JP3861268B2 - Thermal power plant wastewater treatment method - Google Patents

Thermal power plant wastewater treatment method Download PDF

Info

Publication number
JP3861268B2
JP3861268B2 JP18999096A JP18999096A JP3861268B2 JP 3861268 B2 JP3861268 B2 JP 3861268B2 JP 18999096 A JP18999096 A JP 18999096A JP 18999096 A JP18999096 A JP 18999096A JP 3861268 B2 JP3861268 B2 JP 3861268B2
Authority
JP
Japan
Prior art keywords
water
wastewater
thermal power
concentration
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18999096A
Other languages
Japanese (ja)
Other versions
JPH1015533A (en
Inventor
忠 高土居
清仁 近沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP18999096A priority Critical patent/JP3861268B2/en
Publication of JPH1015533A publication Critical patent/JPH1015533A/en
Application granted granted Critical
Publication of JP3861268B2 publication Critical patent/JP3861268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電所排水の処理方法に関する。さらに詳しくは、本発明は、火力発電所において、塩類低濃度排水を固液分離処理して得られる処理水を、排煙脱硫装置の洗浄水として利用し、排煙脱硫排水を蒸発濃縮し、その凝縮水を発電所用水として循環再利用し、工業用水や河川水の使用量を大幅に低減することができる火力発電所排水の処理方法に関する。
【0002】
【従来の技術】
火力発電所では、多量の用水を使用する。用水としては、通常工業用水を使用するが、使用目的により工業用水をそのまま使用する系統と、工業用水を処理して、例えば、凝集、ろ過、純水装置によって処理して使用する系統とがある。工業用水を処理した上質水は、蒸気生成用水として、あるいは純水装置や復水脱塩装置の再生用水として使用される。
本来の目的である発電用の蒸気生成のために使用されるときは、使用済みの蒸気は復水として回収され循環使用される。しかし、ボイラ運転で発生する炉排ガスの脱硫処理用など多くの他の目的でも用水が使用されるが、これらは排水として排出されることになる。
火力発電所排水は、一般に定時排出される定常時排水と設備の定期補修などで不定期に排出される非定常排水に大別される。非定常排水には、エアヒータ水洗水やガスガスヒータ水洗水などがあるが、排水量としては全体の3〜10%程度と少ない。一方、定常排水は排水量の90〜97%を占め、中でも排煙脱硫排水は全体の40〜60%程度と多く、その他に灰処理装置のブロー排水や純水装置の再生排水などがある。
これらの排水は、排水中に含まれる処理対象成分が異なるので、非定常を含めた排煙脱硫排水系と、排煙脱硫排水を除く汚染の少ない定常排水を一般系として、それぞれ分別して処理している。
排煙脱硫排水系は、pH、懸濁物質、フッ素、重金属、CODなどを対象とする処理プロセスで処理し、一般系排水は、pH、懸濁物質を主体とした処理を行って無害にして放流している。
火力発電所における工業用水や河川水などの用水使用量は、概ね発電量100万kW規模の発電所で日間10,000m3程度であり、発生した排水の約4,000m3は無害化処理を行って放流されている。近年、用水の使用量の多い排煙脱硫装置では節水型の開発が進み、排水として高塩類含有系に変わりつつあるが、それでも使用水量が多く、降雨量の少ない水不足のシーズンではさらなる節水化が要求されている。
【0003】
【発明が解決しようとする課題】
本発明は、火力発電所における排水を循環再利用し、工業用水や河川水の使用量を大幅に低減することができる火力発電所排水の処理方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、火力発電所の一般排水を固液分離処理して得られる処理水を、排煙脱硫装置の用水に供給し、排煙脱硫排水を蒸発濃縮し、その凝縮水を発電所用水に利用することにより、用水使用量を大幅に低減し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、火力発電所において発生する塩類低濃度系排水を凝集、固液分離処理し、得られた処理水を排煙脱硫装置の洗浄水として回収し、発生する排煙脱硫排水を蒸発濃縮し、得られた凝縮水を火力発電所における用水として回収することを特徴とする火力発電所排水の処理方法を提供するものである。
【0005】
【発明の実施の形態】
