JP3826714B2 - Waste disposal method - Google Patents

Waste disposal method Download PDF

Info

Publication number
JP3826714B2
JP3826714B2 JP2001074227A JP2001074227A JP3826714B2 JP 3826714 B2 JP3826714 B2 JP 3826714B2 JP 2001074227 A JP2001074227 A JP 2001074227A JP 2001074227 A JP2001074227 A JP 2001074227A JP 3826714 B2 JP3826714 B2 JP 3826714B2
Authority
JP
Japan
Prior art keywords
exhaust gas
water
condensed water
moisture
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001074227A
Other languages
Japanese (ja)
Other versions
JP2002276923A (en
Inventor
孝司 中山
博章 石田
弘孝 佐藤
光彦 阪口
道丈 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001074227A priority Critical patent/JP3826714B2/en
Publication of JP2002276923A publication Critical patent/JP2002276923A/en
Application granted granted Critical
Publication of JP3826714B2 publication Critical patent/JP3826714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物の処理方法に関し、特に水分凝縮器から発生する凝縮水の系外排出量を低減する方法に関する。
【0002】
【従来の技術】
ガス化溶融炉で廃棄物を高温燃焼処理し、排ガス温度を800〜1400℃とにすると排ガス中のダイオキシンが分解され、さらに排ガス冷却装置により排ガスを200℃以下に急冷することによりダイオキシンの再合成を防止できる。200℃以下に急冷された排ガス中には、ダスト等の固形物やSO2等の有害ガスが含有されており、バグフィルタ等によりダスト等の固形物を除去し、さらにSO2等の有害ガスを脱硫装置により除去する必要がある。さらに、ダスト等の固形物やSO2等の有害ガスが除去された蒸気飽和状態の排ガスは間接冷却方式の水分凝縮器により水分除去され、高カロリー燃料ガスとしてボイラ等に供給される。
【0003】
【発明が解決しようとする課題】
しかし、水分凝縮器から排出される凝縮水は、アンモニア濃度が高く環境保全上そのまま系外に排水することができない。このため、凝縮水を系外に排水するための水処理設備が必要であり、水処理設備費およびランニングコストが上昇するという問題がある。
【0004】
本発明の目的は、凝縮水の系外排水量を低減する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、廃棄物処理設備の水バランス等を検討した結果、下記の知見を得た。
【0006】
(A)ガス化溶融炉、排ガス冷却装置、排ガス清浄装置および水分凝縮器を有する廃棄物処理設備に供給される水分は、廃棄物中に含有される水分と、排ガス冷却装置に供給される散水用の水である。一方、系外に排出される水分は、水分凝縮器から排出される凝縮水と水分除去された排ガス中の水分である。従って、水分除去された排ガス中の水分量と廃棄物中に含有される水分量とをバランスさせ、水分凝縮器から排出される凝縮水を排ガス冷却装置に供給される散水用の水として再利用することが可能であれば、系外排水が無くなり水処理設備が不要となる。一方、廃棄物中に含有される水分量が多く、水分除去された排ガス中の水分量とバランスさせることができない事態が生じても、過剰になった凝縮水のみを水処理すればよい。このように、過剰な凝縮水のみを水処理すれば、水処理設備の負荷を低減できる。この結果、従来に比べて水処理設備費およびランニングコストを大幅に低減できる。
【0007】
(B)上記着想を確認するため、廃棄物処理試験設備(廃棄物処理量:20質量t/d規模)にて試験を行った。その試験結果を以下に示す。
(a)凝縮水を排ガス冷却用の水として使用すると、凝縮水中の塩類などの濃縮が懸念されるが、塩類は排ガス冷却後に排ガス清浄装置等で除去されるため、凝縮水には濃縮しない。一方、凝縮水中のアンモニア分は濃縮されるが、凝縮水のアンモニア濃度は約2000mg/lの一定濃度となる。
【0008】
