JPH0258295A - Manufacture of base material for printed circuit board - Google Patents

Manufacture of base material for printed circuit board

Info

Publication number
JPH0258295A
JPH0258295A JP20925588A JP20925588A JPH0258295A JP H0258295 A JPH0258295 A JP H0258295A JP 20925588 A JP20925588 A JP 20925588A JP 20925588 A JP20925588 A JP 20925588A JP H0258295 A JPH0258295 A JP H0258295A
Authority
JP
Japan
Prior art keywords
plate
treatment
electrolytic
chemical etching
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20925588A
Other languages
Japanese (ja)
Inventor
Ikuo Obara
小原 郁夫
Masahiro Kurata
正裕 倉田
Yoshitaka Hiromae
広前 義孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP20925588A priority Critical patent/JPH0258295A/en
Publication of JPH0258295A publication Critical patent/JPH0258295A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a base material for printed circuit boards having a good adhesive property to an insulating resin surface film, especially a heat resisting adhesive property under a hygroscopic condition, by performing a mechanical surface roughening process to the surface of an Al or Al-alloy plate and a DC electrolytic process in an electrolytic solution composed principally of nitric acid after the plate is subjected to a chemical etching process. CONSTITUTION:The surface of an Al or Al-alloy plate is roughened within a roughness range of 1-15mum Rmax by performing a mechanical surface roughening process to the surface, and then, a DC electrolytic process is performed to the plate by dipping the plate in an electrolytic solution composed principally of nitric acid after the plate is subjected to a chemical etching process of an etching depth of 0.5-6mum. For example, the surface of the Al plate which is made of the H24 material specified in JIS A1100 and has a thickness of 1mm is processed to have surface roughness of 6.4mum Rmax by performing an air blasting process by using abrasives of corundum #220 and an injection pressure of 3kg/cm<2>. Then the chemical etching process is performed to an etching depth of 0.5mum by using an aqueous solution heated to 40 deg.C end containing 10wt.% of NaOH. After etching, the plate is subjected to the DC electrolytic process by dipping the plate in an aqueous solution heated to 60 deg.C and containing 10wt.% of nitric acid for 5 minutes under 10V.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は各種電子電気機器に使用されるプリント回路
基板の基材の製造方法に関し、特にアルミニウムもしく
はアルミニウム合金を用いたプリント回路基板用基材の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method of manufacturing a base material for a printed circuit board used in various electronic and electrical devices, and in particular to a method for manufacturing a base material for a printed circuit board using aluminum or an aluminum alloy. It is about the method.

従来の技術 周知のようにプリント回路基板は金属や樹脂、セラミッ
クス等からなる板状の基材の上にエポキシ樹脂やポリイ
ミド#4脂等からなる絶縁性樹脂層を形成し、さらにそ
の上に回路形成のための銅箔等の導電薄膜を形成したも
のである。
As is well known in the art, printed circuit boards are made by forming an insulating resin layer made of epoxy resin, polyimide #4 resin, etc. on a plate-shaped base material made of metal, resin, ceramics, etc., and then forming a circuit on top of this. A conductive thin film such as copper foil is formed for formation.

近年のfc、LSI等の高密度実装化に伴なってプリン
ト回路基板の基材としては放熱性が優れることが従来よ
りも一層強く要求されるようになり、そこで最近のプリ
ント回路基板用の基材としては、熱伝導性が良好で放熱
性に優れ、しかも加工性が良好で曲げ等の変形にも耐え
ることができ、また電磁シールド性に優れる等の理由か
ら、アルミニウムもしくはアルミニウム合金が使用され
るようになっている。
In recent years, with the high-density packaging of FC, LSI, etc., there has been a stronger demand than ever for substrates for printed circuit boards to have excellent heat dissipation properties. As for the material, aluminum or aluminum alloy is used because it has good thermal conductivity, excellent heat dissipation, good workability, can withstand deformation such as bending, and has excellent electromagnetic shielding properties. It has become so.

ところでプリント回路基板用の基材には、その上に形成
される絶縁樹脂層との密着性が良好であることか必要で
ある。この密着性が悪ければ、IC,LSIなどを回路
に実装するための半田付けの際に、フクレや剥離等の欠
陥が生じたり、回路パターン形成のためのエツチング工
程で塗膜剥離を生じて絶縁性の低下を招いたりする等の
不都合が生じる。しかしながら一般にアルミニウムやそ
の合金は、樹脂との密着性が良好ではなく、特に吸湿下
での耐熱密着性が劣る。そこでアルミニウムもしくはア
ルミニウム合金をプリント回路基板に用いる場合には、
絶縁樹脂層との密着性を高めるために予めアルミニウム
もしくはアルミニウム合金板の表面に表面処理を施して
おく必要があった。
By the way, it is necessary for the base material for a printed circuit board to have good adhesion to the insulating resin layer formed thereon. If this adhesion is poor, defects such as blistering or peeling may occur during soldering to mount ICs, LSIs, etc. on circuits, or peeling of the coating may occur during the etching process for forming circuit patterns, resulting in poor insulation. This may cause inconveniences such as decreased sexual ability. However, aluminum and its alloys generally do not have good adhesion to resins, and particularly have poor heat-resistant adhesion under moisture absorption. Therefore, when using aluminum or aluminum alloy for printed circuit boards,
In order to improve the adhesion with the insulating resin layer, it was necessary to perform a surface treatment on the surface of the aluminum or aluminum alloy plate in advance.

従来プリント回路基板用のアルミニウムもしくはアルミ
ニウム合金板において樹脂との密着性を高めるために行
なっている表面処理としては次のようなものがある。
Conventionally, the following surface treatments have been performed on aluminum or aluminum alloy plates for printed circuit boards to improve adhesion to resin.

A:機械的粗面化処理を行なう。A: Perform mechanical surface roughening treatment.

B:機械的粗面化処理の後、クロム酸系処理を行なう。B: After mechanical roughening treatment, chromic acid treatment is performed.

C:化学エツチング処理の後、陽極酸化処理を行なう。C: Anodizing treatment is performed after chemical etching treatment.

D:R械的粗面化処理の後、アミノ系シランカップリン
グ溶剤を塗布する。
D: After R mechanical surface roughening treatment, an amino-based silane coupling solvent is applied.

E:架橋型ポリオレフィン樹脂層を設ける。E: A crosslinked polyolefin resin layer is provided.

F:陽極酸化処理皮膜を設ける。F: Anodized film is provided.

G:アルカリエッチングを行なう。G: Perform alkali etching.

発明が解決しようとする課題 前述のような従来の方法では、ある程度はアルミニウム
もしくはアルミニウム合金板と樹脂との密着性を向上さ
せることができるが、プリント回路基板としては未だ不
充分で、特に吸湿状態での耐熱密着性の改善が不充分で
あり、したがって樹脂との耐熱密着性を確実かつ充分に
改善し得る方法の開光が強く望まれている。
Problems to be Solved by the Invention Although the conventional methods described above can improve the adhesion between aluminum or aluminum alloy plates and resin to some extent, they are still insufficient for use as printed circuit boards, especially in moisture-absorbing conditions. Therefore, there is a strong desire to develop a method that can reliably and sufficiently improve heat-resistant adhesion with resins.

一方、基材として導電性を有するアルミニウムもしくは
アルミニウム合金板をプリント回路基板に用いた場合、
基材に対する表面処理が絶縁性樹脂皮膜の電気絶縁性に
悪影響を及ぼさないようにする必要があるが、前述の各
方法のうち、機械的粗面化処理を施す方法では、粗面化
処理の後の表面の凹凸が大きすぎる場合、絶縁性#ff
1皮膜に局部的に薄い部分が生じて電気絶縁性が損われ
ることがある。
On the other hand, when a conductive aluminum or aluminum alloy plate is used as a base material for a printed circuit board,
It is necessary to ensure that the surface treatment of the base material does not adversely affect the electrical insulation properties of the insulating resin film, but among the methods described above, the method of mechanically roughening the surface If the unevenness of the rear surface is too large, insulation #ff
1. Locally thin portions may occur in the film, resulting in loss of electrical insulation.

この発明は以上の事情を背景としてなされたもので、基
本的には、絶縁性!M脂皮膜との密着性、特に@湿下で
の耐熱密着性が優れたアルミニウムもしくはアルミニウ
ム合金製のプリント回路基板用基材を製造する方法を提
供することを目的とするものである。
This invention was made against the background of the above circumstances, and is basically insulating! The object of the present invention is to provide a method for producing a substrate for a printed circuit board made of aluminum or an aluminum alloy, which has excellent adhesion to the M resin film, especially heat-resistant adhesion under humidity.

またこの発明の第2の目的は、絶縁性樹脂とのv!PI
肴性、特に@渥下での耐熱密着性が優れると同時に、絶
縁性樹脂層の電気絶縁性を損わないようにしたアルミニ
ウムもしくはアルミニウム合金製のプリント回路基板用
基材を製造する方法を提供することを目的とするもので
ある。
A second object of the present invention is to combine v! with insulating resin! P.I.
Provided is a method for manufacturing a base material for a printed circuit board made of aluminum or an aluminum alloy that has excellent appetability, especially heat-resistant adhesion under the condition, and at the same time does not impair the electrical insulation properties of the insulating resin layer. The purpose is to

問題点を解決するための手段 アルミニウム板における樹脂との密着性を向上させるた
めに有効な方法としては、硝酸を主成分とする電解液中
で電解処理して、微小なボア(マイクロポア)をアルミ
ニウム板表面に形成する方法が考えられる。この場合マ
イクロポア中に樹脂が浸入して、いわゆるアンカー効果
によって樹脂とのIW性が向上することが期待される。
Means to Solve the Problem An effective method for improving the adhesion of aluminum plates with resin is to electrolytically treat them in an electrolytic solution containing nitric acid as the main component to form minute pores (micropores). A possible method is to form it on the surface of an aluminum plate. In this case, it is expected that the resin will penetrate into the micropores and the IW properties with the resin will improve due to the so-called anchor effect.

しかしながら本発明者等の詳Illな実験によれば、単
に硝酸電解浴中の電解処理だけでは充分な密着性の向上
を図ることが困難であって、硝酸電解浴中での電解!2
!l!理に先立つて、適度なは械的粗面化処理と化学エ
ツチング処理とをその順に施しておくことが、充分な密
着性の向上に極めて有効であることを見出した。また一
方、樹脂との密着性の向上とともに電気絶縁性を重視し
た場合、上述のb1械的租面化処理は省略し、硝酸電解
浴中での電解処理に先立って適切な化学エツチング処理
を施しておくことが、電気絶縁性を損わずに樹脂との密
着性を向上させるに有効であることを見出した。
However, according to detailed experiments conducted by the present inventors, it is difficult to achieve sufficient adhesion simply by electrolytic treatment in a nitric acid electrolytic bath. 2
! l! It has been found that it is extremely effective to perform appropriate mechanical surface roughening treatment and chemical etching treatment in that order prior to the treatment to sufficiently improve adhesion. On the other hand, if emphasis is placed on electrical insulation as well as improved adhesion with the resin, the b1 mechanical shaving treatment described above may be omitted, and an appropriate chemical etching treatment may be performed prior to the electrolytic treatment in a nitric acid electrolytic bath. It has been found that it is effective to improve the adhesion with the resin without impairing the electrical insulation properties.

したがってこの出願の第1の発明は、プリント回路基板
用の基材を製造するにあたり、アルミニウム板もしくは
アルミニウム合金板の表面に機械的粗面化処理を施して
Rmaxが1〜15IJaの範曲内の粗面とし、次いで
エツチング深さ0.5〜6μmの化学エツチング処理を
行なった後、硝酸を主成分とする電解液中で直流電解処
理することを特徴とするものである。
Therefore, the first invention of this application is to mechanically roughen the surface of an aluminum plate or aluminum alloy plate to produce a base material for a printed circuit board so that Rmax falls within the range of 1 to 15 IJa. It is characterized in that it is roughened, then chemically etched to an etching depth of 0.5 to 6 μm, and then subjected to direct current electrolytic treatment in an electrolytic solution containing nitric acid as a main component.

またこの出願の第2の発明は、プリント回路基板用の基
材を製造するにあたり、アルミニウム板もしくはアルミ
ニウム合金板の表面にエツチング深さ0.5〜10顯の
化学エツチング処理を行なった後、硝酸を主成分とする
電解液中で直流電解処理することを特徴とするものであ
る。
In addition, the second invention of this application is that when manufacturing a base material for a printed circuit board, the surface of an aluminum plate or aluminum alloy plate is subjected to a chemical etching treatment to an etching depth of 0.5 to 10 mm, and then etched with nitric acid. It is characterized by direct current electrolytic treatment in an electrolytic solution containing as a main component.

作   用 第1発明の方法においては、予め所定の板厚に仕上げら
れたアルミニウム板もしくはアルミニウム合金板(以下
これらをA1板と総称する)に対して、先ず顆械的粗面
化51!!理を施す。このように粗面化することによっ
て、A1板の表面積が増加して樹脂との接触面積が増大
するとともに、樹脂を被覆した際に樹脂にアンカー効果
が生じて、樹脂の密着性が向上する。この機械的粗面化
処理は、9831!後の表面のあらさがRmaxにして
1〜15伽の範囲内となるように行なう必要がある。R
maxが1趨未満では粗面化による樹脂との密着力向上
の効果が得られず、一方Rmaxが15顯を越えれば樹
脂との接着力は向上するが、凹凸が大き過ぎるために、
絶縁樹脂層の薄い部分が生じて絶縁不良が生じるおそれ
がある。したがってRmaxが1〜15珈の範囲内とな
るように機械的粗面化処理を施すことによって、電気絶
縁性を損なうことなく、樹脂との密着性を向上させるこ
とができるのである。なおこの機械的粗面化処理の具体
的方法としては、エアブラスト、ボール研磨、ブラシ研
磨、ホーニング等のいずれを適用してもよいが、生産性
を考慮すればエアブラストが好ましい。
In the method of the first invention, an aluminum plate or aluminum alloy plate (hereinafter collectively referred to as A1 plate) that has been finished to a predetermined thickness is first subjected to mechanical roughening 51! ! to administer. By roughening the surface in this way, the surface area of the A1 plate increases and the contact area with the resin increases, and when the resin is coated, an anchor effect occurs in the resin, improving the adhesion of the resin. This mechanical surface roughening treatment is 9831! It is necessary to perform this so that the roughness of the subsequent surface is within the range of 1 to 15 degrees in terms of Rmax. R
If Rmax is less than 1, the effect of improving the adhesion with the resin due to surface roughening cannot be obtained, while if Rmax exceeds 15, the adhesion with the resin will be improved, but the unevenness will be too large.
There is a risk that the insulating resin layer will be thin, resulting in poor insulation. Therefore, by mechanically roughening the surface so that Rmax falls within the range of 1 to 15 C, it is possible to improve the adhesion with the resin without impairing the electrical insulation. Note that as a specific method for this mechanical surface roughening treatment, any of air blasting, ball polishing, brush polishing, honing, etc. may be applied, but air blasting is preferable in consideration of productivity.

1械的粗面化処理を施した後のA1板には、化学エツチ
ング処理を施す。この化学エツチング処理を行なうこと
によって、機械的粗面化処理で生成された表面加工層や
研摩屑等が除去される。化学エツチング処理を行なわな
い場合には、A1板の表面加工層や研摩屑が樹脂と濡れ
にくいため、樹脂に塗布抜けやボイドが生じやすく、樹
1117層のフクレ等の原因となる。また、電解処理前
に化学エツチングを施さなければ、電解時に形成される
ボアが不均一となって均一な密着性が得られなくなる。
1 After the mechanical roughening treatment, the A1 plate is subjected to a chemical etching treatment. By performing this chemical etching treatment, the surface treatment layer, polishing debris, etc. generated by the mechanical roughening treatment are removed. If chemical etching treatment is not performed, the surface treatment layer and polishing debris of the A1 plate are difficult to wet with the resin, so that the resin is likely to have coating defects and voids, which may cause blisters in the wood 1117 layer. Furthermore, unless chemical etching is performed before electrolytic treatment, the bores formed during electrolysis will be non-uniform and uniform adhesion will not be achieved.

したがって樹脂層との均一な優れた密着性を青るために
は、電解処理前に化学エツチング処理を行なっておくこ
とが必要である。
Therefore, in order to achieve uniform and excellent adhesion with the resin layer, it is necessary to perform chemical etching treatment before electrolytic treatment.

この化学エツチング98理におけるエツチング吊(エツ
チング深さ)は、0.5〜6珈の範囲内とする必要があ
る。0.5畑未満では、上述のような効果が得られず、
一方6趨を越えれば、機械的粗面化処理により形成され
た凹凸の先端が丸みを帯びたり、微細な凹凸が消失した
りして、凹凸の密度が低下してしまうため、樹脂層の密
着力向上効果が低下してしまう。なおこの化学エツチン
グは、通常はNaOHあるいはKOH等を用いたアルカ
リエツチングとすることが望ましく、またエツチング時
間 述のようなエツチング吊が得られるように定めればよい
が、好ましくは液温は30〜70℃、濃度は1〜20w
t%、時間は1〜120秒程度と程度。
The etching depth (etching depth) in this 98 chemical etching process must be within the range of 0.5 to 6 etchings. If the field is less than 0.5, the above-mentioned effects cannot be obtained,
On the other hand, if the number of peaks exceeds 6, the tips of the unevenness formed by the mechanical roughening process will become rounded, or the fine unevenness will disappear, reducing the density of the unevenness, which will reduce the adhesion of the resin layer. The force-improving effect will be reduced. Note that this chemical etching is normally desirably alkaline etching using NaOH or KOH, etc., and the etching time may be set so as to obtain the etching duration as described above, but preferably the solution temperature is 30 to 30 ℃. 70℃, concentration 1~20w
t%, the time is about 1 to 120 seconds.

なお上述の化学エツチング処理の後には、スマット(溶
解残漬)を除去するためのデスマット処理を塩酸、硫酸
等を用いて行なっても良い。
Note that after the above-mentioned chemical etching treatment, a desmut treatment for removing smut (dissolved residue) may be performed using hydrochloric acid, sulfuric acid, or the like.

次いで硝酸を主成分とする電解液中で直流電解処理を施
す。この直流電解処理により、A1板の表面には平均径
1〜10顯程度のマイクロポアが形成される。したがっ
て樹脂被覆工程においてこのマイクロポア中に樹脂が浸
透することによって、強固なアンカー効果が生じ、前述
の1械的粗面化による効果および化学エツチングによる
効果との相乗的な効果によって、樹脂の密着性、特に耐
熱樹脂密着性が著しく向上する。ここで、電解液として
塩酸、硫酸、シュウ酸、クロム酸等を用いたのでは、マ
イクロポアが形成されないか、または形成されてもマイ
クロポア径が小さいため樹脂が深く浸透せず、したがっ
て上述の効果が得られない。一方交流電解を用いた場合
、電解中にマイクロポア中にAI(OH>2を主成分と
するスマットが付着し、樹脂の密着性向上を阻害する。
Next, a direct current electrolytic treatment is performed in an electrolytic solution containing nitric acid as a main component. By this DC electrolytic treatment, micropores with an average diameter of about 1 to 10 mm are formed on the surface of the A1 plate. Therefore, in the resin coating process, the resin penetrates into these micropores, creating a strong anchoring effect, and the synergistic effect with the above-mentioned mechanical roughening effect and chemical etching effect causes the resin to adhere tightly. The properties, especially the adhesion to heat-resistant resins, are significantly improved. Here, if hydrochloric acid, sulfuric acid, oxalic acid, chromic acid, etc. are used as the electrolyte, micropores are not formed, or even if they are formed, the micropore diameter is small and the resin does not penetrate deeply, so the above-mentioned problem occurs. No effect is obtained. On the other hand, when alternating current electrolysis is used, smut containing AI(OH>2 as a main component) adheres to the micropores during electrolysis, inhibiting improvement in resin adhesion.

したがりて電解処理は硝酸を主成分とする電解液中での
直流電解とする必要がある。
Therefore, the electrolytic treatment must be direct current electrolysis in an electrolytic solution containing nitric acid as a main component.

なおこの電解処理で使用する硝酸電解溶液中には、塩酸
、TiA酸、燐酸等の無機酸が少量添加されていても良
い。但しその添加量は0.11%未満が望ましい。0.
1wt%以上ではボア形状が崩れ、樹脂の密着性がかえ
って低下するおそれがある。また電解溶液の濃度は0.
5〜iowt%程度が好ましい。
Note that a small amount of an inorganic acid such as hydrochloric acid, TiA acid, or phosphoric acid may be added to the nitric acid electrolytic solution used in this electrolytic treatment. However, the amount added is preferably less than 0.11%. 0.
If it exceeds 1 wt%, the shape of the bore may collapse and the adhesion of the resin may deteriorate. Also, the concentration of the electrolytic solution is 0.
It is preferably about 5 to iowt%.

濃度が0.5%未満では単位面積当りのボア形成数が少
ないため充分な密着性向上効果が得られず、一方10v
t%を越えれば皮膜の溶解が激しくなってボアが形成さ
れなくなるおそれがある。電解処理時の浴温は30〜7
0℃が好ましい。70℃を越えれば♂解が激しくなって
ボアが形成されず、また30℃未満では液抵抗が高くな
って高電圧が必要となり、実操業には不向きとなる。。
If the concentration is less than 0.5%, the number of bores formed per unit area is small, so a sufficient adhesion improvement effect cannot be obtained;
If it exceeds t%, the film may be so dissolved that a bore may not be formed. The bath temperature during electrolytic treatment is 30-7
0°C is preferred. If the temperature exceeds 70°C, ♂ disintegration will be severe and a bore will not be formed, and if it is below 30°C, the liquid resistance will increase and high voltage will be required, making it unsuitable for actual operation. .

さらに電解電圧は30V以下が望ましい。30Vを越え
れば溶解が激しくなって、局所的溶解不均一や粗大ボア
形成が生じやすく、不適当である。また電解時間は1〜
20秒程度程度当である。1秒未満では充分な数のボア
が形成されないため樹脂の密着性向上効果が得られず、
一方20秒を越えればボア径が大きくなり過ぎるため不
適当である。
Furthermore, it is desirable that the electrolytic voltage be 30V or less. If the voltage exceeds 30V, the melting will be intense, and local dissolution may be uneven or coarse bores may be formed, which is not suitable. Also, the electrolysis time is 1~
It takes about 20 seconds. If it takes less than 1 second, a sufficient number of bores will not be formed and the effect of improving resin adhesion will not be achieved.
On the other hand, if it exceeds 20 seconds, the bore diameter becomes too large, which is inappropriate.

以上のように、第1発明の方法においては、機械的粗面
化処理と、化学エツチング処理と、vII酸浴中での直
流電解とを、その順に行なうことによって、樹脂との優
れた密着性を得ることができる。
As described above, in the method of the first invention, mechanical surface roughening treatment, chemical etching treatment, and direct current electrolysis in a vII acid bath are performed in that order, thereby achieving excellent adhesion to the resin. can be obtained.

すなわち、機械的粗面化q8理による比較的大きな凹凸
に、硝酸浴中での直流電解による微細なボアとが重畳さ
れて、大きなアンカー効果が得られ、しかも電解処理前
に化学エツチング処理を行なっておくことによりボアが
均一に形成されるため、ボア形成によるアンカー効果が
均一に作用し、なおかつ化学エツチングff1yJ!に
より樹脂層との濡れも良好となり、これらが相乗的に作
用して、均一でかつ充分な密着力が得られる。
In other words, the relatively large irregularities caused by the mechanical surface roughening q8 process are superimposed with the fine bores caused by direct current electrolysis in the nitric acid bath, resulting in a large anchoring effect. Since the bore is formed uniformly by keeping the holes in place, the anchoring effect due to the bore formation acts uniformly, and chemical etching ff1yJ! This improves wetting with the resin layer, and these act synergistically to provide uniform and sufficient adhesion.

一方第2発明の方法は、樹脂との密着力とともに電気絶
縁性をも重視したものであって、この場合は第1発明の
方法と異なり、機械的粗面化処理を施さずに、先ず化学
エツチング処理を行ない、その俊硝酸を主成分とする電
解液中にて直流電解を施す。
On the other hand, the method of the second invention places emphasis on electrical insulation as well as adhesion with the resin. After performing an etching process, direct current electrolysis is performed in an electrolytic solution containing nitric acid as the main component.

第2発明の方法においては、最初に行なう化学エツチン
グ処理によって、A1板の圧延中に生じた表面加工層や
、酸化皮膜などが除去される。化学エツチング処理を行
なわない場合には、A1板の表面加工層や酸化皮膜が樹
脂と譜れにくいため、樹脂に塗布抜けやボイドが生じや
すく、樹脂層のフクレ等の原因となって樹脂の密者不良
を招く。
In the method of the second invention, the surface treatment layer, oxide film, etc. produced during rolling of the A1 plate are removed by the first chemical etching treatment. If chemical etching is not performed, the surface treatment layer and oxide film of the A1 plate will not easily blend with the resin, which will easily cause coating gaps and voids in the resin, which will cause blisters in the resin layer and reduce the density of the resin. causing delinquents.

また、電解処理前に化学エツチングを施さなければ、電
解時に形成されるボアが不均一となって均一な密着性が
(7られなくなる。したがって樹脂層との均一な優れた
密着性を得るためには、電解処理前に化学エツチング処
理を行なっておくことが必要である。この化学エツチン
グ処理におけるエツチング屋(エツチング深さンは、0
.5〜10顯の範囲内とする必要がある。0.5a11
未満では、上述のような効果が臀られず、一方10mも
エツチングすれば表面加工層や酸化皮膜は充分に除去さ
れてしまうから、10#を越えてエツチングする必要は
ない。
In addition, if chemical etching is not performed before electrolytic treatment, the bores formed during electrolysis will be uneven and will not have uniform adhesion. Therefore, in order to obtain uniform and excellent adhesion with the resin layer, It is necessary to perform chemical etching treatment before electrolytic treatment.In this chemical etching treatment, the etching depth is 0.
.. It must be within the range of 5 to 10 square meters. 0.5a11
If the etching depth is less than 10mm, the above-mentioned effect will not be achieved, and on the other hand, if the etching depth is 10m, the surface treatment layer and oxide film will be sufficiently removed, so it is not necessary to etch the thickness exceeding 10mm.

なお化学エツチング処理は第1発明の場合と同様に通常
はNaOHあるいはKOH等を用いたアルカリエツチン
グとすれば良く、またエツチング時間 なエツチング吊が得られるように定めれば良いが、好ま
しくはWR潟は30〜70℃、濃度は1〜20wt%、
98理時間は1〜120秒程度と程度。なおこの化学エ
ツチング処理の後には、第1発明の場合と同様に、溶解
残漬を除去するためのデスマット処理を塩酸、硫酸等を
用いて行なっても良い。
As for the chemical etching treatment, as in the case of the first invention, it is usually sufficient to use alkaline etching using NaOH or KOH, and the etching time may be determined so as to obtain an etching duration, but preferably WR lagoon is used. is 30-70℃, concentration is 1-20wt%,
The time required for 98 treatments is approximately 1 to 120 seconds. Note that after this chemical etching treatment, desmutting treatment may be performed using hydrochloric acid, sulfuric acid, etc. to remove undissolved residue, as in the case of the first invention.

化学エツチング処理の後には、第1発明の場合と同様に
、硝酸を主成分とする電解液中で直流電解処理を施す。
After the chemical etching treatment, as in the case of the first invention, direct current electrolysis treatment is performed in an electrolytic solution containing nitric acid as a main component.

この直流電解処理により、Al板の表面には平均径が1
〜10励程度で板面に対して垂直なマイクロポアが形成
される。このボアは、陽極酸化処理により形成されるボ
アに比べて大径であるから、樹脂被覆工程においてこの
マイクロポア中に樹脂が浸透しやすく、したがって強固
なアンカー効果が生じ、樹脂の密着性、特に耐熱樹脂密
着性が著しく向上する。また機械的粗面化処理により生
じた凹凸と異なり、元の板の板面に対して凹部のみが形
成されるから、絶縁性樹脂の薄い部分が生じることがな
く、したがって電気絶縁性に悪影響をおよぼすおそれが
ない。ここで、電解液として塩酸、硫酸、シュウ酸、ク
ロム酸等を用いたのでは、マイクロポアが形成されない
か、または形成されてもマイクロポア径が小さいため樹
脂が深く浸透せず、したがって上述の効果が得られない
。一方交流電解を用いた場合、電解中にマイクロポア中
にAI(0ト()2を主成分とするスマットが何者し、
IfA脂の富者性向上を阻害する。
Through this DC electrolytic treatment, the surface of the Al plate has an average diameter of 1
Micropores perpendicular to the plate surface are formed at ~10 excitations. Since these bores have a larger diameter than those formed by anodizing, the resin easily penetrates into these micropores during the resin coating process, resulting in a strong anchoring effect, which improves the adhesion of the resin, especially Heat-resistant resin adhesion is significantly improved. Also, unlike the irregularities caused by mechanical surface roughening, only recesses are formed on the surface of the original board, so there is no thin part of the insulating resin, which has a negative impact on electrical insulation. There is no risk of damage. Here, if hydrochloric acid, sulfuric acid, oxalic acid, chromic acid, etc. are used as the electrolyte, micropores are not formed, or even if they are formed, the micropore diameter is small and the resin does not penetrate deeply, so the above-mentioned problem occurs. No effect is obtained. On the other hand, when AC electrolysis is used, smut mainly composed of AI(0t()2) is generated in the micropores during electrolysis.
It inhibits the improvement of the richness of IfA fat.

したがって電解処理は、硝酸を主成分とする電解液中で
の直流電解とする必要がある。
Therefore, the electrolytic treatment must be direct current electrolysis in an electrolytic solution containing nitric acid as a main component.

なおこの電解処理で使用する硝i!電解溶液中には、第
1発明の場合と同様に、塩酸、[!2、′lA酸等の無
機酸が0.1%未満の少量添加されていても良い。また
電解溶液の濃度も第1発明の場合と同様に、0.5〜1
0wt%程度が好ましく、さらに電解処理時の浴温も第
1発明の場合と同様に30〜70℃が好ましい。また電
解電圧は20V以下が望ましい。
Furthermore, the nitric acid used in this electrolytic treatment is In the electrolytic solution, as in the case of the first invention, hydrochloric acid, [! 2. A small amount of less than 0.1% of an inorganic acid such as 'lA acid may be added. Further, the concentration of the electrolytic solution is 0.5 to 1 as in the case of the first invention.
It is preferably about 0 wt%, and the bath temperature during the electrolytic treatment is also preferably 30 to 70°C, as in the case of the first invention. Moreover, the electrolytic voltage is preferably 20V or less.

20Vを越えれば局所的溶解不均一や粗大ボア形成が生
じやすく、不適当である。さらに電解時間は1〜20秒
程度程度当である。1秒未満では充分な数のボアが形成
されないため樹脂の密着性向上効果が得られず、一方2
0秒を越えればボア同士が繋がってしまい、凸部が生じ
てしまうから、絶縁樹脂層の薄い部分が生じて電気絶縁
性に悪影響をおよばずおそれがあり、不適当である。
If it exceeds 20 V, local dissolution non-uniformity and coarse bore formation are likely to occur, which is inappropriate. Further, the electrolysis time is about 1 to 20 seconds. If the time is less than 1 second, a sufficient number of bores will not be formed and the effect of improving resin adhesion will not be obtained;
If the time exceeds 0 seconds, the bores will connect with each other and a convex portion will be formed, resulting in a thin portion of the insulating resin layer, which may adversely affect the electrical insulation, and is therefore inappropriate.

以上のように、第2発明の方法においては、化学エツチ
ング処理と、硝酸浴中での直流電解とを、その順に行な
うことによって、絶縁樹脂層による電気絶縁性を損うこ
となく、樹脂との優れた密着性を得ることができる。す
なわち、硝酸浴中での直流電解による微細なボアによっ
て樹脂のアンカー効果が得られ、しかも電解処理前に化
学エツチング処理を行なっておくことによりボアが均一
に形成されるため、ボア形成によるアンカー効果が均一
に作用し、なおかつ化学エツチング処理により樹脂層と
の濡れも良好となり、これらが相乗的に作用して、均一
でかつ充分な密着力が得られ、しかも機械的粗面化処理
を行なわないため粗面化処理による凹凸が電気絶縁性に
悪影響をおよぼすこともない。
As described above, in the method of the second invention, by performing the chemical etching treatment and the DC electrolysis in a nitric acid bath in that order, the electrical insulation properties of the insulating resin layer are not impaired, and the resin is bonded to the insulating resin layer. Excellent adhesion can be obtained. In other words, the anchoring effect of the resin is obtained by the fine bores created by direct current electrolysis in a nitric acid bath, and because the bores are formed uniformly by chemical etching treatment before the electrolytic treatment, the anchoring effect due to bore formation is improved. acts uniformly, and the chemical etching treatment also improves wetting with the resin layer, and these act synergistically to provide uniform and sufficient adhesion, and there is no need for mechanical surface roughening treatment. Therefore, unevenness caused by surface roughening treatment does not adversely affect electrical insulation.

実施例 先ず第1発明による実施例1,2およびそれに対する比
較例1〜3を示す。
Examples First, Examples 1 and 2 according to the first invention and Comparative Examples 1 to 3 will be shown.

[実施例1、実施例2] JIS A1100−H24材からなる板厚11iのA
1仮について、機械的粗面化処理としてエアブラスト処
理を施した。このエアブラスト処理における研揺剤とし
てはモランダム#220を用い、その噴射圧力は3k(
+/ciとした。エアブラスト処理の後の表面粗さ(R
nax)を第1表中に示す。次いで40℃の10wt%
NaOH水溶液を用いて化学エツチング処理を行なった
。このときのエツチング童は0.5趨である。その後、
60℃の10wt%硝酸水溶液を用いて、直流電解処理
を行なった。電解処理条件を第1表中に示す。
[Example 1, Example 2] A plate with a thickness of 11i made of JIS A1100-H24 material
For the first sample, air blasting was performed as mechanical surface roughening treatment. Morundum #220 is used as the abrasive in this air blasting process, and its injection pressure is 3k (
+/ci. Surface roughness after air blasting (R
nax) are shown in Table 1. Then 10wt% at 40℃
Chemical etching treatment was performed using an aqueous NaOH solution. The etching child at this time is 0.5 trend. after that,
Direct current electrolysis treatment was performed using a 10 wt % nitric acid aqueous solution at 60°C. The electrolytic treatment conditions are shown in Table 1.

[比較例1] 約2同様なA1板について、前記同様にn械的粗面化処
理としてのエアブラスト処理を行なった。
[Comparative Example 1] About 2 similar A1 plates were subjected to air blasting as n-mechanical surface roughening treatment in the same manner as described above.

このエアブラスト処理の条件は実施例1,2の場合と同
様である。なお化学エツチング処理および電解処理は行
なわなかった。
The conditions for this air blasting treatment are the same as in Examples 1 and 2. Note that chemical etching treatment and electrolytic treatment were not performed.

[比較例2] 前記同様なA1仮について、前記同様に機械的粗面化処
理としてのエアブラスト処理を行なった。
[Comparative Example 2] The same A1 tentative as above was subjected to air blasting as a mechanical surface roughening treatment in the same manner as above.

このエアブラスト処理の条件は実施例1,2の場合と同
様である。次いで実施例1.2と同様に、40℃の10
wt%NaOH水溶液を用いてエツチングfi 0.5
74の化学エツチング処理を行なった。なお電解処理は
行なわなかった。
The conditions for this air blasting treatment are the same as in Examples 1 and 2. Then, as in Example 1.2, 10
Etching fi 0.5 using wt% NaOH aqueous solution
74 chemical etching treatments were performed. Note that no electrolytic treatment was performed.

[比較例3、比較例4] 前記同様なA1板について、前記同様に機械的粗面化処
理としてのエアブラスト処理を行なった。
[Comparative Example 3, Comparative Example 4] The same A1 plate as described above was subjected to air blasting as a mechanical surface roughening treatment in the same manner as described above.

このエアブラスト処理の条件は実施例1,2の場合と同
様である。次いで化学エツチング処理は行なわずに、直
ちに直流電解処理を行なった。この電解処理は、実施例
1.2の場合と同様に60℃の6wt%f14酸水溶液
を用いて第1表に示す電解条件で行なった。
The conditions for this air blasting treatment are the same as in Examples 1 and 2. Next, direct current electrolytic treatment was performed immediately without chemical etching treatment. This electrolytic treatment was carried out under the electrolytic conditions shown in Table 1 using a 6 wt % f14 acid aqueous solution at 60° C., as in Example 1.2.

[性能評価1) 以上の実施例1.2および比較例1〜4の!a!!Jl
を施した各A1板の表面に、絶縁樹脂層としてエポキシ
樹脂4脂を40#の厚さで塗布し、その上に35℃厚の
電解銅箔を貼り付け、ホットプレスにより165℃x9
0nin加熱圧肴した。その後55in x 2511
iの大きさに切断し、耐熱1!!I肴性試験片とした。
[Performance Evaluation 1] The above Examples 1.2 and Comparative Examples 1 to 4! a! ! Jl
A 40# thick epoxy resin was applied as an insulating resin layer to the surface of each A1 plate, and a 35°C thick electrolytic copper foil was pasted on top of the insulating resin layer.
Cooked under heat and pressure for 0min. Then 55in x 2511
Cut into i size, heat resistant 1! ! This was used as an appetizing test piece.

各試験片について、オートクレーブ中にて121℃×1
6時間吸湿させた後、260℃の半田浴上に浮べた。そ
の後銅箔を引き剥がして、アルミの露出面積により、樹
脂に対するA1板の耐熱密着性を評価した。その結果を
第1表中に示す。なお密着性の評価は、アルミの露出面
積が0%の場合を○、0%を越え50%未満の場合を△
、50%以上の場合を×で示した。
For each test piece, 121℃ x 1 in an autoclave.
After absorbing moisture for 6 hours, it was floated on a solder bath at 260°C. Thereafter, the copper foil was peeled off, and the heat-resistant adhesion of the A1 plate to the resin was evaluated based on the exposed area of aluminum. The results are shown in Table 1. The adhesion evaluation is ○ when the exposed area of aluminum is 0%, and △ when the exposed area of aluminum is more than 0% and less than 50%.
, cases of 50% or more are indicated by ×.

第1表 第1表に示すように、機械的粗面化処理としてのショツ
トブラスト処理と、化学エツチング処理と、硝酸電解浴
中での直流電解処理とをその順に施した第1発明の実施
例によれば、絶縁樹脂層との耐熱密着性が著しく優れた
プリント回路基板用A1基板が得られることが明らかで
ある。
Table 1 As shown in Table 1, an example of the first invention in which shot blasting as mechanical surface roughening treatment, chemical etching treatment, and DC electrolysis treatment in a nitric acid electrolytic bath were performed in that order. According to the above, it is clear that an A1 substrate for a printed circuit board having extremely excellent heat-resistant adhesion to an insulating resin layer can be obtained.

次に第2発明による実施例3〜5および比較例5.6を
示す。
Next, Examples 3 to 5 and Comparative Examples 5 and 6 according to the second invention will be shown.

[実施例3〜5] 実施例1.2で用いたと同様なA1板について、40℃
の10W【%N a OH*溶液を用いて化学エツチン
グ処理を施した。このときの化学エツチング量を第1表
中に示す。次いで2wt%硝酸水溶液を用いて直流電解
を行なった。このときの電解浴温は第2表中に示すとう
りであり、また電解時間は2秒、電解電圧は5■である
[Examples 3 to 5] A1 plate similar to that used in Example 1.2 was heated at 40°C.
A chemical etching process was performed using a 10W [% Na OH* solution]. The amount of chemical etching at this time is shown in Table 1. Next, direct current electrolysis was performed using a 2 wt % nitric acid aqueous solution. The electrolytic bath temperature at this time was as shown in Table 2, the electrolytic time was 2 seconds, and the electrolytic voltage was 5 .mu.m.

[比較例5] 前記同様なA1板について、化学エツチングを施さずに
、21%硝酸水溶液を用いての直流電解を行なった。こ
のときの電解浴温は第2表中に示すとうりであり、また
電解時間は2秒、電解電圧は5■である。
[Comparative Example 5] Direct current electrolysis using a 21% nitric acid aqueous solution was performed on an A1 plate similar to the above without chemical etching. The electrolytic bath temperature at this time was as shown in Table 2, the electrolytic time was 2 seconds, and the electrolytic voltage was 5 .mu.m.

[比較例6] 前記同様なAI板について、40℃の10wt%NaO
H水溶液を用いて化学エツチング処理を施した。
[Comparative Example 6] Regarding the same AI board as above, 10 wt% NaO at 40°C
A chemical etching process was performed using a H aqueous solution.

このときの化学エツチング量を第2表中に示す。The amount of chemical etching at this time is shown in Table 2.

なお電解処理は行なわなかった。Note that no electrolytic treatment was performed.

[性能評価2] 以上の実施例3〜5および比較例5,6の処理を施した
各A1板の表面に、絶縁樹脂層としてエポキシ樹脂を4
0IJInの厚さで塗布し、その上に35翔厚の電解銅
箔を貼り付け、ホントプレスにより 165℃x901
Iiロ加熱圧肴した。その後55ux 25nraの大
きさに切断し、耐熱密着性試験片とした。
[Performance Evaluation 2] Four layers of epoxy resin were applied as an insulating resin layer to the surface of each A1 plate treated in Examples 3 to 5 and Comparative Examples 5 and 6.
Coat it to a thickness of 0IJIn, paste a 35cm thick electrolytic copper foil on top, and press it at 165℃ x 901cm.
It was cooked under heat and pressure. Thereafter, it was cut into a size of 55ux and 25nra to obtain a heat-resistant adhesion test piece.

各試験片につりで、オートクレーブ中にて121℃×1
6時間吸湿させた後、260℃の半田浴上に浮べた。そ
の後銅箔を引き剥がして、アルミの露出面積により、樹
脂に対するAi板の耐熱密着性を評価した。また電気絶
縁性に関して、JIS C64131にしたがって耐電
圧を調べた。その結果を第2表中に示す。
Each test piece was hung at 121°C in an autoclave.
After absorbing moisture for 6 hours, it was floated on a solder bath at 260°C. Thereafter, the copper foil was peeled off, and the heat-resistant adhesion of the Ai plate to the resin was evaluated based on the exposed area of aluminum. Regarding electrical insulation, the withstand voltage was investigated according to JIS C64131. The results are shown in Table 2.

得ることができる。Obtainable.

第2表 発明の効果 以上の実施例からも明らかなように、第1発明の方法に
よれば、絶縁性樹脂層との密着性、特に吸湿下での耐熱
密着性に優れたアルミニウムもしくはアルミニウム合金
製のプリント回路基板用の基材を得ることができる。
Table 2 Effects of the Invention As is clear from the above examples, according to the method of the first invention, aluminum or aluminum alloy has excellent adhesion to the insulating resin layer, especially heat-resistant adhesion under moisture absorption. It is possible to obtain a base material for a printed circuit board made of.

また第2発明の方法によれば、絶縁性樹脂層i層との耐
熱密着性が優れると同時に、絶縁性樹脂層の電気絶縁性
を損わないようにしたアルミニウムもしくはアルミニウ
ム合金製のプリント回路基板用の基材を得ることができ
る。
Further, according to the method of the second invention, a printed circuit board made of aluminum or aluminum alloy that has excellent heat-resistant adhesion with the insulating resin layer i layer and does not impair the electrical insulation properties of the insulating resin layer. A base material for use can be obtained.

第2表に示すように、化学エツチング処理と硝酸電解浴
中での直流電解処理とをその順に施した第2発明の実施
例によれば、絶縁樹脂層との耐熱密着性が良好でしかも
絶縁樹脂層の電気絶縁性を損なうことのないプリント回
路基板用A1基板を出願人 スカイアルミニウム株式会
As shown in Table 2, according to the embodiment of the second invention in which chemical etching treatment and direct current electrolysis treatment in a nitric acid electrolytic bath were performed in that order, the heat-resistant adhesion to the insulating resin layer was good and the insulation Applicant: Sky Aluminum Co., Ltd. for A1 board for printed circuit boards that does not impair the electrical insulation properties of the resin layer

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム板もしくはアルミニウム合金板の表
面に機械的粗面化処理を施してRmaxが1〜15μm
の範囲内の粗面とし、次いでエッチング深さ0.5〜6
μmの化学エッチング処理を行なつた後、硝酸を主成分
とする電解液中で直流電解処理することを特徴とするプ
リント回路基板用基材の製造方法。
(1) Rmax is 1 to 15 μm by mechanically roughening the surface of the aluminum plate or aluminum alloy plate.
rough surface within the range of , then etching depth 0.5 to 6
1. A method for manufacturing a base material for a printed circuit board, which comprises performing a chemical etching treatment of micrometers, followed by direct current electrolysis treatment in an electrolytic solution containing nitric acid as a main component.
(2)アルミニウム板もしくはアルミニウム合金板の表
面にエッチング深さ0.5〜10μmの化学エッチング
処理を行なつた後、硝酸を主成分とする電解液中で直流
電解処理することを特徴とするプリント回路基板用基材
の製造方法。
(2) Printing characterized by chemically etching the surface of an aluminum plate or aluminum alloy plate to an etching depth of 0.5 to 10 μm, and then subjecting it to direct current electrolytic treatment in an electrolytic solution containing nitric acid as the main component. A method for manufacturing a base material for a circuit board.
JP20925588A 1988-08-23 1988-08-23 Manufacture of base material for printed circuit board Pending JPH0258295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20925588A JPH0258295A (en) 1988-08-23 1988-08-23 Manufacture of base material for printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20925588A JPH0258295A (en) 1988-08-23 1988-08-23 Manufacture of base material for printed circuit board

Publications (1)

Publication Number Publication Date
JPH0258295A true JPH0258295A (en) 1990-02-27

Family

ID=16569928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20925588A Pending JPH0258295A (en) 1988-08-23 1988-08-23 Manufacture of base material for printed circuit board

Country Status (1)

Country Link
JP (1) JPH0258295A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138224A (en) * 2005-11-16 2007-06-07 Kanto Gakuin Univ Surface Engineering Research Institute Surface working method for aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having surface worked by the method
JP2019508585A (en) * 2016-01-27 2019-03-28 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Aluminum alloy sheet optimized for forming
JP2019510133A (en) * 2016-01-27 2019-04-11 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Aluminum alloy strip for adhesive connection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138224A (en) * 2005-11-16 2007-06-07 Kanto Gakuin Univ Surface Engineering Research Institute Surface working method for aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having surface worked by the method
JP2019508585A (en) * 2016-01-27 2019-03-28 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Aluminum alloy sheet optimized for forming
JP2019510133A (en) * 2016-01-27 2019-04-11 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Aluminum alloy strip for adhesive connection
US10889912B2 (en) 2016-01-27 2021-01-12 Hydro Aluminium Rolled Products Gmbh Aluminium alloy strip for adhesive connection
US11131037B2 (en) 2016-01-27 2021-09-28 Hydro Aluminium Rolled Products Gmbh Aluminium alloy sheet optimised for forming

Similar Documents

Publication Publication Date Title
US8034188B2 (en) Method for cleaning surface of resin layer
JP2740768B2 (en) Copper coating
JPS596597A (en) Method of perforating blind through hole at printed circuit board
JP2721632B2 (en) Processing method of copper circuit of circuit board
JPH0258295A (en) Manufacture of base material for printed circuit board
US4323632A (en) Metal composites and laminates formed therefrom
EP0087551A2 (en) Method for stripping peel-apart conductive structure
JP6710402B2 (en) Method for producing film-forming substrate and surface treatment agent
JP2015195364A (en) Manufacturing method of laminate structure
JPH10296908A (en) Manufacture of aluminum-sheet-base copper-clad laminated sheet
US4234395A (en) Metal composites and laminates formed therefrom
JP3953252B2 (en) Method for removing chromate rust preventive film and method for manufacturing wiring board
JPH05191001A (en) Board for printed wiring and manufacture thereof
JPS6214040B2 (en)
KR101324225B1 (en) Method of manufacturing a printed circuit board
JPH03161992A (en) Manufacture of printed wiring board by additive method
JPH09184076A (en) Manufacture of aluminum nitride metallized substrate
JPH06252548A (en) Surface treating method for copper foil for printed wiring board and metal-base printed wiring board
JP2006152329A (en) Surface treatment method for copper layer and laminated board and wiring plate including the copper layer subjected to the treatment
RU2694430C1 (en) Method of producing dielectric layer on aluminium substrate surface
JPH0142519B2 (en)
JP3494713B2 (en) Manufacturing method of metal mask
JP3322474B2 (en) Circuit board processing method
JP3367189B2 (en) Processing method of copper circuit of wiring board for inner layer
JPH0711078B2 (en) Method for manufacturing base material for printed circuit board