本発明方法は、火力発電所排水に適用することができる。火力発電所において発生する排水は、塩類を高濃度に含有するいわゆる塩類高濃度系排水と、塩類を低濃度に含有するいわゆる塩類低濃度系排水とに区分することができる。塩類低濃度系排水としては、例えば、ボイラーブロー水、灰処理装置ブロー水、分析室排水、床洗浄排水、冷却塔ブロー水、生活排水などが発生する。本館などから排出される生活排水は、通常有機物濃度が高いので、あらかじめ生物処理などによって有機物を除去することが好ましい。床洗浄排水は油分を含む場合が多いので、あらかじめ油分を分離除去することが好ましい。また、復水脱塩装置や純水装置からは、イオン交換樹脂を再生するときに再生廃液が発生し、再生に続いて行う洗浄によって洗浄排水が発生する。再生廃液は塩類を高濃度に含むので塩類高濃度系排水として処理し、洗浄排水は塩濃度が低いので、塩類低濃度系排水として処理することができ、あるいは、再生廃液と洗浄排水とを連続して貯留し、両者を併せて塩類低濃度系排水として処理することができる。これらの塩類低濃度系排水の混合物は、通常、汚濁成分は懸濁物質が主であり、pHが酸性からアルカリ性にわたって変動する排水である。
本発明方法において、塩類低濃度系排水は、pH調整を行い、懸濁物質、重金属及び残存する微量の油分除去のために、凝集剤を添加して固液分離を行う。pH調整剤としては、酸又はアルカリを用い、凝集に適したpH、通常は6〜10に調整する。凝集剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム、硫酸第一鉄、塩化第二鉄、消石灰、カルシウム塩、マグネシウム塩などの無機凝集剤を好適に使用することができる。必要に応じて、アルギン酸ナトリウム、カルボキシメチルセルロース、ポリアクリルアミドの部分加水分解物の塩などのアニオン性高分子凝集剤、ポリエチレンイミン、ポリチオ尿素、ポリジメチルジアリルアンモニウムクロライドなどのカチオン性高分子凝集剤、ポリアクリルアミドなどのノニオン性高分子凝集剤などを用いて、分離性を改善することができる。これらの凝集剤は、1種を単独で使用することができ、2種以上を組み合わせて使用することができる。固液分離に用いる装置には特に制限はなく、例えば、ろ過装置、沈殿装置、加圧浮上装置、膜分離装置などを用いることができる。得られる処理水は、塩類濃液としてはやや増加するものの、懸濁物質や重金属類は含まない。
【0006】
本発明方法においては、塩類低濃度系排水を固液分離して得られる処理水を、排煙脱硫装置の洗浄水として使用する。炉の排煙ガスは、電気集塵機、エアヒーター、ガスガスヒーターなどを経由して脱硫装置に導かれ、脱硫装置において排ガスは水と接触させられ、SOXの吸収及び除塵が行われる。このガス浄化用の洗浄水として、塩類低濃度系排水を固液分離して得られる処理水を使用する。排煙脱硫装置の型式には特に制限はなく、例えば、石灰−石こう法のスーツ分離型やスーツ混合型の排煙脱硫装置などの洗浄水として使用することができる。
本発明方法においては、塩類高濃度系排水を蒸発濃縮する。火力発電所においては、塩類高濃度系排水の代表的なものが排煙脱硫排水であり、塩類高濃度系排水の大部分の量を占める。火力発電所において発生する他の塩類高濃度系排水としては、先に述べた復水脱塩装置、純水装置の再生廃液のほか、分析室雑排水、EP床洗浄排水などがあり、これらの塩類高濃度系排水は、排煙脱硫排水と混合して処理することができる。さらに、日常は発生しないが、年に1〜2回の定期補修時に発生する非定常排水、例えば、エアヒーター洗浄排水、ガスガスヒーター洗浄排水などがある。非定常的に発生する塩類高濃度系排水は、発生時に、あるいは分割して排煙脱硫排水に混合して処理することができる。
本発明方法において、排煙脱硫排水は直接蒸発濃縮することができ、あるいは蒸発濃縮に先立って固液分離などの前処理工程を設けることができる。排煙脱硫排水は、一般にフライアッシュや石こうの微細粒子を含み、かつ、フッ酸、硫酸、ケイ酸などの溶解性物質も多く含んでいる。排煙脱硫排水の性状は、排煙脱硫方式によっても異なる。例えば、スーツ分離方式では、排ガスを順次、除塵塔、吸収塔に通して処理し、排水を除塵塔から排出するため、排水はpHが低く、フッ化物イオンを多く含む。スーツ混合方式では、排ガスを吸収塔のみで処理するため、排水のpHは中性であり、フッ化物イオンの含有量は少ない。スーツ混合方式の場合のように、中性でフッ化物イオンが少ない排水は、そのまま蒸発濃縮することができるが、スーツ分離方式のようにpHが低くフッ化物イオンが多い排水では、フッ化物イオンが、蒸発濃縮工程において用いる蒸発装置の腐食の原因となるため、蒸発濃縮の前に中和、凝集などの前処理工程を設けることが好ましい。
【0007】
前処理工程においては、排煙脱硫排水中の懸濁物質や、重金属イオン、フッ化物イオンを除去するために、pH調整を行ったのち凝集剤を添加して固液分離処理を行う。pH調整剤として、例えば、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウムなどのアルカリ、又は、硫酸、塩酸などの酸などを用いて、pHを5〜10に調整することが好ましく、pHを6〜9に調整することがより好ましい。排煙脱硫排水中にアルミニウム塩やカルシウム化合物などが存在するときは、pH調整のみで凝集剤の添加を省略することができる場合もあるが、排煙脱硫排水中の無機化合物の濃度によって、無機凝集剤の添加量を適宜決定することが好ましい。凝集剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム、硫酸第一鉄、塩化第二鉄、消石灰、カルシウム塩、マグネシウム塩などの無機凝集剤を好適に使用することができる。必要に応じて、アルギン酸ナトリウム、カルボキシメチルセルロース、ポリアクリルアミドの部分加水分解物の塩などのアニオン性高分子凝集剤、ポリエチレンイミン、ポリチオ尿素、ポリジメチルジアリルアンモニウムクロライドなどのカチオン性高分子凝集剤、ポリアクリルアミドなどのノニオン性高分子凝集剤などを用いて、分離性を改善することができる。これらの凝集剤は、1種を単独で使用することができ、2種以上を組み合わせて使用することができる。固液分離に用いる装置には特に制限はなく、例えば、ろ過装置、沈殿装置、加圧浮上装置、膜分離装置などを用いることができる。
