JPS6048220B2 - Method for removing chlorine ions from wet flue gas treatment process - Google Patents

Method for removing chlorine ions from wet flue gas treatment process

Info

Publication number
JPS6048220B2
JPS6048220B2 JP51136374A JP13637476A JPS6048220B2 JP S6048220 B2 JPS6048220 B2 JP S6048220B2 JP 51136374 A JP51136374 A JP 51136374A JP 13637476 A JP13637476 A JP 13637476A JP S6048220 B2 JPS6048220 B2 JP S6048220B2
Authority
JP
Japan
Prior art keywords
flue gas
liquid
gas treatment
treatment process
wet flue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51136374A
Other languages
Japanese (ja)
Other versions
JPS5361567A (en
Inventor
祐一 江藤
明 北山
貞美 小林
成美 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP51136374A priority Critical patent/JPS6048220B2/en
Priority to CA290,427A priority patent/CA1099491A/en
Priority to NL7712413A priority patent/NL168424C/en
Priority to DE19772750768 priority patent/DE2750768C2/en
Priority to GB4725977A priority patent/GB1560038A/en
Publication of JPS5361567A publication Critical patent/JPS5361567A/en
Priority to US06/008,405 priority patent/US4218428A/en
Publication of JPS6048220B2 publication Critical patent/JPS6048220B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound

Description

【発明の詳細な説明】 本発明は湿式排煙処理工程からの塩素イオンの除去方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing chloride ions from a wet flue gas treatment process.

従来、湿式排煙処理工程においては公害防止の見地か
ら完全に無廃水化する方法が多く採用されている。
Conventionally, in wet flue gas treatment processes, many methods have been adopted to completely eliminate wastewater from the viewpoint of pollution prevention.

しかし、この方法においては装置の長期間の運転により
、工業用水、燃料用重油、使用薬品などに若干含有され
ている塩素が循環吸収液中に濃縮蓄積されるという不都
合を生じる。この場合、循環吸収液中の塩素イオン濃度
が4000〜6000ppmに達すると、吸収塔などの
主要材質であるステンレス鋼の応力腐食割れ、ピッチン
グ腐食等の原因となり、この塩素イオンの有効な除去方
法が望まれていた。 従来、塩素イオンの蓄積による不
都合を回避するために、塩素イオン濃度が所定濃度以上
になつた循環吸収液の一部または全部を系外に抜き出す
ことが行なわれていた。
However, this method has the disadvantage that chlorine, which is contained in industrial water, heavy fuel oil, chemicals, etc., is concentrated and accumulated in the circulating absorption liquid due to long-term operation of the device. In this case, when the chlorine ion concentration in the circulating absorption liquid reaches 4,000 to 6,000 ppm, it causes stress corrosion cracking and pitting corrosion of stainless steel, which is the main material of absorption towers, etc., and there is no effective method for removing chlorine ions. It was wanted. Conventionally, in order to avoid problems caused by accumulation of chlorine ions, part or all of the circulating absorption liquid whose chlorine ion concentration exceeds a predetermined concentration has been extracted from the system.

しカルながら、この方法では抜き出した循環吸収液の
無害化処理が困難であり、これを廃棄することは二次公
害の原因となるという欠点があつた。
However, this method has the drawback that it is difficult to detoxify the extracted circulating absorption liquid, and discarding it causes secondary pollution.

しかも、系外に抜き出した分に相当する量の吸収液を新
たに補充しなければならないとともに、抜き出した液中
には多量の溶解塩が含まれていることから経済的な不利
益も大きい。 そこで、本発明者らは上記のような欠点
を解消して処理工程内、特に吸収系内の塩素イオン濃度
を所定水準以下に維持しつつ可及的にクローズドシステ
ムにより排煙処理を行なう方法を開発すべく鋭意研究を
重ねた結果、本発明に到達したのである。
Moreover, it is necessary to replenish a new amount of absorption liquid corresponding to the amount extracted from the system, and the extracted liquid contains a large amount of dissolved salts, resulting in a large economic disadvantage. Therefore, the present inventors have devised a method to solve the above-mentioned drawbacks and carry out exhaust gas treatment in a closed system as much as possible while maintaining the chlorine ion concentration in the treatment process, especially in the absorption system, below a predetermined level. As a result of intensive research for development, the present invention was arrived at.

亜硫酸ガスを含む排煙の湿式法による処理は第1図の如
きフローシートで示され、酸化マグネシウム、亜硫酸マ
グネシウム、硫酸マグネシウム等のマグネシウム化合物
を含む吸収液を吸収塔1などの吸収系において該排煙と
接触させて排煙中の亜硫酸ガスを吸収せしめ、反応生成
物と未反応吸収剤を遠心分離機2等の固液分離系により
分離し、母液は吸収系に戻し循環使用する。
The wet method treatment of flue gas containing sulfur dioxide gas is shown in a flow sheet as shown in Figure 1, in which an absorption liquid containing magnesium compounds such as magnesium oxide, magnesium sulfite, and magnesium sulfate is discharged in an absorption system such as absorption tower 1. The sulfur dioxide gas in the flue gas is absorbed by contact with smoke, and the reaction product and unreacted absorbent are separated by a solid-liquid separation system such as a centrifuge 2, and the mother liquor is returned to the absorption system for circulation.

一方、分離された固形分は乾燥機3等の乾燥系により乾
燥後、焼成系において焼成機4を用いて焼成して亜硫酸
ガスを回収するとともに、マグネシウム化合物を再生し
、再ひ吸収剤として使用する。また、亜硫酸ガスを含む
回収ガスは洗浄塔6等の洗浄系で除塵された後、単体い
おうまたは硫酸の原料として用いる。なお、洗浄塔抜出
し液は循環吸収系に戻される。上記の排煙処理工程にお
ける塩素イオンの挙動に注目すると、該イオンは循環吸
収系内を他の成分とともに循環するばかりでなく、一部
は吸収系一固液分離系→乾燥系一焼成系→洗浄系→吸収
系という経路で循環している。
On the other hand, the separated solid content is dried in a drying system such as a dryer 3, and then burned in a calcination system using a calcination machine 4 to recover sulfur dioxide gas and regenerate magnesium compounds, which are then used as reheating absorbents. do. Further, the recovered gas containing sulfur dioxide gas is used as a raw material for simple sulfur or sulfuric acid after being cleaned by a cleaning system such as a cleaning tower 6. Note that the liquid extracted from the washing tower is returned to the circulation absorption system. If we pay attention to the behavior of chlorine ions in the above flue gas treatment process, we can see that these ions not only circulate in the circulation absorption system together with other components, but also partially in the absorption system - solid-liquid separation system -> drying system - calcination system -> It circulates through the cleaning system → absorption system.

本発明者らは、後者の循環経路について検討したところ
、遠心分離機によつて固液分離した後の含水量が2重量
%以上の固形分(ウェットケーキ)中には通常5 〜3
0重量%の水分が含有されており、この水分中の塩素イ
オンは乾燥・焼成系を経て焼成の際に生じたガス中に塩
化水素として放出され、最終的にその約90%以上が洗
浄塔液中に捕捉されることを認めた。しかも捕捉された
塩素量は全系内、即ち湿式排煙処理工程内の塩素イオ.
ン発生量を上まわるものである。そこで、上記洗浄塔か
らの抜出し液の一部を工程外へ排出することによつて吸
収系における塩素イオンの蓄積を有効に防止しうること
を見出し、本発明を完成したものである。本発明はマグ
ネシウム化合物を含む吸収液を循環させて亜硫酸ガスを
含む排煙と接触させるとともに、循環吸収液の一部を固
液分離して得た固形分を乾燥・焼成してマグネシウム化
合物を再生、使用し、また焼成の際に生じたガスを水で
洗浄す・る湿式排煙処理工程において、焼成の際に生じ
たガスの洗浄塔からの抜出し液の少なくとも一部を湿式
排煙処理工程外へ除去することによつて、吸収系内の塩
素イオン濃度を約3000ppm以下に維持するように
、前記再生処理に供される含水量が2重量%以上の固形
分の含水量と反比例するように湿式排煙処理工程外へ除
去する洗浄塔からの抜出し液の割合を調節することを特
徴とする湿式排煙処理工程からの塩素イオンの除去方法
を堤供するものである。
The present inventors investigated the latter circulation route and found that solid content (wet cake) with a water content of 2% by weight or more after solid-liquid separation using a centrifuge usually contains 5 to 3% water.
It contains 0% water by weight, and the chlorine ions in this water go through the drying and firing system and are released as hydrogen chloride into the gas generated during firing, and eventually more than 90% of it goes to the cleaning tower. It was confirmed that the substance was trapped in the liquid. Moreover, the amount of chlorine captured is the chlorine ion in the entire system, that is, in the wet flue gas treatment process.
This amount exceeds the amount generated. Therefore, the present invention has been completed based on the discovery that accumulation of chlorine ions in the absorption system can be effectively prevented by discharging a portion of the liquid extracted from the washing tower to the outside of the process. In the present invention, an absorption liquid containing magnesium compounds is circulated and brought into contact with flue gas containing sulfur dioxide gas, and a part of the circulation absorption liquid is separated into solid and liquid, and the resulting solid content is dried and calcined to regenerate the magnesium compounds. In the wet flue gas treatment process in which the gas generated during firing is washed with water, at least a portion of the liquid extracted from the gas cleaning tower generated during firing is used in the wet flue gas treatment process. The water content to be subjected to the regeneration treatment is inversely proportional to the water content of solids of 2% by weight or more, so as to maintain the chloride ion concentration in the absorption system at about 3000 ppm or less by removing it to the outside. The present invention provides a method for removing chlorine ions from a wet flue gas treatment process, which is characterized by adjusting the proportion of liquid extracted from a cleaning tower to be removed outside the wet flue gas treatment process.

ここで、湿式排煙処理工程とは吸収系、固液分離系、乾
燥系、焼成系および洗浄系の一連の処理系全体を指称す
る。
Here, the wet flue gas treatment process refers to the entire series of treatment systems including an absorption system, a solid-liquid separation system, a drying system, a firing system, and a cleaning system.

前記したように、洗浄塔6からの抜出し液には大量の塩
素イオンが含まれているので、該抜出し液の全部もしく
は一部を湿式排煙処理工程外に除去することによつて吸
収系内の塩素イオンの蓄積を防止し、所定水準以下に保
持することがてきる。
As mentioned above, the liquid extracted from the cleaning tower 6 contains a large amount of chlorine ions, so by removing all or a part of the liquid extracted outside the wet flue gas treatment process, it is possible to remove the liquid from the absorption system. It is possible to prevent the accumulation of chlorine ions and maintain them below a predetermined level.

上記の湿式排煙処理工程外へ除去すべき抜出し液の割合
は目標とする吸収液の塩素イオン濃度レベルおよび乾燥
機に入るウェットケーキ中の水分含量との関係を考慮し
て調節する。
The proportion of the extracted liquid to be removed outside the wet flue gas treatment process is adjusted in consideration of the relationship between the target chlorine ion concentration level of the absorbing liquid and the moisture content of the wet cake entering the dryer.

たとえば、湿式排煙処理工程内に、持込まれる塩素イオ
ン量が工業用水に由来するもの0.70k9/Hr)マ
グネシウム化合物に由来するもの0.18k9/Hrと
すると、ウェットケーキ中の含水量が15重量%であり
、その水分量が2600k9/Hrである場合、洗浄塔
からの抜出し液の全量を湿式排煙処理工程外へ除去すれ
ば、工程内、特に吸収系内における塩素イオン濃度は下
記の式より導き出される340ppm程度に維持される
。0.70+0.18=2600XX×10−6×−h
一y1+Y2ここで、Y,は洗浄塔から工程外に抜出さ
れる液量、Y。
For example, if the amount of chlorine ions brought into the wet flue gas treatment process is 0.70 k9/Hr derived from industrial water and 0.18 k9/Hr derived from magnesium compounds, then the water content in the wet cake is 15 If the water content is 2600k9/Hr, if the entire amount of liquid extracted from the cleaning tower is removed outside the wet flue gas treatment process, the chlorine ion concentration in the process, especially in the absorption system, will be as follows: It is maintained at about 340 ppm derived from the formula. 0.70+0.18=2600XX×10-6×-h
-y1+Y2 Here, Y is the amount of liquid extracted from the cleaning tower to the outside of the process.

は洗浄塔から吸収塔に戻される液量を示し、Y,=10
0,y2=0を代人すれば、X:340ppmまた、抜
出し液の除去割合を11%程度とすると、Y,!Y。
represents the amount of liquid returned from the washing tower to the absorption tower, Y, = 10
If 0,y2=0 is used as a proxy, then X: 340ppm.Also, if the removal rate of the extracted liquid is about 11%, then Y,! Y.

−0泪を上式に代人すれば、X干3000となり、工程
内、特に吸収系内の塩素イオン濃度は3000ppm程
度になる。吸収系における塩素イオン濃度を約3000
ppm以下に維持すれば、吸収塔などの腐食等のトラブ
ルを回避して長期間にわたり安定的に運転をすることが
できる。
If -0 tears are substituted into the above formula, it becomes X 3000, and the chlorine ion concentration in the process, especially in the absorption system, becomes about 3000 ppm. Reduce the chloride ion concentration in the absorption system to approximately 3000
By maintaining the concentration below ppm, troubles such as corrosion of the absorption tower etc. can be avoided and stable operation can be performed for a long period of time.

ここで塩素イオン濃度が約3000ppmを越えると、
特に4000ppm以上に達すると吸収塔などに応力腐
食割れ、ピッチング腐食等が生ずるおそれがある。
Here, when the chlorine ion concentration exceeds about 3000 ppm,
In particular, if the concentration exceeds 4000 ppm, stress corrosion cracking, pitting corrosion, etc. may occur in absorption towers and the like.

なお、この際の塩素イオン濃度は、吸収系内のいかなる
位置で測定されたものであつてもよいが、通常は吸収系
の出口、即ち吸収塔1の出口あるいはその近傍で測定さ
れたものである。本発明の方法では、吸収系における塩
素イオン濃度を約3000ppm以下に維持しておけば
、様々な状況の変化によつて塩素イオン濃度が高くなつ
ても、14000ppmを超えるような事態はほとんど
なく、したがつて吸収塔に腐食を生ずるなどのおそれは
ない。本発明では乾燥機に入るウェットケーキ中の含水
量が2重量%以上であれば、洗浄塔からの抜出し液の所
定量を工程外へ排出することにより吸収系の塩素イオン
濃度を3000ppm以下に維持することがてきる。
Note that the chloride ion concentration at this time may be measured at any position within the absorption system, but it is usually measured at the outlet of the absorption system, that is, the outlet of absorption tower 1 or its vicinity. be. In the method of the present invention, if the chloride ion concentration in the absorption system is maintained at about 3,000 ppm or less, even if the chlorine ion concentration increases due to various changes in circumstances, it will rarely exceed 14,000 ppm. Therefore, there is no risk of corrosion occurring in the absorption tower. In the present invention, if the water content in the wet cake entering the dryer is 2% by weight or more, the chlorine ion concentration in the absorption system is maintained at 3000 ppm or less by discharging a predetermined amount of the liquid extracted from the washing tower outside the process. I can do that.

湿式排煙処理工程外へ除去する洗浄塔からの抜出し液の
量は再生処理に供される固形分の含水量と反比例の関係
とすればよい。すなわち、ウェットケーキ中の含水量を
高くする程、抜出し液の除去割合を小さくすることがで
きる。そのために、たとえば循環吸収液の一部を遠心分
離機をバイパスさせて乾燥機へ送る方法をとることもで
きる。洗浄塔からの抜出し液の除去は連続的ても間けつ
時でもよい。
The amount of liquid extracted from the cleaning tower to be removed outside the wet flue gas treatment process may be inversely proportional to the water content of the solids to be subjected to regeneration treatment. That is, the higher the water content in the wet cake, the lower the removal rate of the extracted liquid. For this purpose, for example, a method may be adopted in which a portion of the circulating absorption liquid is sent to the dryer bypassing the centrifugal separator. The effluent from the washing tower may be removed continuously or intermittently.

また、ウェットケーキ中の含水量を一時的に高めて洗浄
塔からの抜出し液中の塩素イオン濃度を高くして抜出す
ことにより、湿式排煙処理工程外へ除去する液量を少な
くすることができる。湿式排煙処理工程外へ除去した洗
浄塔からの抜出し液は、通常、PHは1.5〜3.5の
範囲、スラリー濃度はO〜3重量%の範囲、溶鄭02ガ
スを含めて全SO。
In addition, by temporarily increasing the water content in the wet cake and increasing the chlorine ion concentration in the liquid extracted from the cleaning tower, it is possible to reduce the amount of liquid removed outside the wet flue gas treatment process. can. The liquid extracted from the cleaning tower removed outside the wet flue gas treatment process usually has a pH in the range of 1.5 to 3.5, a slurry concentration in the range of O to 3% by weight, and a total of S.O.

濃度は5〜8重量%の範囲上澄液CODは700〜15
00ppmの範囲にある。これにアルカリ薬剤を加えて
中和した後、必要に応じて凝集剤などを加えて濾過、静
置などの方法により固液分離すると分離液の懸濁固形分
は10〜20ppm程度、全SO。濃度は2000〜3
000ppm程度、CODは25〜30ppm程度に減
少する。さらにこの分離液は空気曝気処理により全SO
。濃度を20〜100ppm程度に減少させることがで
きるので二次公害を生ずることなく廃棄することができ
る。なお、中和のためのアルカリ薬剤としては、第1図
に示したように排煙処理工程中の酸化マグネシウムスラ
リーを用い分離した固形分を再ひ排煙処理工程に戻す方
法を採ることができる。また、本発明を実施する場合、
乾燥系や焼成系の温度をはじめ、全処理系iの操作条件
は通常の場合と同様に設定すればよい。
Concentration ranges from 5 to 8% by weight Supernatant COD is 700 to 15
It is in the range of 00 ppm. After neutralizing this by adding an alkaline agent, if necessary, adding a flocculant etc., and separating solid and liquid by methods such as filtration and standing, the suspended solid content of the separated liquid is about 10 to 20 ppm, total SO. The concentration is 2000-3
000 ppm, and COD decreases to about 25 to 30 ppm. Furthermore, this separated liquid is treated with air to remove all SO.
. Since the concentration can be reduced to about 20 to 100 ppm, it can be disposed of without causing secondary pollution. As an alkaline agent for neutralization, as shown in Figure 1, a method can be adopted in which the separated solids are returned to the flue gas treatment process using magnesium oxide slurry during the flue gas treatment process. . Furthermore, when implementing the present invention,
The operating conditions of the entire processing system i, including the temperatures of the drying system and firing system, may be set in the same way as in the normal case.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様の1つを示すフローシートで
ある。
FIG. 1 is a flow sheet showing one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシウム化合物を含む吸収液を循環させて亜硫
酸ガスを含む排煙と接触させるとともに、循環吸収液の
一部を固液分離して得た固形分を乾燥焼成してマグネシ
ウム化合物を再生、使用し、また焼成の際に生じたガス
を水で洗浄する湿式排煙処理工程において、焼成の際に
生じたガスの洗浄塔からの抜出し液の少なくとも一部を
湿式排煙処理工程外へ除去することによつて、吸収系内
の塩素イオン濃度を約3000ppm以下に維持するよ
うに、前記再生処理に供される含水量が2重量%以上の
固形分の含水量と反比例するように湿式排煙処理工程外
へ除去する洗浄塔からの抜出し液の割合を調節すること
を特徴とする湿式排煙処理工程からの塩素イオンの除去
方法。
1. The absorption liquid containing magnesium compounds is circulated and brought into contact with flue gas containing sulfur dioxide gas, and a part of the circulating absorption liquid is separated into solid and liquid, and the resulting solid content is dried and calcined to regenerate and use the magnesium compounds. In addition, in a wet flue gas treatment process in which the gas generated during firing is washed with water, at least a portion of the liquid extracted from the cleaning tower of the gas generated during firing is removed to outside the wet flue gas treatment process. Wet flue gas treatment is carried out so that the water content subjected to the regeneration treatment is inversely proportional to the water content of solids of 2% by weight or more, so as to maintain the chloride ion concentration in the absorption system at about 3000 ppm or less. A method for removing chlorine ions from a wet flue gas treatment process, which comprises adjusting the proportion of liquid extracted from a cleaning tower to be removed outside the process.
JP51136374A 1976-11-15 1976-11-15 Method for removing chlorine ions from wet flue gas treatment process Expired JPS6048220B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP51136374A JPS6048220B2 (en) 1976-11-15 1976-11-15 Method for removing chlorine ions from wet flue gas treatment process
CA290,427A CA1099491A (en) 1976-11-15 1977-11-08 Process for removing chlorine ions from the wet flue- gas processing system
NL7712413A NL168424C (en) 1976-11-15 1977-11-11 PROCESS FOR THE PURIFICATION OF COMBUSTION GASES, USING A CIRCULATING AQUEOUS SOLUTION OF A MAGNESIUM COMPOUND.
DE19772750768 DE2750768C2 (en) 1976-11-15 1977-11-12 Process for removing chlorine ions from a humid exhaust gas treatment system
GB4725977A GB1560038A (en) 1976-11-15 1977-11-14 Process for removing chloride ions from the wet-gas processing system
US06/008,405 US4218428A (en) 1976-11-15 1979-02-01 Process for removing chlorine ions from the wet flue-gas processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51136374A JPS6048220B2 (en) 1976-11-15 1976-11-15 Method for removing chlorine ions from wet flue gas treatment process

Publications (2)

Publication Number Publication Date
JPS5361567A JPS5361567A (en) 1978-06-02
JPS6048220B2 true JPS6048220B2 (en) 1985-10-25

Family

ID=15173660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51136374A Expired JPS6048220B2 (en) 1976-11-15 1976-11-15 Method for removing chlorine ions from wet flue gas treatment process

Country Status (5)

Country Link
JP (1) JPS6048220B2 (en)
CA (1) CA1099491A (en)
DE (1) DE2750768C2 (en)
GB (1) GB1560038A (en)
NL (1) NL168424C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT377542B (en) * 1981-06-24 1985-03-25 Procter & Gamble TEXTILE FINISHING AGENT
JPS6058230A (en) * 1983-09-09 1985-04-04 Babcock Hitachi Kk Waste gas desulfurization and apparatus thereof
AT388882B (en) * 1987-07-29 1989-09-11 Andritz Ag Maschf METHOD FOR THE PURIFICATION OF EXHAUST GASES FROM COMBUSTION PLANTS CONTAINING SALTIC ACID AND SULFUR DIOXIDE, IN PARTICULAR MUSEUM COMBUSTION PLANTS
EP2402288B1 (en) * 2010-07-02 2016-11-16 Alfa Laval Corporate AB Cleaning equipment for gas scrubber fluid
EP3461795A1 (en) 2010-02-25 2019-04-03 Alfa Laval Corporate AB Method for bleeding off a scrubber fluid and use of a bleed-off centrifugal separator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929433A (en) * 1971-06-24 1974-03-15

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2109096C3 (en) * 1971-02-25 1980-02-14 Envirotech Corp., Menlo Park, Calif. (V.St.A.) Process for removing sulfur dioxide with entrained particulate matter from exhaust gases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929433A (en) * 1971-06-24 1974-03-15

Also Published As

Publication number Publication date
NL168424B (en) 1981-11-16
DE2750768A1 (en) 1978-05-24
NL7712413A (en) 1978-05-17
JPS5361567A (en) 1978-06-02
NL168424C (en) 1982-04-16
CA1099491A (en) 1981-04-21
DE2750768C2 (en) 1983-03-03
GB1560038A (en) 1980-01-30

Similar Documents

Publication Publication Date Title
US4147756A (en) Combustion gas scrubbing system
KR101835837B1 (en) Calcium removal method
JP5222242B2 (en) Incinerator exhaust gas removal method
JPS6048220B2 (en) Method for removing chlorine ions from wet flue gas treatment process
KR0136645B1 (en) Method and apparatus for treating waste gas
JP2564252B2 (en) Fluorine-containing wastewater treatment method
US4231995A (en) Ammonia double-alkali process for removing sulfur oxides from stack gases
JP3681184B2 (en) Seawater-based wet flue gas desulfurization method and apparatus
JPH0371197B2 (en)
JP2805497B2 (en) Treatment of wet flue gas desulfurization wastewater
CA1100122A (en) Removal of noxious contaminants from gas
JPS63147519A (en) Method for removing total of mercury contained in exhaust gas and mercury contained in waste water of smoke cleaning
JPH0761473B2 (en) Wastewater coagulation treatment method
US4218428A (en) Process for removing chlorine ions from the wet flue-gas processing system
JPH0152047B2 (en)
JPS625027B2 (en)
JPH0929058A (en) Solidification of desulfurized drain with coal ash
JPS60235625A (en) Treatment of exhaust gas
JPH0716425A (en) Flue gas desulfurization process
JP2002336642A (en) Wet type waste gas desulfurizing method and apparatus
JP2608067B2 (en) COD treatment control equipment for wet flue gas desulfurization equipment wastewater
JP3826714B2 (en) Waste disposal method
JP3232513B2 (en) Wet flue gas desulfurization device and method for collecting effluent from centrifugal separator
JP3100410B2 (en) Salt bath treatment method
JP3790625B2 (en) Wastewater treatment method