JPH0761473B2 - Wastewater coagulation treatment method - Google Patents

Wastewater coagulation treatment method

Info

Publication number
JPH0761473B2
JPH0761473B2 JP1169958A JP16995889A JPH0761473B2 JP H0761473 B2 JPH0761473 B2 JP H0761473B2 JP 1169958 A JP1169958 A JP 1169958A JP 16995889 A JP16995889 A JP 16995889A JP H0761473 B2 JPH0761473 B2 JP H0761473B2
Authority
JP
Japan
Prior art keywords
boron
wastewater
treatment
aluminum
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1169958A
Other languages
Japanese (ja)
Other versions
JPH0338294A (en
Inventor
和茂 川村
英司 粟井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP1169958A priority Critical patent/JPH0761473B2/en
Publication of JPH0338294A publication Critical patent/JPH0338294A/en
Publication of JPH0761473B2 publication Critical patent/JPH0761473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排水中ホウ素の凝集処理方法に関する。TECHNICAL FIELD The present invention relates to a method for coagulating boron in wastewater.

〔従来の技術〕[Conventional technology]

ホウ素は石炭火力発電所やセラミックス製造工場等の排
水などに含まれ、そのような排水中ホウ素は植物などに
対して悪影響がある。近年、石炭火力発電所の増設など
に伴い、ホウ素の環境への放出が問題視され、一部の自
治体ではホウ素の排水中濃度規制がなされている。その
規制値はかなり厳しいものである。そして、この規制は
今後さらに厳しくなり、また広範囲になる可能性があ
る。
Boron is contained in wastewater of coal-fired power plants, ceramics manufacturing plants, etc., and boron in such wastewater has an adverse effect on plants and the like. In recent years, with the expansion of coal-fired power plants, the release of boron into the environment has become a problem, and some local governments have regulated the concentration of boron in wastewater. The regulation value is quite strict. And this regulation may become stricter and wider in the future.

これに対応する処理技術としては凝集処理法とキレート
/イオン交換樹脂法とがある。
As a treatment technique corresponding to this, there are an aggregating treatment method and a chelate / ion exchange resin method.

〔解決すべき課題〕〔Problems to be solved〕

このうちキレート/イオン交換樹脂法は、ホウ素が排水
中で必ずしも単純なイオンとして存在せず、錯化合物を
形成したり会合状態にあったりするため、十分な性能を
連続的に発揮することがむずかしい場合がある。また、
キレート/イオン交換樹脂法は単に水中のイオンを吸着
濃縮するにすぎないため、本質的に再生廃液の処理が不
可欠であり、結局、最終的には例えば、固形物として安
定化する必要がある。さらにCa含有排水ではキレート/
イオン交換樹脂床に通す前に予め被処理水を軟水化する
必要もあり、上記再生廃液処理の必要性とあわせて、建
設費および運転費がかさむという問題がある。以上のよ
うに、キレート/イオン交換樹脂法は、採用にあたって
多くの制約を受ける。
Of these, the chelate / ion exchange resin method does not always present boron as simple ions in the waste water, and forms a complex compound or is in an associated state, so it is difficult to continuously exhibit sufficient performance. There are cases. Also,
Since the chelate / ion exchange resin method merely adsorbs and concentrates ions in water, it is essential to treat the regenerated waste liquid, and eventually, for example, it is necessary to stabilize the solid waste. Furthermore, in Ca-containing wastewater, chelate /
It is necessary to soften the water to be treated in advance before passing it through the ion exchange resin bed, and there is a problem that the construction cost and the operating cost are increased together with the necessity of the treatment of the waste liquid for regeneration. As described above, the chelate / ion exchange resin method is subject to many restrictions in its adoption.

一方、凝集処理法は、キレート/イオン交換樹脂法に比
べて、排水中ホウ素の存在形態による影響は少なく、か
つ再生廃液処理が不要であるといった特長がある。この
ため、建設費が安価であり、また採用について多くの制
約を受けず、排水中ホウ素の処理方法としてはかなり有
力な方法といえる。凝集処理法の経済性は薬品費、スラ
ッジ処理費、運転管理費などに大きく依存し、これらは
用いる薬品の種類、採用する工程、運転条件などによっ
て異なるが、特に発生スラッジ量を低下すること、過大
な用役費を低減することが強く求められている。
On the other hand, the coagulation treatment method is characterized in that it is less affected by the existing form of boron in the waste water and does not require the treatment of the recycling waste liquid as compared with the chelate / ion exchange resin method. Therefore, the construction cost is low, and there are not many restrictions on the adoption, and it can be said that it is a very effective method for treating boron in wastewater. The economic efficiency of the coagulation treatment method largely depends on chemical costs, sludge treatment costs, operation management costs, etc., which vary depending on the type of chemicals used, the process to be adopted, the operating conditions, etc. There is a strong demand to reduce excessive utility costs.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、凝集処理法により排水中ホウ素を除去する場
合において、ホウ素を含有する排水を以下の工程a)〜
d)に従って順次処理し、処理後の排水中のホウ素濃度
を1ppm未満とすることにより、上記課題を解決せんとす
るものである: a)排水にアルミニウム化合物のうちの少なくとも一方
並びに後記工程d)で生ずる固形物スラリーを添加する
と同時に酸を添加し、pH3.5以下に調整した後、水酸化
カルシウムを添加し、pH7〜11にて凝集処理する工程; b)上記工程a)の処理液の固液分離を行う工程; c)上記工程b)からの液体区分にアルミニウム化合物
を添加後、水酸化カルシウムを添加し、pH9〜12かつ工
程a)より高いpHにて凝集処理する工程; d)上記工程c)の処理液の固液分離を行う工程。
In the present invention, in the case of removing boron in wastewater by the coagulation method, the wastewater containing boron is subjected to the following steps a) to
The above problems are solved by sequentially treating the wastewater according to d) and adjusting the boron concentration in the wastewater after the treatment to less than 1 ppm: a) At least one of aluminum compounds in the wastewater and the step d) described later. The step of adding an acid at the same time as adding the solid slurry generated in step 3), adjusting the pH to 3.5 or less, and then adding calcium hydroxide, and aggregating at pH 7 to 11; Solid-liquid separation step; c) adding aluminum compound to the liquid fraction from step b) above, then adding calcium hydroxide, and performing coagulation treatment at pH 9-12 and a higher pH than step a); d) A step of performing solid-liquid separation of the treatment liquid of the above step c).

〔作用〕[Action]

一般に、凝集剤としては、鉄化合物あるいはアルミニウ
ム化合物が使用されるが、アルミニウム化合物の方がホ
ウ素の除去効果が高く、このため本発明では、アルミニ
ウム化合物を使用する。アルミニウム化合物としては、
水に溶解してアルミニウムイオンを放出するものであれ
ば一般に使用することができるが、代表的なものとして
は硫酸アルミニウムおよび塩化アルミニウムがある。こ
れらのアルミニウム化合物は単独で添加してもよく、複
数の化合物を組合わせて添加してもよい。
Generally, an iron compound or an aluminum compound is used as the aggregating agent, but the aluminum compound has a higher effect of removing boron. Therefore, in the present invention, the aluminum compound is used. As an aluminum compound,
It can be generally used as long as it dissolves in water to release aluminum ions, and typical examples thereof include aluminum sulfate and aluminum chloride. These aluminum compounds may be added alone or in combination of a plurality of compounds.

ホウ素の除去性能を向上させるには除去段数を増加させ
る。ただし、4段以上では除去性能の向上度合が小さく
なり、また、装置コスト、敷地面積や運転性から2段が
適することがわかった。
The number of removal stages is increased to improve the removal performance of boron. However, it was found that if the number of stages is 4 or more, the degree of improvement of the removal performance becomes small, and that the number of stages is 2 because of the cost of the equipment, site area, and operability.

また、ホウ素の凝集処理では、pHが高いほど、除去性能
が高いことから、大量のアルカリを消費することにな
る。したがって、アルカリ・コストの全運転費に占める
割合が高いことから安価な水酸化カルシウムを用いる。
凝集処理を行なうpHは7以上、好ましくは9以上で効果
が発現し、また、pH12以上では、除去性能はあまり向上
せず、アルカリ・コストの増大およびスラッジ量の増大
を招くことがわかった。
Further, in the coagulation treatment of boron, the higher the pH is, the higher the removal performance is, so that a large amount of alkali is consumed. Therefore, inexpensive calcium hydroxide is used because the ratio of the alkali cost to the total operating cost is high.
It was found that the effect is exhibited when the pH at which the flocculation treatment is carried out is 7 or more, preferably 9 or more, and when the pH is 12 or more, the removal performance is not improved so much and the alkali cost and the sludge amount are increased.

また、凝集処理工程の固液分離から発生する固形物スラ
リー中にはアルミニウムが含有しており、アルミニウム
/ホウ素比率が大きいスラッジはより高濃度ホウ素を含
有する液を処理する場合にはスラッジ中のアルミニウム
が再利用できることがわかった。
Further, aluminum is contained in the solid slurry generated from the solid-liquid separation in the coagulation treatment step, and sludge having a large aluminum / boron ratio is contained in the sludge in the case of treating a liquid containing a higher concentration of boron. It turns out that aluminum can be reused.

また、凝集処理後に固液分離したスラッジ中にはかなり
の量の凝集剤(アルミニウム化合物)が存在し、こうし
たアルミニウム化合物は主として水酸化アルミニウムの
形で存在するため、被処理液が酸性の場合には凝集剤と
してのみならず中和剤としても利用することができる。
In addition, there is a considerable amount of coagulant (aluminum compound) in the sludge that is solid-liquid separated after the coagulation treatment, and since such aluminum compound exists mainly in the form of aluminum hydroxide, when the liquid to be treated is acidic, Can be used not only as a flocculating agent but also as a neutralizing agent.

以上の点に鑑み、本発明においては、凝集処理を二段階
に分け、第一段目で比較的低いpHで凝集処理を行って大
部分のホウ素を除去し、固液分離液の第二段目でより高
いpHで凝集処理を行ってホウ素の残留濃度をさらに低下
させるという構成をとる。そして、第二段目のスラッジ
を第一段目に返送し、凝集剤およびアルカリ剤として再
利用する。第一段目の凝集処理工程はスラッジ発生量を
抑えるためにできるだけ低いpHで行うことが好ましく、
pH11を越える高pHは採用すべきでない。このようにして
凝集剤およびアルカリ剤の利用効率を高め、装置全体と
しての経済性の向上を計ったものである。
In view of the above points, in the present invention, the coagulation treatment is divided into two stages, the first stage performs the coagulation treatment at a relatively low pH to remove most of the boron, and the second stage of the solid-liquid separation liquid. It is configured such that the residual concentration of boron is further reduced by performing agglutination treatment at a higher pH by eye. Then, the second stage sludge is returned to the first stage and reused as a flocculant and an alkaline agent. It is preferable to carry out the first stage coagulation treatment step at a pH as low as possible in order to suppress the amount of sludge generated,
High pH above pH 11 should not be adopted. In this way, the utilization efficiency of the coagulant and the alkaline agent is increased, and the economical efficiency of the entire apparatus is improved.

なお、第二段目の凝集処理工程では高pHにするために多
量のアルカリを必要とすることから、特に低価格の水酸
化カルシウムを用いることが好ましい。水酸化カルシウ
ムは固体であるため、高pH領域では溶解速度が極端に遅
くなり、多量の未反応固体を発生することになるが、前
述したようにこの未反応物を含む固形物スラリーを第一
工程に返送することにより、この問題を解決することが
できる。
In addition, since a large amount of alkali is required in order to obtain a high pH in the second stage coagulation treatment step, it is particularly preferable to use low-priced calcium hydroxide. Since calcium hydroxide is a solid, the dissolution rate becomes extremely slow in the high pH range, and a large amount of unreacted solid is generated. Returning to the process can solve this problem.

凝集処理工程においては、アルミニウム化合物とアルカ
リ剤とを同時に添加するのではなく、一旦アルミニウム
化合物を排水に添加して溶解した後にアルカリを添加す
る方が、ホウ素除去率が高くて効果的である。この理由
は明らかではないが、おそらくアルミニウムイオンとホ
ウ素とが何らかの作用をおよぼしあい、水酸化アルミニ
ウムが沈殿する際にホウ素が取込まれるのであろうと思
われる。なお、凝集を促進させるため、高分子凝集剤及
び助剤を添加することができる。
In the coagulation treatment step, it is effective to add the alkali compound after the aluminum compound is once added to the waste water and dissolved, instead of simultaneously adding the aluminum compound and the alkaline agent, because the boron removal rate is high. The reason for this is not clear, but it is presumed that aluminum ions and boron have some effect and boron is incorporated when aluminum hydroxide precipitates. A polymer coagulant and an auxiliary agent can be added to promote coagulation.

固液分離には、液体サイクロン、フィルタープレス、沈
殿分離などの通常用いられている方法が使用できる。
For solid-liquid separation, commonly used methods such as liquid cyclone, filter press and precipitation separation can be used.

なお、被処理排水が排煙脱硫排水のように強酸性の場合
には、第一段目の凝集処理工程においてアルミニウム化
合物および工程d)からの返送スラッジを添加すれば溶
解してアルミニウムイオンを放出するが、被処理排水が
弱酸性ないしアルカリ性の場合には、酸を添加してpH3.
5以下になるように調整する必要がある。
When the wastewater to be treated is strongly acidic like flue gas desulfurization wastewater, it is dissolved by adding the aluminum compound and the returned sludge from step d) in the first stage coagulation treatment step to release aluminum ions. However, if the wastewater to be treated is weakly acidic or alkaline, add acid to adjust the pH to 3.
It is necessary to adjust it so that it is 5 or less.

〔実施例〕〔Example〕

実施例1 石炭燃焼排ガス向けの同時吸収酸化方式湿式排煙脱硫装
置から排出される排水を、第1図に示すフローにて1リ
ットル/時の流量で処理した。被処理排水中および処理
水中のホウ素、フッ素およびカドミウムの濃度は以下の
とおりであった。
Example 1 The waste water discharged from the simultaneous absorption oxidation type wet flue gas desulfurization apparatus for coal combustion exhaust gas was treated at a flow rate of 1 liter / hour according to the flow shown in FIG. The concentrations of boron, fluorine and cadmium in the wastewater to be treated and in the treated water were as follows.

実施例2(比較例) 凝集剤として硫酸アルミニウムに換えて塩化鉄を用いた
ことを除き、実施例1と同様の処理を行った。処理水中
のホウ素濃度は112ppmであった。
Example 2 (Comparative Example) The same treatment as in Example 1 was performed except that iron chloride was used instead of aluminum sulfate as the coagulant. The boron concentration in the treated water was 112 ppm.

実施例3(比較例) 第二固液分離槽から溶解槽へスラリー返送を行わないこ
とを除き、実施例1と同様の処理を行った。処理水中の
ホウ素濃度は5ppmであった。
Example 3 (Comparative Example) The same treatment as in Example 1 was performed except that the slurry was not returned from the second solid-liquid separation tank to the dissolution tank. The boron concentration in the treated water was 5 ppm.

実施例4(比較例) 実施例1において第一および第二凝集処理工程で添加し
た硫酸アルミニウムの全量を一度に第一処理工程で添加
し、第二処理工程を省略して、処理を行った。処理水中
のホウ素濃度は13ppmであった。
Example 4 (Comparative Example) The treatment was carried out by adding all of the aluminum sulfate added in the first and second flocculation treatment steps in Example 1 at once in the first treatment step, omitting the second treatment step. . The boron concentration in the treated water was 13 ppm.

実施例5(比較例) 被処理水を焼却炉排水(pH6.5、B:52.0ppm、F:61.2pp
m、Cl:39,000ppm)に換え、第一凝集処理槽および第二
凝集処理槽内のpHをそれぞれ7および9にして、実施例
1と同様の処理を行った。処理水中のホウ素濃度は2.1p
pmであった。
Example 5 (Comparative Example) Treated water was treated as wastewater from an incinerator (pH 6.5, B: 52.0 ppm, F: 61.2 pp).
m, Cl: 39,000 ppm) and the pH in the first flocculation tank and the second flocculation tank was set to 7 and 9, respectively, and the same treatment as in Example 1 was performed. Boron concentration in treated water is 2.1p
It was pm.

実施例6 第一凝集処理槽および第二凝集処理槽内のpHをそれぞれ
9および10.5にして、実施例5と同様の処理を行った。
処理水中のホウ素濃度は0.9ppmであった。
Example 6 The same treatment as in Example 5 was carried out by setting the pHs in the first flocculation tank and the second flocculation tank to 9 and 10.5, respectively.
The boron concentration in the treated water was 0.9 ppm.

実施例7(比較例) 第一凝集処理槽および第二凝集処理槽内のpHをいずれも
7にして、実施例6と同様の処理を行った。処理水中の
ホウ素濃度は9.1ppmであった。
Example 7 (Comparative Example) The same treatment as in Example 6 was carried out with the pH values in both the first flocculation treatment tank and the second flocculation treatment tank being set to 7. The boron concentration in the treated water was 9.1 ppm.

〔効果〕〔effect〕

本発明によれば、排水中ホウ素の除去を効率よく実施で
きる。特に建設費、用役費およびスラッジ発生量を低減
した安定な連続処理を行うことができる。
According to the present invention, boron in wastewater can be efficiently removed. In particular, stable continuous processing with reduced construction cost, utility cost and sludge generation amount can be performed.

なお、本発明は特に排煙脱硫排水中のホウ素の除去に適
している。排煙脱硫排水中の除去しなければならない物
質のうち、COD成分となるジチオン酸は凝集処理では効
率よく除去することができない。そこで、ジチオン酸は
イオン交換樹脂などによる処理が行われている。しかし
ながら、近年、吸収工程に酸素含有ガスを導入する、い
わゆる“同時吸収酸化”方式が増加しており、この方式
では凝集処理しにくいジチオン酸の生成が少ない。本発
明によれば、排煙脱硫排水中のホウ素、フッ素、重金属
などを同時に凝集処理することが可能であり、同時吸収
酸化方式の排煙脱硫排水の処理を効率的に行うことがで
きる。
The present invention is particularly suitable for removing boron in flue gas desulfurization wastewater. Of the substances that have to be removed from the flue gas desulfurization wastewater, dithioic acid, which is a COD component, cannot be efficiently removed by coagulation treatment. Therefore, dithionic acid is treated with an ion exchange resin or the like. However, in recent years, a so-called “simultaneous absorption oxidation” method in which an oxygen-containing gas is introduced into the absorption step has been increasing, and this method produces less dithionic acid which is difficult to coagulate. According to the present invention, it is possible to coagulate boron, fluorine, heavy metals and the like in flue gas desulfurization wastewater at the same time, and the flue gas desulfurization wastewater of the simultaneous absorption and oxidation system can be efficiently treated.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の方法の一実施態様を示すフローシートで
ある。
The drawing is a flow sheet showing one embodiment of the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ホウ素を含有する排水を以下のa)〜d)
の工程に従って順次処理し、処理後の排水中のホウ素濃
度を1ppm以下とすることを特徴とする排水凝集処理方
法: a)排水にアルミニウム化合物並びに後記工程d)で生
ずる固形物スラリーを添加すると同時に酸を添加し、pH
3.5以下に調整した後、水酸化カルシウムを添加し、pH7
〜11にて凝集処理する工程; b)上記工程a)の処理液の固液分離を行う工程; c)上記工程b)からの液体区分にアルミニウム化合物
を添加後、水酸化カルシウムを添加し、pH9〜12かつ工
程a)より高いpHにて凝集処理する工程; d)上記工程c)の処理液の固液分離を行う工程。
1. A drainage containing boron is a) to d) described below.
A method for coagulating wastewater, which is characterized in that the concentration of boron in the wastewater after treatment is 1 ppm or less according to the process of: Acid added, pH
After adjusting to 3.5 or less, add calcium hydroxide to adjust the pH to 7
B) a step of solid-liquid separation of the treatment liquid of the above step a); c) adding an aluminum compound to the liquid section from the above step b), and then adding calcium hydroxide; a step of aggregating at pH 9 to 12 and a higher pH than step a); d) a step of performing solid-liquid separation of the treatment liquid of step c) above.
【請求項2】該アルミニウム化合物が硫酸アルミニウム
と塩化アルミニウムのうちの少なくとも一方である請求
項1記載の方法。
2. The method according to claim 1, wherein the aluminum compound is at least one of aluminum sulfate and aluminum chloride.
JP1169958A 1989-07-03 1989-07-03 Wastewater coagulation treatment method Expired - Lifetime JPH0761473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1169958A JPH0761473B2 (en) 1989-07-03 1989-07-03 Wastewater coagulation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1169958A JPH0761473B2 (en) 1989-07-03 1989-07-03 Wastewater coagulation treatment method

Publications (2)

Publication Number Publication Date
JPH0338294A JPH0338294A (en) 1991-02-19
JPH0761473B2 true JPH0761473B2 (en) 1995-07-05

Family

ID=15895991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169958A Expired - Lifetime JPH0761473B2 (en) 1989-07-03 1989-07-03 Wastewater coagulation treatment method

Country Status (1)

Country Link
JP (1) JPH0761473B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3346708B2 (en) * 1996-09-06 2002-11-18 ユニチカ株式会社 Treatment method of boron-containing wastewater
JP4543478B2 (en) * 2000-02-21 2010-09-15 栗田工業株式会社 Method for treating boron-containing water
JP4543481B2 (en) * 2000-03-01 2010-09-15 栗田工業株式会社 Method for treating water containing boron and fluorine
JP4972827B2 (en) * 2001-05-23 2012-07-11 栗田工業株式会社 Treatment method of flue gas desulfurization waste water
JP5157941B2 (en) * 2009-01-30 2013-03-06 栗田工業株式会社 Method for treating boron-containing water
JP2014144433A (en) * 2013-01-29 2014-08-14 Panasonic Corp Boron-containing effluent treatment method and boron-containing effluent treatment system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117B2 (en) * 1981-03-03 1985-01-05 栗田工業株式会社 How to treat fluoride-containing water

Also Published As

Publication number Publication date
JPH0338294A (en) 1991-02-19

Similar Documents

Publication Publication Date Title
JP4839653B2 (en) Method for treating waste containing chlorine and heavy metals
JPH01139126A (en) Treatment of combustion gas and combustion residue
JP2004141799A (en) Silica-containing waste water treatment method
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
CN105461102A (en) Treatment method of smoke washing wastewater
JP2564252B2 (en) Fluorine-containing wastewater treatment method
JPH11137958A (en) Treatment of stack gas desulfurization waste water
JPH0761473B2 (en) Wastewater coagulation treatment method
JP2007175673A (en) Treatment method of ammonia-containing drain
CN210656480U (en) Adopt washing cigarette waste water retrieval and utilization processing apparatus of DTRO device
JP2911484B2 (en) Wastewater treatment method
JP3942235B2 (en) Method for treating boron-containing water
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JP2001239273A (en) Method of treating water containing boron and fluorine
JP3861268B2 (en) Thermal power plant wastewater treatment method
JP4347097B2 (en) Waste water treatment system and exhaust gas treatment system using the same
KR100573186B1 (en) Wastewater Disposal Method in Flue Gas Desulfurization System by Using Scale Preventer
JP2001286875A (en) Method for treating arsenic-containing waste water
JP2005324137A (en) Method for removing fluoride ion in wastewater
JP3684477B2 (en) Treatment method for petroleum combustion ash
JP2000176241A (en) Treatment of fluoride ions in waste water in stack gas desulfurization
KR100573184B1 (en) Scale Preventer for Wastewater Disposal Facility in Flue Gas Desulfurization System
JP2907158B2 (en) Treatment method for wastewater containing fluorine
JP2000015268A (en) Treatment of fluorine-containing waste water
KR100262689B1 (en) Treatment of stack gas desulfurization waste water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 14

EXPY Cancellation because of completion of term