本発明方法において、排煙脱硫排水の蒸発濃縮工程において使用する蒸発濃縮装置に特に制限はなく、例えば、減圧式蒸発缶、薄膜式蒸発缶、強制循環式蒸発缶など公知の蒸発濃縮装置を用い、常法にしたがって行うことができる。蒸発濃縮工程においては、排水中の水を蒸発させ、凝縮させて回収する。凝縮水は、溶存物質をほとんど含まない清澄な水として回収することができる。蒸発濃縮装置には、供給水のpHを5〜8.5、好ましくはpHを5〜6の微酸性とし、蒸気側に塩酸やフッ酸の移行を防ぐとともに、水酸化マグネシウムや炭酸カルシウムのスケールの析出を防止する条件下で、蒸発濃縮処理を行うことが好ましい。また、スケールの防止のためには、スケール防止剤を添加して中性付近で蒸発濃縮することができ、あるいは、濃縮水を循環して種晶を存在させることによりスケール化を防止し、蒸発濃縮することができる。蒸発濃縮処理において、濃縮倍率には特に制限はないが、数倍〜数十倍程度とすることが好ましい。濃縮倍率を高くすると水回収率は高くなるが、スケール生成の問題が生ずるおそれがある。排煙脱硫排水に前処理を行った水は、塩化ナトリウム、硫酸ナトリウム、硫酸カルシウムなどの溶解成分を多く含むので脱塩処理が必要であり、通常の脱塩処理方法として知られている逆浸透膜、イオン交換膜、イオン交換樹脂などは、スケール発生、汚泥発生量、水回収率などの面から適用は難しく、蒸発濃縮法を有利に適用することができる。
【0008】
本発明方法において、蒸発濃縮処理により回収される凝縮水は清澄であり、工業用水よりも含有する塩類濃度が低く、かつ懸濁物質を含まない高品質の水である。このため、凝縮水は、必要に応じてpH調整処理を行い、用水ラインに戻して火力発電所の用水として再利用することができる。凝縮水を戻す位置としては、工業用水をさらに上質水に処理する給水ラインが好ましいが、なかでも給水ラインに設けた純水装置の直前が適切である。通常、給水ラインには、工業用水などの補給水を処理するために、凝集、ろ過、純水装置などの水処理装置が組み込まれている。凝縮水には懸濁物がほとんど含まれていないため、凝集、ろ過処理を省略することができ、凝集、ろ過装置への負荷を軽減することができる。凝縮水は、上述のように給水ラインに戻すことが好ましいが、火力発電所に供給された工業用水と混合して、蒸気生成用水のほか、他の目的の用水として使用することもできる。蒸発濃縮処理によって得られる凝縮水は、必要に応じて脱塩処理を行うが、通常は含有塩類が少ないために、例えば、イオン交換を行ってもイオン交換樹脂の再生頻度が極めて長くなるという利点を有する。
本発明方法において、蒸発濃縮工程において蒸発により汚濁成分が濃縮された濃縮水には、懸濁物質、塩類、重金属、COD成分などが数倍ないし数十倍に濃縮されているので、適切な除去処理をして放流などの処分をする。濃縮水の処理方法としては、例えば、濃縮水に鉄塩、アルミニウム塩などを添加し、pHを調整して凝集処理し、濃縮されているフッ化物イオン、重金属などを不溶化し、固液分離する。さらに、分離水中のCOD成分を除去するために、COD吸着樹脂に通水して処理し、あるいは、有機物その他のTOC成分を除去するために、活性炭処理工程を付加することができる。また、固形分は、セメントなどによる固化処理して処分することができる。
図1は、本発明方法の実施の一態様を示す工程系統図である。受け入れられた工業用水は、(1)凝集、ろ過工程を経て純水装置で処理され、純水となるもの、(2)排煙脱硫装置の補給水とされるもの、(3)そのまま各種用途に使用されるものに分けられる。純水は、さらに(4)ボイラで使用されるものと、(5)各種用途に使用されるものに分けられる。(3)及び(5)の各種用途から発生する塩類低濃度系排水は、凝集、固液分離処理され、処理水は排煙脱硫装置の洗浄水として回収される。(2)の排煙脱硫排水は、蒸発濃縮され、凝縮水は、(1)の純水装置の前に戻される。(4)のボイラ系から発生する復水は、ボイラ水として使用される。本発明方法を実施することにより、例えば、発電量100万kWの火力発電所において、工業用水節減率30〜40%まで到達することができる。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
発電量100万kWの火力発電所の受け入れ工業用水の量は約4,000m3/日であり、その水質は、懸濁物質2.5mg/リットル、電気伝導率7.8mS/mであった。
この凝集沈殿ろ過水を発電所用水として使用し、その塩類低濃度排水の水質は、pH3.5、懸濁物質61mg/リットル、鉄10mg/リットル、電気伝導率200mS/mであった。この排水に、ポリ塩化アルミニウム200mg/リットルを添加し、水酸化ナトリウムを加えて凝集沈殿、ろ過した処理水の水質は、pH6.3、懸濁物質1mg/リットル以下、鉄0.1mg/リットル以下、電気伝導率210mS/mで、外観は無色透明であった。この処理水を、排煙脱硫装置の洗浄水として使用した。
排煙脱硫装置からの排水の水質は、pH1.7、懸濁物質710mg/リットル、鉄48mg/リットル、電気伝導率2,300mS/mで、外観は灰黒色であった。この排水に水酸化カルシウムを添加して、pH6.5となるまで中和した。その沈殿上澄水の水質は、pH6.5、懸濁物質5.0mg/リットル、鉄0.2mg/リットル、電気伝導率510mS/mであった。
この上澄水をpH5.5とし、蒸発量5リットル/hrの蒸発濃縮装置(100℃)に5.3リットル/hrで供給し、濃縮水0.3リットル/hrで引き抜く条件で連続蒸発試験を行った。凝縮水を分析した結果、その水質は、pH4.9、懸濁物質1mg/リットル以下、電気伝導率0.7mS/mであり、用水として十分使用可能な水質であった。また蒸発濃縮装置の水回収率は、94%であった。
この火力発電所の排水の内訳は、定常排水であるものが、排煙脱硫52%、床処理ブロー、純水再生その他43%であり、非定常排水であるものが、各種洗浄排水など5%であった。したがって、排煙脱硫排水と各種洗浄排水の合計、すなわち全排水の57%を蒸発処理し、その94%を回収すれば全排水の54%を回収することができ、その量は、排煙脱硫以外の定常排水43%を上回る用水を確保することができる。