(b)水分凝縮器で水分調整されたガスをボイラ燃焼したときの排ガス中の窒素酸化物濃度は、アンモニア分の上昇により高くなることが懸念された。しかし、この排ガス中の窒素酸化物濃度は、試験中に上昇傾向を示したが、目標濃度である100ppm以下の約50ppmで一定値となり、それ以上濃度が上昇しない。
【0009】
本発明は、以上の知見に基づいてなされたもので、その要旨は、「廃棄物をガス化溶融するガス化溶融炉と、該ガス化溶融炉で排出した排ガスを急冷処理する排ガス冷却装置と、該排ガス冷却装置で急冷処理された排ガス中のダストおよび有害ガスを除去する排ガス清浄装置と、該排ガス清浄装置でダストおよび有害ガスを除去した排ガス中の水分を除去する水分凝縮器とを有する廃棄物処理設備を使用する廃棄物の処理方法であって、前記水分凝縮器から発生する凝縮水を前記排ガス冷却装置の冷却水として使用し、アンモニア分が濃縮した一部凝縮水を水処理設備で処理することを特徴とする廃棄物の処理方法」である。
【0010】
【発明の実施の形態】
図1は、本発明の廃棄物処理方法の一例を示す工程図である。
同図に示すように、廃棄物はガス化溶融炉1に投入され、高温環境下焼却処理される。なお、図示しないが投入される廃棄物は乾燥装置や脱水装置等により水分含有量を事前に調整することも行われる。ガス化溶融炉に投入された廃棄物は熱分解反応によりガスが生成し、熱分解残渣は高温環境下で溶融状態となり溶融スラグと溶融金属とに比重分離され炉下部2から排出される。生成ガスはガス排出口3から排ガスとして次工程の排ガス冷却装置4に排出される。この排ガス冷却装置4に排出される前の排ガスの温度は、ダイオキシン分解温度である800〜1400℃になるようにガス化溶融炉1で調整されている。この排ガスは、散水冷却方式の排ガス冷却装置4により急速冷却され、200℃以下の温度に調整される。200℃以下に調整する理由はダイオキシンの再合成を防止するためである。
【0011】
本発明で使用する散水冷却方式の排ガス冷却装置4は、排水が発生しないように散水量を制御するように使用することが望ましい。所定温度に冷却処理された排ガスは、排ガス中に消石灰等を添加してバグフィルタ5で除塵する。このように消石灰等を添加することにより、ダストと共に塩分や硫黄酸化物等が除去される。次に脱硫装置6によってバグフィルタ5で除去しきれなかった塩分や硫黄酸化物等が除去さらに除去される。なお、バグフィルタ5および脱硫装置6等から構成される装置を総称して以下排ガス清浄装置10ともいう。このように排ガス清浄装置10によってダストや硫黄酸化物等が除去された排ガスは、水分凝縮器7により排ガス中の水分が凝縮水として除去される。水分凝縮器7により水分が除去された排ガスはボイラ8等のエネルギー変換装置に送り、燃料ガスとして利用される。
【0012】
凝縮水中のアンモニア濃度は、約600mg/l程度と高く環境保全上そのまま系外に排水することができない。このため、凝縮水を系外に排水するための水処理設備が必要であり、水処理設備費およびランニングコストが上昇するという問題がある。
【0013】
本発明では、この凝縮水を、循環ピット9等に一旦貯めておき、前記排ガス冷却装置4の冷却水として使用する。これにより、凝縮水を処理する水処理設備の規模を小さくすることができる。凝縮水を処理するには、一般的に多くの工程が必要であり、この水処理設備の規模を小さくすることが可能となることは廃棄物処理コストの低減化の観点から効果がある。なお、凝縮水の成分中で処理の対象となる主成分は、アンモニアとシアンである。
【0014】
図2は、凝縮水を処理する方法の一例を示す工程図である。
同図に示すように、凝縮水を貯水槽11に一旦受けpH調整槽12でNaOH水溶液により、アルカリ性にpH調整する。ストリッピング槽13で蒸気により加温し、空気により脱アンモニア(ストリッピング)を行い、アンモニア濃度は12.1mg/lまで低下する。ここで発生したアンモニアガスはNo.1スクラバー23で硫酸水溶液で硫酸アンモニウムとして捕集される。この過程で凝縮水中のシアンも凝縮水中から除去されるが、No.1スクラバー23の硫酸水溶液には吸収されず、No.2スクラバー24でNaOH水溶液に吸収される。このシアンを吸収したNaOH水溶液は中和槽14に戻され、シアンを含有する水を硫酸水溶液で中和し、接触酸化槽15、No.1沈殿槽16、滅菌槽17およびNo.2沈殿槽18で生物処理される。生物処理後の水は、シアン濃度が0.1mg/l以下となる。この生物処理後の水は排水基準に適合し、放流可能な水である。さらに系内循環使用するため、塩濃度およびCODを下げる必要があるので、CODを低減するため、砂濾過器19、活性炭塔20を通し、COD濃度を5mg/l以下とし、逆浸透膜22を通して、塩濃度を電気伝導率が1ms/cm以下となるレベルまで低下させる。以上のように、凝縮水を循環水として使用するためには水処理工程は複雑になる。
【0015】
ここで、この凝縮水を、前記図1に示す通り、循環ピット9等に一旦貯めておき、前記排ガス冷却装置4の冷却水として使用すると、凝縮水中のアンモニア分は濃縮されるが、凝縮水のアンモニア濃度は約2000mg/lの一定濃度となる。この理由は明確ではないが、次の(1)〜(4)のメカニズムで凝縮水のアンモニア濃度が約2000mg/lの一定濃度になるものと推定される。
【0016】
(1)アンモニアはガス化溶融炉内に投入された廃棄物中の窒素分がガス化溶融炉での燃焼中に発生する。このアンモニア分が凝縮器で凝縮され、水分の凝縮中に凝縮中に溶け込む。
【0017】
(2)この凝縮水をガス冷却設備に吹込むと、ガス冷却設備で凝縮水は蒸発し、水蒸気とアンモニアガスが主成分のガスになる。ガス化溶融炉で発生したアンモニアガスと吹込んだ凝縮水から発生したアンモニアガスが凝縮器で凝縮水に溶け込み、一部のアンモニアガスは溶け込まずに生成ガス中に残存する。
【0018】
(3)凝縮前の生成ガス中のアンモニア分が増加すると凝縮水中のアンモニア濃度も増加するが、水分凝縮後の生成ガス中に残るアンモニア分も一定の分配で増加する。
【0019】
(4)廃棄物から定常的に発生するアンモニア量と、凝縮後の生成ガス中に分配され増加するアンモニア量とが等しくなったところで、凝縮水中のアンモニア濃度が一定の値になる。
【0020】
また、水分凝縮器で水分調整されたガスをボイラ燃焼したときの排ガス中の窒素酸化物濃度は、試験中に上昇傾向を示したが目標濃度である100ppm以下の約50ppmで一定値となり、それ以上濃度が上昇しない。この理由は明確ではないが、次のようなメカニズムで排ガス中の窒素酸化物濃度が約50ppmの一定値になるものと推定される。
【0021】
すなわち、生成ガス中に残存したアンモニア(NH3)は、ほぼ前記の通り一定の値になり、生成ガスの燃焼工程で下記に示す▲1▼および▲2▼の反応式により分解されると推定される。
【0022】
2NH3+7/202→2NO2+3H2O ――――― ▲1▼
4NH3+3NO2→7/2N2+6H2O ――――― ▲2▼
▲1▼の酸化反応では窒素酸化物が増加するが、▲2▼の分解反応により一部のNH3は一定の割合で窒素に分解されるので、窒素酸化物は低いレベルで一定値になるものと推定される。
【0023】
【実施例】
廃棄物処理試験設備(廃棄物処理量:20質量t/d規模、設備構成:前記図1と同じ)にて試験を行った。その試験方法および試験結果を以下に示す。
【0024】
(比較例)
廃棄物を約10質量%の水分まで事前乾燥後にガス化溶融炉に20質量t/dの割合で投入し、平均420L/Hrで排ガス冷却装置4に工業用水を吹込み、排ガスを約1000℃から約150℃に冷却した。また、凝縮器の出側ガス中の水分を30重量%に維持したため平均420L/Hrの凝縮水が発生した。6.5時間後のボイラ燃焼後の排ガス中の窒素酸化物濃度は17.3ppmと低い値であったが、平均420L/Hrの凝縮水が発生し、この凝縮水にはアンモニアが約760ppm含有されており、アンモニア濃度を所定値以下に低減するための水処理が必要であった。
【0025】
(本発明例1)
廃棄物を約10質量%の水分まで事前乾燥後にガス化溶融炉に20質量t/dの割合で投入し、排ガス冷却装置4に平均420L/Hrの流量で凝縮水を吹込み、排ガスを約1000℃から約150℃に冷却した。なお、上記の凝縮水の流量は、凝縮器の出側ガス中の水分濃度を30重量%に維持した結果、平均420L/Hrとなり、排ガス冷却装置4における必要冷却水の流量と一致した。
【0026】
凝縮水を平均420L/Hrでガス冷却装置に吹込み、排ガスを約1000℃から約150℃に冷却する上記操作を実施した結果、ボイラ燃焼後の排ガス中の窒素酸化物濃度は6.5時間後に53ppmまで上昇したが、これ以降は上昇せず、排ガスの脱硝処理が不要な濃度であった。また、凝縮水の発生量とガス冷却装置における使用量とがバランスしていたため、凝縮水の余剰水が無いため水処理が不要であった。さらに、凝縮水中のCOD、浮遊物濃度(SS)、カリウム、カルシウム、マグネシウム濃度等は、工業用水の吹込み時と同等であり、凝縮水の使用の影響はほとんどなかった。一方、排ガス中の硫黄酸化物濃度および二酸化炭素濃度は、ガス冷却装置における工業用水使用時と同等であり、凝縮水の使用の影響はほとんどなかった。
【0027】
(本発明例2)
廃棄物を約20質量%の水分まで事前乾燥後にガス化溶融炉に20質量t/dの割合で投入し、平均480L/Hrで排ガス冷却装置に凝縮水を吹込み、排ガスを約1000℃から約150℃に冷却した試験を行った結果、凝縮水の余剰水が平均60L/Hr発生した。この余剰水量は、比較例に示す発生量の9分の1であった。また、余剰水中のアンモニア濃度は約2000ppmであり、比較例の濃度の約3倍となった。しかし、水処理設備規模は、9分の1に軽減できた。一方、ボイラ燃焼後の排ガス中の窒素酸化物濃度は6.5時間後に49ppmまで上昇したが、これ以降は上昇せず、排ガスの脱硝処理が不要な濃度であった。
【0028】
【発明の効果】
本発明により、水分凝縮器から排出される凝縮水を再利用することが可能となり、水処理設備費およびランニングコストが低減できる。
【図面の簡単な説明】
【図1】本発明の廃棄物処理方法の一例を示す工程図である。
【図2】凝縮水を処理する方法の一例を示す工程図である。
【符号の説明】
1:ガス化溶融炉、
2:炉下部、
3:ガス排出口、
4:排ガス冷却装置、
5:バグフィルタ、
6:脱硫装置、
7:凝縮器、
8:ボイラ、
9:循環ピット、
10:排ガス清浄装置、
11:貯水槽、
12:pH調整槽、
13:ストリッピング槽、
14:中和槽、
15:接触酸化槽、
16:No.1沈殿槽、
17:滅菌槽、
18:No.2沈殿槽、
19:砂濾過器、
20:活性炭塔、
21:調整槽、
22:逆浸透膜、
23:No.1スクラバー、
24:No.2スクラバー、
25:煙突。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste treatment method, and more particularly to a method for reducing the amount of condensed water discharged from a moisture condenser from the system.
[0002]
[Prior art]
When waste is burned at a high temperature in a gasification melting furnace and the exhaust gas temperature is set to 800 to 1400 ° C., dioxins in the exhaust gas are decomposed, and further, the exhaust gas is rapidly cooled to 200 ° C. or less by an exhaust gas cooling device to re-synthesize dioxins. Can be prevented. 200 ° C. The flue gas is quenched to below, are contained harmful gases such as solids or SO 2 of dusts, to remove solids such as dust by a bag filter or the like, harmful gas 2 such as SO Needs to be removed by desulfurization equipment. Further, the steam-saturated exhaust gas from which solid substances such as dust and harmful gases such as SO 2 are removed is subjected to moisture removal by an indirect cooling type moisture condenser and supplied to a boiler or the like as a high calorie fuel gas.
[0003]
[Problems to be solved by the invention]
However, the condensed water discharged from the moisture condenser has a high ammonia concentration and cannot be discharged out of the system as it is for environmental conservation. For this reason, the water treatment equipment for draining condensed water out of a system is required, and there exists a problem that a water treatment equipment cost and a running cost rise.
[0004]
An object of the present invention is to provide a method for reducing the amount of condensed water outside the system.
[0005]
[Means for Solving the Problems]
As a result of examining the water balance of the waste treatment facility, the present inventors have obtained the following knowledge.
[0006]
(A) The water supplied to the waste treatment facility having the gasification melting furnace, the exhaust gas cooling device, the exhaust gas cleaning device, and the moisture condenser is the water contained in the waste and the water spray supplied to the exhaust gas cooling device. Water. On the other hand, the water | moisture content discharged | emitted out of the system is the water | moisture content in the exhaust gas from which the condensed water discharged | emitted from the water | moisture content condenser and water | moisture content were removed. Therefore, the water content in the exhaust gas from which water has been removed is balanced with the amount of water contained in the waste, and the condensed water discharged from the water condenser is reused as water for sprinkling supplied to the exhaust gas cooling device. If possible, there will be no extra drainage and no water treatment facility will be required. On the other hand, even if a situation occurs in which the amount of moisture contained in the waste is large and cannot be balanced with the amount of moisture in the exhaust gas from which moisture has been removed, only the excess condensed water needs to be treated. Thus, if only the excessive condensed water is water-treated, the load of the water treatment facility can be reduced. As a result, water treatment facility costs and running costs can be greatly reduced as compared with the conventional case.
[0007]
(B) In order to confirm the above idea, a test was conducted in a waste treatment test facility (waste treatment amount: 20 mass t / d scale). The test results are shown below.
(A) When condensed water is used as water for exhaust gas cooling, there is a concern about the concentration of salts and the like in the condensed water, but since the salts are removed by the exhaust gas purifier after cooling the exhaust gas, they are not concentrated in the condensed water. On the other hand, the ammonia content in the condensed water is concentrated, but the ammonia concentration in the condensed water is a constant concentration of about 2000 mg / l.
[0008]
(B) There was a concern that the concentration of nitrogen oxides in the exhaust gas when the gas whose moisture was adjusted by the moisture condenser was boiler-combusted was increased due to an increase in the ammonia content. However, the nitrogen oxide concentration in the exhaust gas showed an increasing tendency during the test, but it became a constant value at about 50 ppm, which is the target concentration of 100 ppm or less, and the concentration did not increase any more.
[0009]
The present invention has been made on the basis of the above knowledge, and the gist thereof is “a gasification melting furnace for gasifying and melting waste, and an exhaust gas cooling device for rapidly cooling the exhaust gas discharged from the gasification melting furnace,” , An exhaust gas cleaning device that removes dust and harmful gas in the exhaust gas rapidly cooled by the exhaust gas cooling device, and a moisture condenser that removes moisture in the exhaust gas from which dust and harmful gas have been removed by the exhaust gas cleaning device A waste treatment method using a waste treatment facility, wherein condensed water generated from the moisture condenser is used as cooling water for the exhaust gas cooling device, and partially condensed water in which ammonia content is concentrated is water treatment facility it is in the process method of processing waste which is characterized in that ".
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a process diagram showing an example of the waste treatment method of the present invention.
As shown in the figure, the waste is put into the gasification melting furnace 1 and incinerated in a high temperature environment. In addition, although not shown, the water content of waste to be input is also adjusted in advance by a drying device, a dehydrating device, or the like. Waste generated in the gasification melting furnace generates a gas by a thermal decomposition reaction, and the thermal decomposition residue becomes a molten state in a high temperature environment and is separated from the molten slag and the molten metal with specific gravity and discharged from the lower part 2 of the furnace. The produced gas is discharged from the gas discharge port 3 to the exhaust gas cooling device 4 in the next process as exhaust gas. The temperature of the exhaust gas before being discharged to the exhaust gas cooling device 4 is adjusted in the gasification melting furnace 1 so as to be a dioxin decomposition temperature of 800 to 1400 ° C. The exhaust gas is rapidly cooled by the sprinkling cooling type exhaust gas cooling device 4 and adjusted to a temperature of 200 ° C. or lower. The reason for adjusting to 200 ° C. or lower is to prevent resynthesis of dioxins.
[0011]
The sprinkling cooling type exhaust gas cooling device 4 used in the present invention is desirably used so as to control the amount of sprinkling so that drainage is not generated. The exhaust gas cooled to a predetermined temperature is dedusted by the bag filter 5 by adding slaked lime or the like to the exhaust gas. By adding slaked lime or the like in this way, salt, sulfur oxides, and the like are removed together with dust. Next, salt, sulfur oxide, etc. that could not be removed by the bag filter 5 are removed and further removed by the desulfurization device 6. In addition, the apparatus comprised from the bag filter 5, the desulfurization apparatus 6, etc. is named generically, and is also called the exhaust gas purification apparatus 10 below. The exhaust gas from which dust, sulfur oxides, and the like have been removed by the exhaust gas cleaning device 10 in this way, moisture in the exhaust gas is removed as condensed water by the moisture condenser 7. The exhaust gas from which moisture has been removed by the moisture condenser 7 is sent to an energy conversion device such as a boiler 8 and used as fuel gas.
[0012]
The ammonia concentration in the condensed water is as high as about 600 mg / l and cannot be drained out of the system as it is for environmental conservation. For this reason, the water treatment equipment for draining condensed water out of a system is required, and there exists a problem that a water treatment equipment cost and a running cost rise.
[0013]
In the present invention, this condensed water is temporarily stored in the circulation pit 9 or the like and used as cooling water for the exhaust gas cooling device 4. Thereby, the scale of the water treatment facility which processes condensed water can be made small. In general, many steps are required to treat the condensed water, and it is effective from the viewpoint of reducing waste treatment costs that the scale of the water treatment facility can be reduced. The main components to be treated among the components of condensed water are ammonia and cyan.
[0014]
FIG. 2 is a process diagram showing an example of a method for treating condensed water.
As shown in the figure, the condensed water is once received in the water storage tank 11 and the pH is adjusted to alkaline in the pH adjustment tank 12 with an aqueous NaOH solution. Heating is performed with steam in the stripping tank 13, deammonia (stripping) is performed with air, and the ammonia concentration is reduced to 12.1 mg / l. The ammonia gas generated here is collected as ammonium sulfate in a sulfuric acid aqueous solution by No. 1 scrubber 23. In this process, cyan in the condensed water is also removed from the condensed water, but it is not absorbed by the sulfuric acid aqueous solution of No. 1 scrubber 23 but is absorbed by the aqueous NaOH solution by No. 2 scrubber 24. The aqueous NaOH solution that has absorbed cyan is returned to the neutralization tank 14, and water containing cyanide is neutralized with an aqueous sulfuric acid solution, and the contact oxidation tank 15, No. 1 precipitation tank 16, sterilization tank 17 and No. 2 precipitation tank. 18 is bioprocessed. Water after biological treatment has a cyan concentration of 0.1 mg / l or less. The water after this biological treatment meets the drainage standards and can be discharged. Further, since it is necessary to reduce the salt concentration and COD for circulation in the system, in order to reduce COD, the sand filter 19 and the activated carbon tower 20 are passed through, the COD concentration is set to 5 mg / l or less, and the reverse osmosis membrane 22 is passed The salt concentration is lowered to a level at which the electric conductivity is 1 ms / cm or less. As described above, in order to use condensed water as circulating water, the water treatment process becomes complicated.
[0015]
Here, as shown in FIG. 1, when this condensed water is once stored in the circulation pit 9 and used as the cooling water of the exhaust gas cooling device 4, the ammonia content in the condensed water is concentrated. The ammonia concentration of the water becomes a constant concentration of about 2000 mg / l. The reason for this is not clear, but it is presumed that the ammonia concentration of the condensed water becomes a constant concentration of about 2000 mg / l by the following mechanisms (1) to (4).
[0016]
(1) Ammonia is generated during combustion in the gasification and melting furnace, with the nitrogen content in the waste put into the gasification and melting furnace. This ammonia content is condensed in the condenser and dissolves during the condensation of moisture.
[0017]
(2) When this condensed water is blown into the gas cooling facility, the condensed water evaporates in the gas cooling facility, and water vapor and ammonia gas become main components. Ammonia gas generated from the ammonia gas generated in the gasification melting furnace and the condensed water blown in is dissolved in the condensed water by the condenser, and a part of the ammonia gas remains in the product gas without being dissolved.
[0018]
(3) When the ammonia content in the product gas before condensation increases, the ammonia concentration in the condensed water also increases, but the ammonia content remaining in the product gas after moisture condensation also increases in a constant distribution.
[0019]
(4) The ammonia concentration in the condensed water becomes a constant value when the amount of ammonia that is constantly generated from the waste is equal to the amount of ammonia that is distributed and increased in the product gas after condensation.
[0020]
In addition, the nitrogen oxide concentration in the exhaust gas when the gas whose moisture was adjusted by the moisture condenser was boiler-combusted showed an upward trend during the test, but became a constant value at about 50 ppm, which is the target concentration of 100 ppm or less. The concentration does not increase. The reason for this is not clear, but it is estimated that the nitrogen oxide concentration in the exhaust gas becomes a constant value of about 50 ppm by the following mechanism.
[0021]
That is, the ammonia (NH 3 ) remaining in the product gas has a constant value as described above, and is estimated to be decomposed by the reaction formulas ( 1 ) and ( 2 ) shown below in the combustion process of the product gas. Is done.
[0022]
2NH 3 +7/20 2 → 2NO 2 + 3H 2 O ――――― ▲ 1 ▼
4NH 3 + 3NO 2 → 7 / 2N 2 + 6H 2 O ――――― ▲ 2 ▼
Nitrogen oxides increase in the oxidation reaction of (1), but some NH 3 is decomposed into nitrogen at a constant rate by the decomposition reaction of (2), so that the nitrogen oxide becomes a constant value at a low level. Estimated.
[0023]
【Example】
The test was conducted in a waste treatment test facility (waste treatment amount: 20 mass t / d scale, equipment configuration: the same as in FIG. 1). The test method and test results are shown below.
[0024]
(Comparative example)
Waste is pre-dried to about 10% by mass moisture and then charged into the gasification melting furnace at a rate of 20 mass t / d. Industrial water is blown into the exhaust gas cooling device 4 at an average of 420 L / Hr, and the exhaust gas is about 1000 ° C. To about 150 ° C. Moreover, since the moisture in the outlet gas of the condenser was maintained at 30% by weight, an average of 420 L / Hr of condensed water was generated. The nitrogen oxide concentration in the exhaust gas after boiler combustion after 6.5 hours was as low as 17.3 ppm, but an average of 420 L / Hr of condensed water was generated, and this condensed water contained about 760 ppm of ammonia. In addition, water treatment was required to reduce the ammonia concentration below a predetermined value.
[0025]
(Invention Example 1)
The waste is pre-dried to a moisture content of about 10% by mass and charged into the gasification melting furnace at a rate of 20 mass t / d. Condensed water is blown into the exhaust gas cooling device 4 at an average flow rate of 420 L / Hr to reduce the exhaust gas Cooled from 1000 ° C to about 150 ° C. The condensed water flow rate was 420 L / Hr on average as a result of maintaining the water concentration in the outlet gas of the condenser at 30% by weight, which was consistent with the required cooling water flow rate in the exhaust gas cooling device 4.
[0026]
As a result of injecting condensed water into the gas cooling device at an average of 420 L / Hr and cooling the exhaust gas from about 1000 ° C to about 150 ° C, the nitrogen oxide concentration in the exhaust gas after boiler combustion was 53 ppm after 6.5 hours However, it did not increase after that, and the concentration was unnecessary for the denitration treatment of the exhaust gas. Moreover, since the amount of condensed water generated and the amount used in the gas cooling device were balanced, there was no surplus water of condensed water, so water treatment was unnecessary. In addition, the COD, suspended solids concentration (SS), potassium, calcium, magnesium concentration, etc. in the condensed water were the same as when industrial water was blown, and there was almost no influence of the use of condensed water. On the other hand, the sulfur oxide concentration and carbon dioxide concentration in the exhaust gas were the same as when industrial water was used in the gas cooling apparatus, and there was almost no influence of the use of condensed water.
[0027]
(Invention Example 2)
The waste is pre-dried to about 20% by mass of moisture and then charged into the gasification melting furnace at a rate of 20 mass t / d. As a result of a test cooled to about 150 ° C., 60 L / Hr of surplus water was generated on average. This excess water amount was 1/9 of the generation amount shown in the comparative example. Further, the ammonia concentration in the surplus water was about 2000 ppm, which was about 3 times the concentration of the comparative example. However, the scale of the water treatment facility was reduced to 1/9. On the other hand, the concentration of nitrogen oxides in the exhaust gas after boiler combustion increased to 49 ppm after 6.5 hours, but it did not increase after that, and was a concentration that did not require denitration treatment of the exhaust gas.
[0028]
【The invention's effect】
By this invention, it becomes possible to reuse the condensed water discharged | emitted from a water | moisture content condenser, and can reduce water treatment equipment cost and running cost.
[Brief description of the drawings]
FIG. 1 is a process diagram showing an example of a waste treatment method of the present invention.
FIG. 2 is a process diagram showing an example of a method for treating condensed water.
[Explanation of symbols]
1: gasification melting furnace,
2: Lower part of furnace,
3: Gas outlet
4: Exhaust gas cooling device,
5: Bug filter,
6: Desulfurization equipment,
7: Condenser,
8: Boiler,
9: Circulation pit,
10: Exhaust gas cleaning device,
11: Water tank
12: pH adjustment tank,
13: stripping tank,
14: Neutralization tank,
15: Contact oxidation tank,
16: No. 1 sedimentation tank,
17: Sterilization tank,
18: No. 2 sedimentation tank,
19: sand filter,
20: Activated carbon tower,
21: adjustment tank,
22: Reverse osmosis membrane,
23: No.1 scrubber
24: No.2 scrubber
25: Chimney.

Claims (1)

廃棄物をガス化溶融するガス化溶融炉と、該ガス化溶融炉で排出した排ガスを急冷処理する排ガス冷却装置と、該排ガス冷却装置で急冷処理された排ガス中のダストおよび有害ガスを除去する排ガス清浄装置と、該排ガス清浄装置でダストおよび有害ガスを除去した排ガス中の水分を除去する水分凝縮器とを有する廃棄物処理設備を使用する廃棄物の処理方法であって、前記水分凝縮器から発生する凝縮水を前記排ガス冷却装置の冷却水として使用し、アンモニア分が濃縮した一部凝縮水を水処理設備で処理することを特徴とする廃棄物の処理方法。A gasification melting furnace for gasifying and melting waste, an exhaust gas cooling device for rapidly cooling the exhaust gas discharged from the gasification melting furnace, and removing dust and harmful gas in the exhaust gas rapidly cooled by the exhaust gas cooling device A waste treatment method using a waste treatment facility having an exhaust gas cleaning device and a moisture condenser for removing moisture in the exhaust gas from which dust and harmful gases have been removed by the exhaust gas cleaning device, the moisture condenser The waste water treatment method is characterized in that the condensed water generated from the exhaust gas is used as cooling water for the exhaust gas cooling device, and the partially condensed water enriched with ammonia is treated with a water treatment facility .
JP2001074227A 2001-03-15 2001-03-15 Waste disposal method Expired - Fee Related JP3826714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001074227A JP3826714B2 (en) 2001-03-15 2001-03-15 Waste disposal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001074227A JP3826714B2 (en) 2001-03-15 2001-03-15 Waste disposal method

Publications (2)

Publication Number Publication Date
JP2002276923A JP2002276923A (en) 2002-09-25
JP3826714B2 true JP3826714B2 (en) 2006-09-27

Family

ID=18931533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001074227A Expired - Fee Related JP3826714B2 (en) 2001-03-15 2001-03-15 Waste disposal method

Country Status (1)

Country Link
JP (1) JP3826714B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101496037B1 (en) * 2013-10-04 2015-02-26 이동훈 Method and apparatus for waste heat recovery and abatement of white plume of exhaust gas
CN107062253A (en) * 2017-04-01 2017-08-18 绥宁现代科技开发应用有限公司 Consumer waste incineration device

Also Published As

Publication number Publication date
JP2002276923A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
KR101243605B1 (en) Waste to energy by way of hydrothermal decomposition and resource recycling
CA2070853C (en) Method and apparatus for minimizing environmental release of toxic compounds in the incineration of wastes
US4213945A (en) Process and apparatus to purify waste industrial gases
CN112808746B (en) Resource treatment method for incineration slag and fly ash
KR100287634B1 (en) Flue Gas Treatment Facility
JP3506406B2 (en) Flue gas purification method
US7381389B2 (en) Wet gas purification method and system for practicing the same
PL180560B1 (en) Method of and apparatus for theramally treating waste materials
JP4227676B2 (en) Gas purification equipment
CN111006226A (en) Incineration treatment system and incineration treatment method for chlorine-containing waste gas and waste liquid
JP4475697B2 (en) Gas purification method
JPH1060449A (en) Purification of coke oven gas
CN1206735A (en) Fine preparation method for gas
JP2003003177A (en) Method for treating nitrogen component in waste in gasification reforming process
JP2001179047A (en) Wastewater treatment facility
JP3826714B2 (en) Waste disposal method
JPH10132241A (en) Method for disposing of waste liquid or exhaust gas
KR102131679B1 (en) Waste fluid treatment apparatus containing salt and method for treating same
JP2007038164A (en) Exhaust gas treating system
KR0132718B1 (en) Process for purifying a current of smoke gas
JP3664941B2 (en) Exhaust gas treatment method and system for ash melting furnace
DK1493481T3 (en) Process and plant for the purification of flue gases combining two separation units and a catalytic purification
CN214719281U (en) Resource disposal system for incineration slag and fly ash
JP7311777B2 (en) Coke oven gas treatment device and coke oven gas treatment method
JPH07187660A (en) Recovery of ammonia from flue gas residual dross

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees