhesive strength was measured.

なおシランカップリング剤で処理已た場合の接着強度も
併せて示す。なお接着強度を測定するため樹脂層の上側
に第4図のように同一条件にて同一のアルミニウム板を
積層した。
The adhesive strength after treatment with a silane coupling agent is also shown. In order to measure the adhesive strength, the same aluminum plate was laminated on the upper side of the resin layer under the same conditions as shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明積層板を示す1部拡大断面図、第2図は
第1図を更に拡大した断面図、第3図は10本発明方法
を示す1部拡大断面図、第4図Aは実施例にて接着強度
を測定するために樹脂層の上側ゾにアルミニウム板を積
層した断面図で、Bはり拡大断面図である。 1・・・・・・アルミニウム基材、4・・・・・・微細
孔、5・・・■脂層。
FIG. 1 is a partially enlarged sectional view showing the laminate of the present invention, FIG. 2 is a further enlarged sectional view of FIG. 1, FIG. 3 is a partially enlarged sectional view showing the method of the present invention, and FIG. 4A 1 is a cross-sectional view of an aluminum plate laminated on the upper side of the resin layer in order to measure adhesive strength in an example, and B is an enlarged cross-sectional view. 1... Aluminum base material, 4... Fine pores, 5... ■ Fat layer.

Claims (1)

【特許請求の範囲】 1 樹脂層とアルミニウム基材とが積層された印刷配線
板用アルミニウム基材積層板において、アルミニウム基
材表面が平均粗さ2μ以上に粗面化されており、さらに
その粗面化された表面に孔径100〜450Åの微細孔
が設けられ、樹脂層が該微細孔の内側まで侵入して樹脂
層とアルミニウム基材とが強固に接着されていることを
特徴とする印刷配線用アルミニウム基材積層板。 2 樹脂層が接着性のある熱硬化性樹脂を含浸したグラ
スファイバーである特許請求の範囲第1項記載の印刷配
線板用アルミニウム基材積層板。 3 アルミニウム基材表面を脱脂し、エッチングするこ
とにより平均粗さ2μ以上に粗面化し、さらに粗面化し
た表面に孔径100〜450Åの微細孔を有する多孔質
アルマイトを生成させ、次に接着性のある熱硬化性樹脂
層をアルミニウム基材表面に熱圧着し、該熱硬化性樹脂
を前記微細孔内側まで侵入させてアルミニウム基材と熱
硬化性樹脂層とを強固に一体化することを特徴とする印
刷配線板用アルミニウム基材積層板の製法。 4 接着性のある熱硬化性樹脂層が、エポキシ樹脂を含
浸したグラスファイバーである特許請求の範囲第3項記
載の印刷配線板用アルミニウム基材積層板の製法。 5 アルミニウム基材表面を脱脂し、エッチングするこ
とにより平均粗さ2μ以上に粗面化し、さらに粗面化し
た表面に孔径100〜450Åの微細孔を有する多孔質
アルマイトを生成させ、次にシランカップリング剤、ま
たはシランカップリング剤を含むプライマーで処理した
後接着性のある熱硬化性樹脂層をアルミニウム基材表面
に熱圧着し該熱硬化性樹脂を前記微細孔内側まで侵入さ
せてアルミニウム基材と熱硬化性樹脂層とを強固に一体
化することを特徴とする印刷配線板用アルミニウム基材
積層板の製法。
[Scope of Claims] 1. In an aluminum base laminate for printed wiring boards in which a resin layer and an aluminum base material are laminated, the surface of the aluminum base material is roughened to an average roughness of 2μ or more, and the surface roughness is further increased. A printed wiring characterized in that micropores with a diameter of 100 to 450 Å are provided on the planarized surface, and the resin layer penetrates into the inner side of the micropores to firmly bond the resin layer and the aluminum base material. Aluminum base laminate for use. 2. The aluminum base laminate for a printed wiring board according to claim 1, wherein the resin layer is glass fiber impregnated with an adhesive thermosetting resin. 3 The surface of the aluminum base material is degreased and etched to roughen it to an average roughness of 2 μ or more, and then porous alumite having micropores with a pore diameter of 100 to 450 Å is generated on the roughened surface, and then adhesive A thermosetting resin layer is thermocompression bonded to the surface of an aluminum base material, and the thermosetting resin penetrates into the inside of the micropores to firmly integrate the aluminum base material and the thermosetting resin layer. A method for manufacturing an aluminum base laminate for printed wiring boards. 4. The method for producing an aluminum base laminate for a printed wiring board according to claim 3, wherein the adhesive thermosetting resin layer is glass fiber impregnated with epoxy resin. 5 The surface of the aluminum base material is degreased and etched to roughen the surface to an average roughness of 2μ or more, and then porous alumite having micropores with a pore diameter of 100 to 450 Å is generated on the roughened surface, and then a silane cup is formed. After treatment with a primer containing a ring agent or a silane coupling agent, an adhesive thermosetting resin layer is thermocompression bonded to the surface of the aluminum base material, and the thermosetting resin penetrates into the inside of the micropores to form the aluminum base material. 1. A method for manufacturing an aluminum base laminate for printed wiring boards, characterized by strongly integrating a thermosetting resin layer and a thermosetting resin layer.
JP4771981A 1981-03-31 1981-03-31 Aluminum base laminate for printed wiring boards and its manufacturing method Expired JPS6049593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4771981A JPS6049593B2 (en) 1981-03-31 1981-03-31 Aluminum base laminate for printed wiring boards and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4771981A JPS6049593B2 (en) 1981-03-31 1981-03-31 Aluminum base laminate for printed wiring boards and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS57160631A JPS57160631A (en) 1982-10-04
JPS6049593B2 true JPS6049593B2 (en) 1985-11-02