これらの結果から、本発明方法をこの火力発電所に適用すると、必要な工業用水の量は、排煙脱硫装置などからの蒸発分、蒸発濃縮処理における濃縮水、汚泥ケーキ中の水分などによる持ち出し分を補給し、従来に比べて3,000〜4,000m3/日の水が節減できる。
【0010】
【発明の効果】
本発明方法によれば、火力発電所において用水の高度の再利用が可能となり、工業用水の使用量を大幅に低減することができる。さらに、回収される凝縮水は、工業用水よりも高品質である。
【図面の簡単な説明】
【図1】図1は、本発明方法の実施の一態様を示す工程系統図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal power plant wastewater treatment method. More specifically, the present invention uses treated water obtained by solid-liquid separation treatment of low-concentration salt wastewater in a thermal power plant as washing water for flue gas desulfurization equipment, and evaporates and concentrates flue gas desulfurization waste water. The present invention relates to a thermal power plant wastewater treatment method in which the condensed water can be recycled and reused as power plant water, and the amount of industrial water and river water used can be significantly reduced.
[0002]
[Prior art]
A large amount of water is used at thermal power plants. As industrial water, industrial water is usually used, but there are a system that uses industrial water as it is depending on the purpose of use, and a system that treats industrial water and treats it with, for example, coagulation, filtration, and pure water equipment. . High-quality water obtained by treating industrial water is used as water for steam generation or as regeneration water for a pure water device or a condensate demineralizer.
When used to generate steam for power generation, which is the original purpose, the used steam is recovered as condensate and recycled. However, water is also used for many other purposes such as desulfurization treatment of furnace exhaust gas generated in boiler operation, but these are discharged as waste water.
Thermal power plant wastewater is generally divided into regular drainage that is regularly discharged and unsteady wastewater that is discharged irregularly due to regular repairs of equipment. The unsteady drainage includes air heater flush water and gas gas heater flush water, but the drainage amount is as small as about 3 to 10% of the whole. On the other hand, steady wastewater accounts for 90 to 97% of the amount of wastewater. Among them, flue gas desulfurization wastewater is about 40 to 60% of the total, and in addition, there are blow wastewater for ash treatment equipment and reclaimed wastewater for pure water equipment.
Since these wastewaters contain different components to be treated, wastewater desulfurization drainage systems including unsteady wastewater and normal wastewater with low pollution excluding flue gas desulfurization wastewater are classified into general systems and treated separately. ing.
The flue gas desulfurization drainage system is treated with a treatment process that targets pH, suspended solids, fluorine, heavy metals, COD, etc., and general wastewater is treated with pH and suspended solids to make it harmless. Released.
Industrial water and river water usage at thermal power plants is approximately 10,000 m 3 per day at power plants with a power generation capacity of 1 million kW, and about 4,000 m 3 of generated wastewater is detoxified. To go and be released. In recent years, the development of a water-saving type of flue gas desulfurization equipment that uses a large amount of water has been developed and is changing to a high-salt-containing system as drainage. It is requested.
[0003]
[Problems to be solved by the invention]
The present invention has been made for the purpose of providing a thermal power plant wastewater treatment method that can circulate and reuse wastewater in a thermal power plant to significantly reduce the amount of industrial water and river water used. .
[0004]
[Means for Solving the Problems]
As a result of intensive research to solve the above-mentioned problems, the present inventors supply treated water obtained by solid-liquid separation treatment of general wastewater from a thermal power plant to the use water of a flue gas desulfurization device, By evaporating and condensing the smoke desulfurization effluent and using the condensed water for power plant water, it was found that the amount of water used can be significantly reduced, and the present invention has been completed based on this finding.
That is, the present invention agglomerates and solid-liquid-separates the low-concentration salt effluent generated at a thermal power plant, collects the obtained treated water as washing water for the flue gas desulfurization device, The present invention provides a thermal power plant wastewater treatment method characterized by evaporating and concentrating and collecting the obtained condensed water as water for use in a thermal power plant.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention can be applied to thermal power plant drainage. Wastewater generated in a thermal power plant can be classified into so-called salt high-concentration wastewater containing a high concentration of salts and so-called salt low-concentration wastewater containing salts at a low concentration. Examples of the salt low-concentration wastewater include boiler blow water, ash treatment device blow water, analysis room waste water, floor washing waste water, cooling tower blow water, and domestic waste water. Since domestic wastewater discharged from the main building or the like usually has a high organic matter concentration, it is preferable to remove the organic matter beforehand by biological treatment or the like. Since the floor washing wastewater often contains oil, it is preferable to separate and remove the oil in advance. Further, from the condensate demineralizer and the pure water device, a regenerated waste liquid is generated when the ion exchange resin is regenerated, and cleaning wastewater is generated by the cleaning performed following the regeneration. Recycled wastewater contains salt in high concentration, so it is treated as high salt concentration wastewater, and wash wastewater has low salt concentration, so it can be treated as low concentration saltwater wastewater, or the regenerated wastewater and wash wastewater are continuous. Can be stored together and treated as a salt low-concentration waste water. In the mixture of these low-concentration salt effluents, the pollutant is usually a suspended substance, and the pH varies from acidic to alkaline.
In the method of the present invention, the salt low-concentration waste water is subjected to pH adjustment, and solid-liquid separation is performed by adding a flocculant to remove suspended substances, heavy metals and remaining traces of oil. As the pH adjuster, acid or alkali is used and adjusted to a pH suitable for aggregation, usually 6 to 10. As the flocculant, for example, inorganic flocculants such as sulfate band, polyaluminum chloride, ferrous sulfate, ferric chloride, slaked lime, calcium salt, and magnesium salt can be preferably used. As necessary, anionic polymer flocculants such as sodium alginate, carboxymethylcellulose, salt of polyacrylamide partial hydrolysis, cationic polymer flocculants such as polyethyleneimine, polythiourea, polydimethyldiallylammonium chloride, poly Separation can be improved by using a nonionic polymer flocculant such as acrylamide. These flocculants can be used individually by 1 type, and can be used in combination of 2 or more type. There is no restriction | limiting in particular in the apparatus used for solid-liquid separation, For example, a filtration apparatus, a precipitation apparatus, a pressurization flotation apparatus, a membrane separation apparatus etc. can be used. The treated water obtained is slightly increased as a salt concentrate, but does not contain suspended substances or heavy metals.
[0006]
In the method of the present invention, treated water obtained by solid-liquid separation of salt low-concentration wastewater is used as washing water for the flue gas desulfurization apparatus. The flue gas of the furnace is guided to a desulfurization device via an electric dust collector, an air heater, a gas gas heater, etc., and the exhaust gas is brought into contact with water in the desulfurization device, so that SO X is absorbed and removed. As the cleaning water for gas purification, treated water obtained by solid-liquid separation of salt low-concentration waste water is used. There is no restriction | limiting in particular in the type | mold of a flue gas desulfurization apparatus, For example, it can be used as washing water, such as a suit separation type of a lime-gypsum method and a suit mixing type flue gas desulfurization apparatus.
In the method of the present invention, salt high concentration waste water is evaporated and concentrated. In a thermal power plant, a typical salt high-concentration wastewater is flue gas desulfurization wastewater, which accounts for the majority of salt high-concentration wastewater. Other high-concentration saltwater effluents generated at thermal power plants include the above-mentioned condensate demineralizers, reclaimed wastewater from pure water units, miscellaneous laboratory wastewater, and EP floor cleaning wastewater. Salt high-concentration wastewater can be treated by mixing with flue gas desulfurization wastewater. Furthermore, there are unsteady drains that do not occur on a daily basis, but are generated during regular repairs once or twice a year, such as air heater cleaning drainage and gas gas heater cleaning drainage. The salt high-concentration wastewater generated unsteadyly can be treated by being mixed with flue gas desulfurization wastewater when it is generated or divided.
In the method of the present invention, the flue gas desulfurization waste water can be directly evaporated and concentrated, or a pretreatment step such as solid-liquid separation can be provided prior to evaporation and concentration. The flue gas desulfurization effluent generally contains fine particles of fly ash and gypsum, and also contains many soluble substances such as hydrofluoric acid, sulfuric acid, and silicic acid. The properties of the flue gas desulfurization drainage differ depending on the flue gas desulfurization method. For example, in the suit separation method, exhaust gas is sequentially processed through a dust removal tower and an absorption tower, and the waste water is discharged from the dust removal tower. Therefore, the waste water has a low pH and contains a large amount of fluoride ions. In the suit mixing method, the exhaust gas is treated only by the absorption tower, so the pH of the wastewater is neutral and the fluoride ion content is low. As in the case of the suit mixing method, neutral wastewater with a small amount of fluoride ions can be evaporated and concentrated as it is, but in the case of the wastewater with a low pH and a large amount of fluoride ions as in the suit separation method, fluoride ions In order to cause corrosion of the evaporator used in the evaporation and concentration step, it is preferable to provide a pretreatment step such as neutralization and aggregation before the evaporation and concentration.
[0007]
In the pretreatment step, in order to remove suspended substances, heavy metal ions, and fluoride ions in the flue gas desulfurization waste water, after adjusting the pH, a flocculant is added and solid-liquid separation treatment is performed. As the pH adjuster, for example, it is preferable to adjust the pH to 5 to 10 using an alkali such as sodium hydroxide, calcium hydroxide or magnesium hydroxide, or an acid such as sulfuric acid or hydrochloric acid. It is more preferable to adjust to -9. When there is an aluminum salt or calcium compound in the flue gas desulfurization wastewater, it may be possible to omit the addition of the flocculant only by adjusting the pH, but depending on the concentration of the inorganic compound in the flue gas desulfurization wastewater, It is preferable to appropriately determine the amount of the flocculant added. As the flocculant, for example, inorganic flocculants such as sulfate band, polyaluminum chloride, ferrous sulfate, ferric chloride, slaked lime, calcium salt, and magnesium salt can be preferably used. As necessary, anionic polymer flocculants such as sodium alginate, carboxymethylcellulose, salt of polyacrylamide partial hydrolysis, cationic polymer flocculants such as polyethyleneimine, polythiourea, polydimethyldiallylammonium chloride, poly Separation can be improved by using a nonionic polymer flocculant such as acrylamide. These flocculants can be used individually by 1 type, and can be used in combination of 2 or more type. There is no restriction | limiting in particular in the apparatus used for solid-liquid separation, For example, a filtration apparatus, a precipitation apparatus, a pressurization flotation apparatus, a membrane separation apparatus etc. can be used.
In the method of the present invention, there is no particular limitation on the evaporative concentration apparatus used in the evaporative concentration process of flue gas desulfurization effluent, for example, using a known evaporative concentration apparatus such as a vacuum evaporator, a thin film evaporator, a forced circulation evaporator, etc. Can be carried out according to conventional methods. In the evaporative concentration step, the water in the waste water is evaporated, condensed and recovered. Condensed water can be recovered as clear water containing almost no dissolved substances. The evaporative concentrator has a slightly acidic pH of feed water of 5 to 8.5, preferably 5 to 6, which prevents migration of hydrochloric acid and hydrofluoric acid to the steam side, and scales of magnesium hydroxide and calcium carbonate. It is preferable to carry out the evaporation and concentration treatment under conditions that prevent the precipitation of. In order to prevent scale, it is possible to add a scale inhibitor and evaporate and concentrate in the vicinity of neutrality, or to circulate concentrated water to prevent seeding and prevent evaporation. It can be concentrated. In the evaporative concentration treatment, the concentration ratio is not particularly limited, but is preferably several times to several tens times. When the concentration ratio is increased, the water recovery rate is increased, but there may be a problem of scale generation. Pre-treated water for flue gas desulfurization wastewater contains many dissolved components such as sodium chloride, sodium sulfate, and calcium sulfate, and therefore needs to be desalted. Reverse osmosis is known as a normal desalting method. Membranes, ion exchange membranes, ion exchange resins and the like are difficult to apply in terms of scale generation, sludge generation amount, water recovery rate, and the like, and the evaporation concentration method can be advantageously applied.
[0008]
In the method of the present invention, the condensed water recovered by the evaporation and concentration treatment is clear, has a lower salt concentration than industrial water, and is high-quality water that does not contain suspended substances. For this reason, the condensed water can be reused as irrigation water for a thermal power plant by performing pH adjustment treatment as necessary, returning to the irrigation water line. The position where the condensed water is returned is preferably a water supply line that further treats industrial water into high-quality water, but in particular, the position immediately before the pure water device provided in the water supply line is appropriate. Usually, a water treatment apparatus such as agglomeration, filtration, or pure water apparatus is incorporated in the water supply line in order to treat makeup water such as industrial water. Since the condensed water contains almost no suspension, aggregation and filtration treatment can be omitted, and the load on the aggregation and filtration apparatus can be reduced. Although the condensed water is preferably returned to the water supply line as described above, it can be mixed with industrial water supplied to the thermal power plant and used as water for other purposes in addition to water for steam generation. Condensed water obtained by evaporative concentration treatment is desalted as necessary, but usually contains less salts, so that, for example, the advantage that the frequency of ion exchange resin regeneration is extremely long even when ion exchange is performed. Have
In the method of the present invention, suspended water, salts, heavy metals, COD components, etc. are concentrated several times to several tens of times in the concentrated water in which the pollutant components are concentrated by evaporation in the evaporation concentration step. Treat and dispose of it. Concentrated water is treated by, for example, adding iron salt, aluminum salt, etc. to the concentrated water, adjusting the pH and coagulating, insolubilizing concentrated fluoride ions, heavy metals, etc., and solid-liquid separation. . Furthermore, in order to remove the COD component in the separated water, water is passed through the COD adsorption resin for treatment, or an activated carbon treatment step can be added to remove organic matter and other TOC components. Moreover, solid content can be disposed of by solidifying with cement or the like.
FIG. 1 is a process flow diagram showing an embodiment of the method of the present invention. The accepted industrial water is (1) treated with a pure water device through a coagulation and filtration process to become pure water, (2) used as makeup water for flue gas desulfurization equipment, (3) various uses as it is Divided into those used. Pure water is further divided into (4) those used in boilers and (5) those used in various applications. The salt low-concentration wastewater generated from various uses of (3) and (5) is subjected to agglomeration and solid-liquid separation treatment, and the treated water is recovered as washing water for the flue gas desulfurization apparatus. The flue gas desulfurization waste water of (2) is evaporated and concentrated, and the condensed water is returned to the front of the pure water device of (1). Condensate generated from the boiler system in (4) is used as boiler water. By implementing the method of the present invention, for example, an industrial water saving rate of 30 to 40% can be reached in a thermal power plant with a power generation of 1 million kW.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
The amount of industrial water received by a thermal power plant with a power generation capacity of 1 million kW was about 4,000 m 3 / day, and its water quality was 2.5 mg / liter of suspended solids and electrical conductivity of 7.8 mS / m. .
This coagulated sediment filtered water was used as power plant water, and the water quality of the salt low-concentration wastewater was pH 3.5, suspended material 61 mg / liter, iron 10 mg / liter, and electric conductivity 200 mS / m. To this wastewater, 200 mg / liter of polyaluminum chloride is added, and the quality of the treated water that is coagulated, precipitated and filtered by adding sodium hydroxide is pH 6.3, suspended solids 1 mg / liter or less, iron 0.1 mg / liter or less The electrical conductivity was 210 mS / m, and the appearance was colorless and transparent. This treated water was used as washing water for the flue gas desulfurization apparatus.
The water quality of the waste water from the flue gas desulfurization apparatus was pH 1.7, suspended substance 710 mg / liter, iron 48 mg / liter, electrical conductivity 2,300 mS / m, and the appearance was grayish black. Calcium hydroxide was added to this waste water to neutralize to pH 6.5. The quality of the precipitated supernatant water was pH 6.5, suspended material 5.0 mg / liter, iron 0.2 mg / liter, and electric conductivity 510 mS / m.
The supernatant water was adjusted to pH 5.5, supplied to an evaporation concentrator (100 ° C.) having an evaporation amount of 5 liter / hr at 5.3 liter / hr, and subjected to a continuous evaporation test under the condition of drawing out with concentrated water at 0.3 liter / hr. went. As a result of analysis of the condensed water, the water quality was pH 4.9, suspended solids 1 mg / liter or less, and electrical conductivity 0.7 mS / m. Further, the water recovery rate of the evaporation concentrator was 94%.
The breakdown of the wastewater from this thermal power plant is that of steady wastewater: 52% flue gas desulfurization, floor treatment blow, pure water regeneration and other 43%. Met. Therefore, if the total amount of flue gas desulfurization wastewater and various washing wastewater, that is, 57% of the total wastewater is evaporated and 94% is recovered, 54% of the total wastewater can be recovered. Water other than 43% of regular waste water can be secured.
From these results, when the method of the present invention is applied to this thermal power plant, the required amount of industrial water is taken out due to the evaporation from the flue gas desulfurization device, the concentrated water in the evaporative concentration treatment, the moisture in the sludge cake, etc. Replenish water and save 3,000 to 4,000 m 3 / day of water compared to the conventional method.
[0010]
【The invention's effect】
According to the method of the present invention, it is possible to reuse water at a high level in a thermal power plant, and the amount of industrial water used can be greatly reduced. Furthermore, the condensed water recovered is of a higher quality than industrial water.
[Brief description of the drawings]
FIG. 1 is a process flow diagram showing an embodiment of the method of the present invention.

Claims (1)

火力発電所において発生する塩類低濃度系排水を凝集、固液分離処理し、得られた処理水を排煙脱硫装置の洗浄水として回収し、発生する排煙脱硫排水を蒸発濃縮し、得られた凝縮水を火力発電所における用水として回収することを特徴とする火力発電所排水の処理方法。It is obtained by coagulating and solid-liquid separating the salt low-concentration wastewater generated at thermal power plants, collecting the treated water as washing water for the flue gas desulfurization equipment, and concentrating the generated flue gas desulfurization wastewater by evaporation. A method for treating thermal power plant wastewater, wherein the condensed water is recovered as water for use in a thermal power plant.
JP18999096A 1996-07-01 1996-07-01 Thermal power plant wastewater treatment method Expired - Fee Related JP3861268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18999096A JP3861268B2 (en) 1996-07-01 1996-07-01 Thermal power plant wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18999096A JP3861268B2 (en) 1996-07-01 1996-07-01 Thermal power plant wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH1015533A JPH1015533A (en) 1998-01-20
JP3861268B2 true JP3861268B2 (en) 2006-12-20

Family

ID=16250553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18999096A Expired - Fee Related JP3861268B2 (en) 1996-07-01 1996-07-01 Thermal power plant wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3861268B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358495B2 (en) * 2010-03-23 2013-12-04 中国電力株式会社 Waste water management device and waste water management method
KR101144899B1 (en) * 2010-08-03 2012-05-15 한국남부발전 주식회사 Water supplying apparatus for thermal power generation
CN104829033A (en) * 2015-05-29 2015-08-12 北京科泰兴达高新技术有限公司 Method of recycling reverse osmosis concentrate
CN106746059B (en) * 2017-02-28 2023-09-26 西安西热水务环保有限公司 Terminal high salt wastewater treatment system of economical coal fired power plant
CN109324157B (en) * 2018-11-15 2023-08-18 华电电力科学研究院有限公司 Simulated smoke preparation method and water adding device for simulated smoke test
CN113501584B (en) * 2021-06-28 2022-08-30 上海发电设备成套设计研究院有限责任公司 Device system and method for stepped recycling of graded water supply of wet cooling unit

Also Published As

Publication number Publication date
JPH1015533A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
CN104355473B (en) A kind of method using electrodialytic technique to carry out power plant desulfurization waste water desalination zero discharge treatment
CN105502782B (en) A kind of coal chemical industry coking wastewater water resource and salt recovery process
CN103288236B (en) Treatment method for salt-containing wastewater
CN101456635B (en) Process and system for treating electric power plant waste water
CN106430786B (en) Desulfurization wastewater treatment method and device
GB2049470A (en) Method for reducing the process water requirement and the waste water production of thermal power stations
JP4428582B1 (en) Method and apparatus for producing acid and alkali from leachate
Katsoyiannis et al. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent
CN208414114U (en) A kind of desulfurization wastewater zero-discharge treatment system
CN105439358A (en) Method and device for realizing zero discharge of desulfurization wastewater
CN105314773A (en) Wet desulphurization wastewater recycling method and device
KR100743146B1 (en) Pretreatment method of desulfurization and denitrification waste water
US8663480B2 (en) Heavy metal removal from waste streams
CN104926008A (en) Wet desulfurization wastewater zero emission process and device thereof
CN112607935A (en) Full-quantitative treatment method for leachate of refuse landfill
CN107176726A (en) Desulphurization for Coal-fired Power Plant waste water integrates defluorination method
CN112209528B (en) Method for cooperatively treating desulfurization wastewater and fly ash
CN110316897A (en) A kind of system and method for the full factory waste water zero discharge of power plant and resource utilization
JP2004141799A (en) Silica-containing waste water treatment method
JP3861268B2 (en) Thermal power plant wastewater treatment method
Ma et al. Advanced treatment technology for FGD wastewater in coal-fired power plants: Current situation and future prospects
CN205653297U (en) Desulfurization waste water zero release substep recovery unit
RU2137722C1 (en) Method for thermochemical desalting of natural and waste waters
JP6657720B2 (en) Steam power plant wastewater recovery method and device
CN114516689A (en) Calcium carbide method polyvinyl chloride mercury-containing wastewater treatment and recycling method and application device thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees