JPS6048498A - Improved total heat exchanger - Google Patents

Improved total heat exchanger

Info

Publication number
JPS6048498A
JPS6048498A JP15595483A JP15595483A JPS6048498A JP S6048498 A JPS6048498 A JP S6048498A JP 15595483 A JP15595483 A JP 15595483A JP 15595483 A JP15595483 A JP 15595483A JP S6048498 A JPS6048498 A JP S6048498A
Authority
JP
Japan
Prior art keywords
base material
total heat
active substance
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15595483A
Other languages
Japanese (ja)
Inventor
Takeo Fushiki
武男 伏木
Yutaka Igarashi
豊 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Toyo Netsu Kogyo Kaisha Ltd
Original Assignee
Japan Vilene Co Ltd
Toyo Netsu Kogyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd, Toyo Netsu Kogyo Kaisha Ltd filed Critical Japan Vilene Co Ltd
Priority to JP15595483A priority Critical patent/JPS6048498A/en
Publication of JPS6048498A publication Critical patent/JPS6048498A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve the heat exchanging efficiency of a total heat exchanger, and increase the migration proofness of an air flow by a method wherein two kinds of air flows are partitioned by using an improved quality base material which is made by coating or impregnating of a capillary tube active substance on a fine porous base material. CONSTITUTION:A total heat exchanger is composed of partitioned two kinds of air flows for performing the total heat exchanging by utilizing an improved quality base material which is coated or impregnated a capillary tube active substance on a fine porous base material. For the capillary tube active substance, an interfacial activator having two kinds of nature, that is, a hydrophobic nature or a lipophilic nature, and a hydrophilic nature is utilized. An organic acid derivative is alos effective. For the purpose of improving the denseness due to the embedding of small holes in the base material, the capillary tube active substance is adhered on the fine porous base material at the rate of 5- 50wt%. For the improved quality base material which is obtained by coating or impregnating of the capillary tube active substance on the fine porous base material, the permeability to air is desirable more than 50/sec in Gurley's permeability to air.

Description

【発明の詳細な説明】 本発明は全熱交換器の改良に関するものである。[Detailed description of the invention] The present invention relates to improvements in total heat exchangers.

その目的は、全熱交換器の湿度交換効率を大幅に向上さ
せ、しかも気流の移行防止性が増大するという改良全熱
交換器を提供することにある。
The purpose is to provide an improved total heat exchanger that significantly improves the humidity exchange efficiency of the total heat exchanger and also increases the ability to prevent airflow migration.

近年、住宅やビルの換気装置として熱交換器が利用され
る様になシ、特に顕熱交換だけではなく、a熱交換をも
同時に達成できるという全熱交換器が非常に有用なもの
として普及しつつある。
In recent years, heat exchangers have come to be used as ventilation systems for homes and buildings, and in particular, total heat exchangers have become popular because they can achieve not only sensible heat exchange but also a-heat exchange at the same time. It is being done.

この全熱交換器は熱交換すべき2種の気流を熱伝導性と
通湿性を有する微多孔質基材で仕切って行われるもので
ある。
This total heat exchanger is implemented by partitioning two types of air streams to be heat exchanged by a microporous base material having thermal conductivity and moisture permeability.

従来、との全熱交換器用の微多孔質基材としては、アス
ベスト紙、和紙、解燃紙、不縁布、セラミック、無機粉
末充填紙、及び親水性プラスチックフィルムなどが知ら
れている。
Conventionally, known microporous substrates for total heat exchangers include asbestos paper, Japanese paper, anticombustion paper, nonwoven fabric, ceramic, inorganic powder-filled paper, and hydrophilic plastic film.

しかり、J−記の親水性フィルム以外のものは全部通気
性が大き渦ぎるため空気の漏わが大きく、かつ通湿性が
小さいので湿度交換による潜熱交換性が低いという欠点
を有しているのである。
However, all films other than the hydrophilic film listed in J- have the drawbacks of high air permeability, which causes large air leaks, and low moisture permeability, which results in low latent heat exchange through humidity exchange. .

一方親水性フイルムの場合は吸湿によって柔軟化し保形
性がなく変形してし甘い使用に耐えないという欠点を持
っているのである。
On the other hand, hydrophilic films have the disadvantage that they become soft due to moisture absorption, do not retain their shape, deform, and cannot withstand rough use.

ところで、前記の親水性フィルム以外の微多孔質基材の
湿度交換性能を上げるために塩化リチウム等の吸湿剤を
塗布するという改良法が提案されているが、これは湿度
交換性能を向上させるものの、この吸湿剤は相対湿度8
0係において200係以上の水分を吸収するため、高湿
度下ではこの吸湿剤が脱落してしまい、その効果が低下
すると共に基材が軟化してしまう欠点をF を有するものである。したがって戸湿剤量を少なくする
と通気性が大きくなり空気の漏れが大きくなるという間
頭を生じるのである。
By the way, in order to improve the humidity exchange performance of microporous substrates other than the above-mentioned hydrophilic film, an improved method has been proposed in which a hygroscopic agent such as lithium chloride is applied, but although this improves the humidity exchange performance, , this moisture absorbent has a relative humidity of 8
Since it absorbs water with a coefficient of 200 or more at a coefficient of 0, this moisture absorbent falls off under high humidity, reducing its effectiveness and softening the base material. Therefore, if the amount of dampening agent is reduced, the air permeability will increase, causing problems such as increased air leakage.

また、湿度交換性能と空気の漏れを同時に解決する手段
として吸湿剤と例えばポリビニールアルコールの如き水
溶性高分子物質とを併用するという技術が提案されてい
るが、水溶性高分子膜中に吸湿剤が含まれているので、
吸湿したときこの高分子が高粘稠状となり吸湿剤のみに
比べて湿気の移行速度が遅くなり、甘だ吸湿剤ヲ多りす
ると湿気の移行(丁速くなるがベトッキが大きくなるな
どの欠点を有するものである。
In addition, as a means of simultaneously solving humidity exchange performance and air leakage, a technique has been proposed in which a moisture absorbent is used in combination with a water-soluble polymer substance such as polyvinyl alcohol, but a water-soluble polymer film that absorbs moisture Because it contains agents,
When it absorbs moisture, this polymer becomes highly viscous and the rate of moisture transfer is slower than with a moisture absorbent alone. It is something that you have.

なお、この場合水溶性高分子物質のみでは膜化し空気の
漏れは防止できるが湿気の移行が不充分となるのである
In this case, water-soluble polymeric substances alone can form a film and prevent air leakage, but moisture transfer becomes insufficient.

本発明者等は以上の点に留意して、湿気の移行を泥進し
しかも空気の移行を防止するという改質剤を得るべく鋭
意研究した結果、毛管活性物質を用いることにより、そ
の目的が達成されることを見い出し本発明に達したので
ある。
With the above points in mind, the inventors of the present invention conducted extensive research to obtain a modifier that slows down moisture transfer and prevents air transfer. They have found that this can be achieved and have arrived at the present invention.

すなわち、全熱交換すべき2種の気流を熱伝導性と通湿
性を有する微多孔質基材で仕切ることにより構成されて
いる全熱交換器において、該微多孔質基材に毛管活性物
質を塗布又は含浸させてなる改質基材を用いて前記2種
の気流を仕切る様にしたことを特徴とする改良全熱交換
器を発明するに至ったのである。
That is, in a total heat exchanger configured by partitioning two types of air streams to be subjected to total heat exchange with a microporous base material having thermal conductivity and moisture permeability, a capillary active substance is added to the microporous base material. The inventors have now invented an improved total heat exchanger characterized in that the two types of airflow are partitioned using a modified base material that is coated or impregnated.

本発明における微多孔質基材とは熱伝導性と通湿性を有
する基材で、例えば紙状物で高湿度下における寸法安定
性が良好なものが好捷しくガラス繊維混抄紙、ガラス繊
維と無機粉末とパルプとを混抄したもの、などが好適で
ある。
The microporous base material in the present invention is a base material that has thermal conductivity and moisture permeability. For example, a paper-like material with good dimensional stability under high humidity is preferable, and it can be used for glass fiber mixed paper, glass fiber, etc. A mixture of inorganic powder and pulp is suitable.

この微多孔質基材としてはガーレ透気度が20秒以上の
ものが望ましいものである。またこの基材の厚さは0.
1〜0.2關位が好ましいものである。
The microporous base material preferably has a Gurley air permeability of 20 seconds or more. Also, the thickness of this base material is 0.
A value of about 1 to 0.2 is preferable.

本発明はこの様な微多孔質基材に毛管活性物質を塗布又
は含浸略せて改質基41とし、この改質基材を用いて全
熱交換すべき2種の気流を仕切って構成1される全熱交
換器である。
The present invention is constructed by coating or impregnating such a microporous base material with a capillary active substance to form a modifying base 41, and using this modifying base material to partition two types of air streams to be subjected to total heat exchange. It is a total heat exchanger.

本発明における毛管活性物質としては、2親性つtり疎
水性若しくは親油性と親水性を有する界面活性剤が好適
に使用できるものである。
As the capillary active substance in the present invention, a surfactant having both diphilicity and hydrophobicity or lipophilicity and hydrophilicity can be suitably used.

例えばこの2親、性の界面活性剤として汀、オフイン酸
ソーダ石けん、半硬化牛脂カリ石けん、高級アルコール
硫酸エステルソーダ塩、ドデシルベンゼンスルホン酸ソ
ーダ塩、ナフタレンスルホン酸ホルマリン縮金物、ポリ
オギシエチレンアルキルサルフエ−1−ソーダ塩などの
アニオ゛ン界面活性剤、ポリオキシエチレンラウリルエ
ーテル、ポリオキシエチレンステアリルエーテル、ポリ
オキシエチレンオレイルエーテル、ポリオキシエチVン
ノニルフェノールエーテル、ソルビタンモノラウリレー
ト、ポリオキシエチンンソルビタンモノラウリレート、
ポリエチソングリコールモノラウリレート、オギシエチ
ンンオキシブロビレンブロノクポリマー、グリセルモノ
ステアv−1−などのノニオン界面活性剤、ラウリルア
ミンアセテート、アルギルベンジルジメチルアンモニウ
ムクロライドなどのカチオン界面活性剤等であり、特に
アニオン界面活性剤、ノニオン界面活性剤が好ましい結
果を得るものである。
For example, these two parent surfactants include seaweed, offic acid sodium soap, semi-cured beef tallow potash soap, higher alcohol sulfate ester sodium salt, dodecylbenzenesulfonic acid sodium salt, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl sal Anionic surfactants such as phenol-1-sodium salt, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene nonylphenol ether, sorbitan monolaurylate, polyoxyethine sorbitan mono laurylate,
Nonionic surfactants such as polyethison glycol monolaurylate, oxyethinoxybrobylene bronok polymer, glycel monostear v-1-, cationic surfactants such as laurylamine acetate, argylbenzyldimethylammonium chloride, etc. In particular, anionic surfactants and nonionic surfactants give preferable results.

この毛管活性物質としては上記の如き界面活性剤に限定
されるものではなく、界面活性剤以外の他の毛管活性物
質、例えばプロピオン酸誘導体、酪酸誘導体の如き有限
酸誘導体が有効なものとしてあげられる。具体的にはプ
ロピオン酸亜鉛、プロピオン酸ナトリウム、ブロヒ゛オ
ン酸カリウム、プロピオン酸アンモニウム、プロピオン
酸カルシウム、プロピオン酸マグネシウム、酪酸すl−
リウム、酪酸カリウムなども本発明における毛管活性物
質として利用できるものである。
This capillary active substance is not limited to the above-mentioned surfactants, but other capillary active substances other than surfactants, such as finite acid derivatives such as propionic acid derivatives and butyric acid derivatives, are effective. . Specifically, zinc propionate, sodium propionate, potassium propionate, ammonium propionate, calcium propionate, magnesium propionate, l-butyrate.
Potassium butyrate, potassium butyrate, and the like can also be used as capillary active substances in the present invention.

本発明に使用する毛管活性物質の鼠はかなり多いもので
、本発明はこの点に大きな特徴を有するものである。
There are quite a number of capillary active substances that can be used in the present invention, and this is a major feature of the present invention.

つまシ本発明においては前記した如き毛管活性物質を微
多孔質基材に対して5〜5()重量係も付着させるので
ある。通常界面活性剤が界面張力を低下させるだめに添
加される量は1φ以下であることが常識となっているが
、本発明はこの常識を大幅に破るものである。それは本
発明に用いられる毛管活性物質は単に界面張力を下げる
だけではなく、基材の細孔を埋めて緻密性を向」ニさせ
るためにも必要であるということに起因するのである。
In the present invention, the capillary active substance described above is deposited on the microporous substrate in an amount of 5 to 5 (by weight). It is common knowledge that the amount of surfactant added to lower the interfacial tension is 1φ or less, but the present invention significantly breaks this common sense. This is because the capillary active substance used in the present invention is necessary not only to lower the interfacial tension but also to fill the pores of the base material and improve its compactness.

この毛管活性物質の世が徽多孔質基利に対して5重量係
未満では基材の細孔内にそのミセルが充分に満たされな
いので緻密性が悪く気流が漏れやすくなり好ましくない
し、一方この量か50重i%をこえると基材の表面に毛
管活性物質が多く存在する様になりベトッキがあって取
扱いにくくなり、かつそれ以上加えても効果の向−にが
望めないのである。
If the weight ratio of this capillary active substance to the porous base material is less than 5, the micelles will not be sufficiently filled in the pores of the base material, resulting in poor density and easy airflow leakage, which is undesirable. If the amount exceeds 50% by weight, a large amount of the capillary active substance will be present on the surface of the substrate, making it sticky and difficult to handle, and no further effect can be expected even if more is added.

この毛管活性物質は前記した各種のものを小独で用いて
もよいし、2種以上のものを併用してもよく、例えば殺
菌性を有する毛管活性物質を併用してやると好捷[7い
効果が得られるものである。
The various capillary active substances mentioned above may be used singly or in combination of two or more types.For example, if a capillary active substance with bactericidal properties is used in combination, it will be effective [7 effects] is obtained.

寸だ、毛管活性物質と吸湿剤を併用して湿度交換性を向
1−烙せてもよいし、難燃剤を併用し7て9:!ll:
 tu性を付学することも可能である。
In fact, a capillary active substance and a moisture absorbent may be used in combination to improve humidity exchangeability, or a flame retardant may be used in combination. ll:
It is also possible to add the tu property.

さらに毛管活性物質と熱硬化性樹脂や合成樹脂エマルシ
ョンとを併用して寸法安定性を向」1させてもよいし、
無機粉末を併用して熱伝導性を増加させたり、水溶性高
分子物質と併用して毛管活性物質の保持性を改良しても
よいものである。
Furthermore, dimensional stability may be improved by using a capillary active substance in combination with a thermosetting resin or a synthetic resin emulsion.
It may be used in combination with an inorganic powder to increase thermal conductivity, or in combination with a water-soluble polymeric substance to improve the retention of capillary active substances.

本発明において、嶽多孔質基材に前記の如き毛管活性物
質を塗布又は含浸させて得られる改質基材はその透気度
がガーレ透気度50秒以」二であることが望ましいもの
である。っ寸り例えばガーレ透気度が30秒の微多孔質
基材を用いた場合は毛管活性物質の含浸又は塗布により
ガーレ透気度を20秒以上増加させることが望ましく、
改質基材の最終透気度が50秒以上、好1しくけ80秒
以上であることが要望されるのである。
In the present invention, it is desirable that the modified base material obtained by coating or impregnating the above-mentioned capillary active substance on a porous base material has an air permeability of 50 seconds or more according to the Gurley air permeability. be. For example, when using a microporous substrate with a Gurley air permeability of 30 seconds, it is desirable to increase the Gurley air permeability by 20 seconds or more by impregnating or coating with a capillary active substance.
It is desired that the final air permeability of the modified base material be 50 seconds or more, preferably 80 seconds or more.

でよいが、透気性の大きい和い微多孔Iq 71材を用
いた場合は毛管活性物質は20〜50市箪係と多く使用
する必要が生じるのである。
However, if a microporous Iq 71 material with high air permeability is used, it is necessary to use a large number of capillary active substances, such as 20 to 50 capillary active substances.

この改質基材のガーレ透気度が50秒未満では通気性が
大きく気流の移行が大となって換気性が低下し不適当と
なるのである。
If the Gurley air permeability of the modified base material is less than 50 seconds, the air permeability will be large and the air flow will be large, resulting in a decrease in ventilation performance and will be inappropriate.

なお、とのガーレ透気度とは、T I S規格にょるP
−8117に基づく「紙および板紙の透気度試1険方法
」により得ちれる須であり、秒数が多い程透気度は小さ
く緻密性が高いものである。
In addition, the Gurley air permeability is P according to the TIS standard.
This value is obtained by the ``Method for Testing Air Permeability of Paper and Paperboard'' based on 8117, and the higher the number of seconds, the lower the air permeability and the higher the density.

この様にして改質された改質基材はその多孔質空隙が毛
管活性物質のミセルで充満されるだめガーレ透気度が5
0、秒以下となって透気性が低く気流の移行はほとんど
完全に防止されるものとなり、しかも通湿性は向上して
湿度交換効率が増加して潜熱交換性が改良されるのであ
る。
The modified base material modified in this way has a Gurley air permeability of 5 because its porous voids are filled with micelles of the capillary active substance.
0.0 seconds or less, the air permeability is low and air flow migration is almost completely prevented, and the moisture permeability is improved, the humidity exchange efficiency is increased, and the latent heat exchange performance is improved.

この通湿性の向上は、空気中の水蒸気が徽多孔質基H中
の毛管活性物質の表面に凝縮吸着され毛管活性物質のミ
セル表面の親水性基上を拡散して浸透し背面で気化する
という現象に起因するものである。
This improvement in moisture permeability is due to the fact that water vapor in the air is condensed and adsorbed on the surface of the capillary active substance in the porous group H, diffuses and penetrates the hydrophilic groups on the micelle surface of the capillary active substance, and vaporizes on the back surface. It is caused by a phenomenon.

この毛管活性物質による凝縮水の表面張力は毛管活性物
質の作用で著るしく低下するので、湿気の吸着、背面へ
の透過、及び背面での放湿が共に向」ニし、湿度交換性
の著るしい改良が達成されるものと考えられる。
The surface tension of the condensed water due to this capillary active substance is significantly reduced by the action of the capillary active substance, so that moisture adsorption, permeation to the back side, and moisture release on the back side are all synchronized, and the humidity exchange performance is improved. It is believed that significant improvements are achieved.

本発明全熱交換器はこの様な改質基材を利用して、2種
の気流を仕切って顕熱交換と潜熱交換を行なうもので、
例えばこの改質草月を筒状に加工して紙パイプとし、こ
れを多数連設して紙パイプ内を1次気流、紙パイプ外周
を2次気へ 流がそれぞれ通過する様に構成してやればよいのである
The total heat exchanger of the present invention uses such a modified base material to partition two types of airflow and perform sensible heat exchange and latent heat exchange.
For example, this modified Sogetsu can be made into a cylindrical shape to make paper pipes, and a large number of them can be connected in series so that the primary air flows through the inside of the paper pipe and the secondary air flows through the outer circumference of the paper pipe. It is.

第1図は本発明全熱交換器の1例の斜視略図である。FIG. 1 is a schematic perspective view of an example of the total heat exchanger of the present invention.

この図の様に本発明全熱交換器は、−1−記の紙パイプ
(1)が多数連設されていて、例えば列自流型のもので
は両端に流体分離部(2)が設けられている。
As shown in this figure, the total heat exchanger of the present invention has a large number of paper pipes (1) shown in -1- arranged in series, and for example, in the case of a column self-flow type, fluid separation parts (2) are provided at both ends. There is.

つまり紙パイプ(1)の内部を通過する気流と紙パイプ
(1)の外部を通過する気流とが流体分離部(2)で分
流する様に設計されており、例えば矢印(イ)の如く紙
バイブ(1)内に導入される1次気流は矢印いの方へ流
出し、矢印((ロ)の如く紙パイプ(1)の外周に導入
される2次気流は矢印(^の方へ流出する様になってお
シ、互に対向する2種の気流が紙バイブ(1)の内外を
通過して温度差による顕熱交換と湿度差による潜熱交換
を行なうのである。
In other words, the airflow passing through the inside of the paper pipe (1) and the airflow passing through the outside of the paper pipe (1) are designed to separate at the fluid separation part (2). The primary airflow introduced into the vibrator (1) flows out in the direction of the arrow (b), and the secondary airflow introduced into the outer periphery of the paper pipe (1) flows out in the direction of the arrow (^). In this way, two types of air currents facing each other pass through the inside and outside of the paper vibrator (1), exchanging sensible heat due to the temperature difference and latent heat exchange due to the humidity difference.

この流体分離部(2)は多数の流体分離シートから1′
11+成されるもので、この流体分1雅シートは例えば
ABs7顔脂などで成形されたプラスチック製品である
This fluid separation part (2) is divided into 1' from a large number of fluid separation sheets.
This fluid sheet is a plastic product made of, for example, ABs7 facial oil.

なお、この図面では紙パイプ(1)が見えているI[1
〈に示されているが、実際はケーシングに収納されてい
るので紙パイプ(1)の外周の気流も外部には漏れない
ことは勿論である。
In addition, in this drawing, the paper pipe (1) is visible at I[1
Although it is shown in <, since it is actually housed in a casing, it goes without saying that the airflow around the outer periphery of the paper pipe (1) will not leak to the outside.

寸だ、本発明全熱交換器は第1図の対向型に限定きれる
ものではなく、直交流型や回転式の全熱交換器であって
もよく、前述した如き特徴ある改質基材は素材としてパ
イプ式は勿論のこと、波板式、プレー1一式などのあら
ゆる種類の全熱交換器に利用できるものである。
Of course, the total heat exchanger of the present invention is not limited to the opposed type shown in Fig. 1, but may also be a cross-flow type or a rotary type total heat exchanger. As a material, it can be used for all types of total heat exchangers such as pipe type, corrugated plate type, and one set of plates.

以上、詳細に説明した様に、本発明は徽多孔質基利に多
黄の毛管活性物質を付着させた改質基材を使用して構成
された全熱交換器であり、毛管活性物質が凝縮毛管水の
表面張力を低下させて背面への移行を健進して湿度交換
効率を向上させ、しかもこの毛管活性物質がそのミセル
を多孔質の空隙内に充満させるので透気性が低下して気
流移行防止性を高めるという一石二鳥のきわめてすぐれ
た効果を奏するものである。
As described above in detail, the present invention is a total heat exchanger constructed using a modified base material in which a multi-yellow capillary active material is attached to a porous base material, and the capillary active material is It lowers the surface tension of condensed capillary water and promotes its migration to the back surface, improving humidity exchange efficiency, and the capillary active substance fills its micelles into the porous voids, reducing air permeability. This has the extremely excellent effect of killing two birds with one stone by increasing the ability to prevent airflow migration.

実施例 】 合成バルブ(s w p )28軍歌部、ガラス繊維7
重量部、及び無機質粉末(カオリン)70重量部を分散
させたスラリーに小路のアクリルエマルジョン及び凝集
剤を添加し通常の抄紙法により混抄し坪量12 (] 
g/ 771″の混抄紙を得た。
Example] Synthetic valve (s w p) 28 military song club, glass fiber 7
Koji's acrylic emulsion and flocculant were added to a slurry in which 70 parts by weight of inorganic powder (kaolin) were dispersed, and the mixture was mixed using a normal papermaking method to obtain a paper with a basis weight of 12 (]
A mixed paper of g/771″ was obtained.

このものを微少孔質基材として使用し、一方毛管活性物
質としてドデシルベンゼンスルホン酸ソーダ(アニオン
界面活性剤)の20チ水浴液(処理剤Aと称す)を使用
し、第1表の如き各付着量に含浸させた。
This material was used as a microporous substrate, while a 20-T water bath solution (referred to as treatment agent A) of sodium dodecylbenzenesulfonate (anionic surfactant) was used as a capillary active substance, and each It was impregnated to a certain amount.

第】表 この第1表のす、cが本発明における改質基Hに相当す
るものである。
Table 1 In Table 1, items s and c correspond to the modifying group H in the present invention.

この様にして得られた各基材をコルゲートマシンにかけ
て直径6 trnnの紙パイプを多数作成した。
Each of the base materials thus obtained was run on a corrugating machine to produce a large number of paper pipes each having a diameter of 6 trnn.

この4種の紙パイプにより下記の如き全熱交換器をそれ
ぞれ製作した。
The following total heat exchangers were manufactured using these four types of paper pipes.

つまり、紙パイプを25本並列させその両端に流体分離
シートを接合して約2m?〃の間)隔をあけて50段に
積層し2て第1図の〃1]きパイプ式全熱交換器を4種
類(a、b、c、d)製作した。
In other words, 25 paper pipes are lined up and a fluid separation sheet is attached to both ends, and it is approximately 2m? Four types (a, b, c, d) of pipe-type total heat exchangers were manufactured by stacking them in 50 stages at intervals of 1) as shown in Fig. 1.

実施例 2 実施例】と同し微少孔質基何を用いて、毛管活性物質と
してポリオキシエチレンオンイルエーテル(ノニオン界
面活性剤)の20係水溶液(処理剤Bと称す)を使用し
、第2表の如き各付着量に含浸させた。
Example 2 The same microporous substrate as in Example was used, and a 20% aqueous solution of polyoxyethylene onyl ether (nonionic surfactant) (referred to as treatment agent B) was used as the capillary active substance. It was impregnated with each coating amount as shown in Table 2.

第2表 この第2表のf、gが本発明における改質基材となるも
のである。
Table 2 f and g in Table 2 are the modified base materials in the present invention.

これらを用いて実施例1と同様にして4種類(e、f、
g、b)のパイプ式全階)交換イgを刺1作した。
Using these, four types (e, f,
G, b) Pipe type all floors) Replacement ig was made.

実施例 3 実施例】と同じ微多孔質2¥利を用いて、毛管活性物質
としてプロピオン酸ナトリウムの30係水溶液を使用し
、含浸処理して基材に対して処3111剤を15重量係
(乾燥時)付着させ、この改質基材によって実施例1と
同じパイプ式全熱交換器を製作1〜だ。
Example 3 Using the same microporous material as in Example, a 30% aqueous solution of sodium propionate was used as the capillary active substance, and the substrate was impregnated with 3111 agent at 15% by weight ( (during drying), and using this modified base material, the same pipe type total heat exchanger as in Example 1 was manufactured.

実施例 4 実施例1と同じ微多孔質基材を用いて、毛管活性物質と
してポリオキシエチレンオレイルエーテル80重置部と
プロピオン酸ナトリウム20市計部の混合物の20係水
溶液を用い、基Hに対して処理剤を30重風係(乾燥時
)に付着させ、この改質基材によって実施例1と同じパ
イプ式全熱交換器を製作した。
Example 4 Using the same microporous substrate as in Example 1, a 20% aqueous solution of a mixture of 80 parts of polyoxyethylene oleyl ether and 20 parts of sodium propionate was used as the capillary active substance, and the group H was On the other hand, a treatment agent was applied to the substrate at a rate of 30% (dry), and the same pipe type total heat exchanger as in Example 1 was manufactured using this modified base material.

比1咬例 実施例IKおける微多孔質基材を無処理の捷ま実施例1
と同様にしてパイプ式全熱交換器を製作した。
Example 1: Untreated microporous base material in IK Example 1
A pipe-type total heat exchanger was manufactured in the same manner.

上記、実施例1、実施例2、実施例3、実施例4、及び
比較例について、その性能テストをした結果、第3表の
如きデータが得られた。
As a result of performing performance tests on the above-mentioned Example 1, Example 2, Example 3, Example 4, and Comparative Example, data as shown in Table 3 were obtained.

第3表 この表に見られる様に斃印の本発明全熱交換黙り1すぐ
れた潜夕)交換効率を示し、したがって全熱交換効率も
大きくなっており、しかも空気の副れ率は小さく非常に
効果の高い全熱交換器であることが判断されるのである
Table 3 As can be seen in this table, the total heat exchanger of the present invention has an excellent submersion efficiency, and therefore the total heat exchange efficiency is also high, and the air sideflow rate is very small. It has been determined that this is a highly effective total heat exchanger.

なお、表における(a)i二処Bl剤が多過ぎて表面に
11@を作って性能が低下しており、ベトッキも有する
ものであった。
In addition, in the table (a), there was too much Bl agent in the two places to form 11@ on the surface, resulting in a decrease in performance, and there was also stickiness.

1だ、上表における熱交換効率は次式により算出した。1. The heat exchange efficiency in the table above was calculated using the following formula.

但し、t・・・湿度(“C) ×・・・絶対湿度(Kg/Kg) 1−−・、:Iユ ン タ ル ビ −(K ca、4
 / Kg )OA・・・外気空気、SA・・・室内取
入新鮮空気RA・・・室内空気 まだ部れ率は圧力差10 mnr Mのときの空気の漏
れ率で、例えばパイプ入口の全風量に対し出口の風量が
90係であると漏れ率d′10%と算出される。
However, t... Humidity ("C) ×... Absolute humidity (Kg/Kg) 1--, : I unitarby-(K ca, 4
/ Kg) OA...Outdoor air, SA...Indoor fresh air RA...Indoor air leakage rate is the air leakage rate when the pressure difference is 10 mnr M, for example, the total air volume at the pipe inlet. On the other hand, if the air volume at the outlet is 90%, the leakage rate d' is calculated to be 10%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明全熱交換器の1例の斜世路図である。 (1)・・・紙バイブ、(2)・・・流体分離部特許出
願人 B本バイリーン株式会社 (他]名)
FIG. 1 is a perspective view of one example of the total heat exchanger of the present invention. (1)...Paper vibrator, (2)...Fluid separation unit patent applicant Bhon Vilene Co., Ltd. (and others)

Claims (1)

【特許請求の範囲】 1 全熱交換すべき2種の気流を熱伝導性と通湿性を有
する微多孔質基材で仕切ることにより構成されている全
熱交換器において、該微多孔質基材に毛管活性物質を塗
布又は含浸づせてなる改質基材を用いて前記2種の気流
を仕切る様にしたことを特徴とする改良全熱交換器。 2 毛管活性物質として2親性を有する界面活性剤を使
用した特許請求の範囲第1項記載の改良全熱交換器。 3、 毛管活性物質として有機酸誘導体を使用した特許
請求の範囲第1項記載の改良全熱交換器。 4、毛管活性物質を微多孔質基材に対して5〜50重量
係付着させた特許請求の範囲第1項、第2項、又は第3
項記載の改良全熱交換器。 5、改質基材のガーレ透気度が50秒以上の値である特
許請求の範囲第1項記載の改良全熱交換器。
[Scope of Claims] 1. In a total heat exchanger configured by partitioning two types of air streams to be subjected to total heat exchange with a microporous base material having thermal conductivity and moisture permeability, the microporous base material An improved total heat exchanger characterized in that the two types of air streams are partitioned using a modified base material which is coated with or impregnated with a capillary active substance. 2. The improved total heat exchanger according to claim 1, which uses a biphilic surfactant as the capillary active substance. 3. The improved total heat exchanger according to claim 1, wherein an organic acid derivative is used as the capillary active substance. 4. Claims 1, 2, or 3, in which the capillary active substance is deposited in a weight ratio of 5 to 50% on the microporous substrate.
Improved total heat exchanger as described in Section. 5. The improved total heat exchanger according to claim 1, wherein the modified base material has a Gurley air permeability of 50 seconds or more.
JP15595483A 1983-08-25 1983-08-25 Improved total heat exchanger Pending JPS6048498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15595483A JPS6048498A (en) 1983-08-25 1983-08-25 Improved total heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15595483A JPS6048498A (en) 1983-08-25 1983-08-25 Improved total heat exchanger

Publications (1)

Publication Number Publication Date
JPS6048498A true JPS6048498A (en) 1985-03-16

Family

ID=15617157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15595483A Pending JPS6048498A (en) 1983-08-25 1983-08-25 Improved total heat exchanger

Country Status (1)

Country Link
JP (1) JPS6048498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250585A (en) * 2008-04-10 2009-10-29 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
CN106545981A (en) * 2016-11-23 2017-03-29 珠海格力电器股份有限公司 Air channel structure and aeration device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119159A (en) * 1978-03-08 1979-09-14 Sekisui Chem Co Ltd Heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119159A (en) * 1978-03-08 1979-09-14 Sekisui Chem Co Ltd Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250585A (en) * 2008-04-10 2009-10-29 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
CN106545981A (en) * 2016-11-23 2017-03-29 珠海格力电器股份有限公司 Air channel structure and aeration device
CN107957123A (en) * 2016-11-23 2018-04-24 珠海格力电器股份有限公司 Air channel structure and aeration device
CN106545981B (en) * 2016-11-23 2019-03-15 珠海格力电器股份有限公司 Air channel structure and aeration device

Similar Documents

Publication Publication Date Title
US4484938A (en) Total heat exchanger
CA2644476C (en) Sheet for total heat exchanger
TWI311636B (en)
CA2383487C (en) Heat exchanger and heat exchange ventilator
CA2237559C (en) Evaporative wicking pad
CN103877864B (en) A kind of new and effective Total heat exchange film and total-heat exchanger
TW200844391A (en) Heat exchanger element and heat exchanger
WO2018131719A1 (en) Sheet for total heat exchange element and method for producing sheet for total heat exchange element
JPS6235596B2 (en)
JPS6048498A (en) Improved total heat exchanger
WO2007116567A1 (en) Total enthalpy heat exchanger
JPS60205193A (en) All weather heat exchanger
JP2016108704A (en) Moisture-permeable sheet, method of producing the same and base paper for total heat exchanger element comprising the same moisture-permeable sheet
JPH0515959B2 (en)
JPS5846325B2 (en) Method for manufacturing a moisture-permeable gas shield
KR100837023B1 (en) Total heat exchanging element and total heat exchanger
JPS6130609B2 (en)
JPS61184396A (en) Total heat exchanging element
JP2020200990A (en) Total heat exchange element and ventilation method
JPH0124529B2 (en)
JPS58124196A (en) Total heat-exchanging element
JPH0481115B2 (en)
TW500858B (en) Material of the total heat exchanger and its manufacturing method
JPS6213048B2 (en)
JP2020085336A (en) Spacer for total heat exchange element, and total heat exchange element