Family

ID=12783116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4771981A Expired JPS6049593B2 (en) 1981-03-31 1981-03-31 Aluminum base laminate for printed wiring boards and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6049593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453285U (en) * 1990-09-11 1992-05-07
JP2014116351A (en) * 2012-12-06 2014-06-26 Nippon Multi Kk High thermal-conductivity printed wiring board and method of manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085922U (en) * 1983-11-18 1985-06-13 昭和アルミニウム株式会社 Metal plate adhesive foam polystyrene molding
JPS60127783A (en) * 1983-12-14 1985-07-08 松下電工株式会社 Metal base laminated board
JPS60163492A (en) * 1984-02-03 1985-08-26 東芝ケミカル株式会社 Substrate for heat sink printed circuit
JPH01168097A (en) * 1987-12-24 1989-07-03 Sumitomo Bakelite Co Ltd Manufacture of metal lining plate for high frequency circuit
JPH01211995A (en) * 1988-02-19 1989-08-25 Ok Print Haisen Kk Manufacture of printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453285U (en) * 1990-09-11 1992-05-07
JP2014116351A (en) * 2012-12-06 2014-06-26 Nippon Multi Kk High thermal-conductivity printed wiring board and method of manufacturing the same

Also Published As

Publication number Publication date
JPS57160631A (en) 1982-10-04

Similar Documents

Publication Publication Date Title
KR20090068256A (en) Metal composite laminate for manufacturing flexible wiring board and flexible wiring board
JPS6049593B2 (en) Aluminum base laminate for printed wiring boards and its manufacturing method
KR100772441B1 (en) Manufacturing method for imprinting stamper
JPS58154294A (en) Exfoliating method
JP2000236145A (en) Wiring board and its manufacturing method
JPH06101627B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPH10296908A (en) Manufacture of aluminum-sheet-base copper-clad laminated sheet
JP2002124762A (en) Production method for multilayered printed wiring board
JPH1126938A (en) Manufacture of laminated board with inner layer circuit
JPS62277794A (en) Manufacture of inner layer circuit board
JP3071722B2 (en) Method for manufacturing multilayer printed wiring board
GB2216435A (en) Prepreg sheet
JP2002185139A (en) Printed wiring board and its manufacturing method
JP4742409B2 (en) Method for manufacturing printed wiring board
JP2006100395A (en) Aluminum substrate for printed circuits and its manufacturing method
JP2004031375A (en) Method of manufacturing printed wiring board
JPH09246720A (en) Multilayer printed wiring board and manufacture thereof
JP2004241427A (en) Method of manufacturing wiring board
JP4435293B2 (en) Method for manufacturing printed wiring board
JPH0258295A (en) Manufacture of base material for printed circuit board
JP2004087826A (en) Wiring board and manufacturing method therefor
JP2002185134A (en) Printed circuit board and its manufacturing method
JPS61170091A (en) Manufacture of printed wiring board
JPS62216727A (en) Preparation of aluminum-cored copper-clad laminated plate
JPH0220155B2 (en)