JPH0371197B2 - - Google Patents

Info

Publication number
JPH0371197B2
JPH0371197B2 JP59248096A JP24809684A JPH0371197B2 JP H0371197 B2 JPH0371197 B2 JP H0371197B2 JP 59248096 A JP59248096 A JP 59248096A JP 24809684 A JP24809684 A JP 24809684A JP H0371197 B2 JPH0371197 B2 JP H0371197B2
Authority
JP
Japan
Prior art keywords
liquid
flue gas
tank
wastewater
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59248096A
Other languages
Japanese (ja)
Other versions
JPS61129090A (en
Inventor
Hiroji Masuno
Mitsuyoshi Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP59248096A priority Critical patent/JPS61129090A/en
Publication of JPS61129090A publication Critical patent/JPS61129090A/en
Publication of JPH0371197B2 publication Critical patent/JPH0371197B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は水酸化マグネシウムを吸収剤として使
用する湿式排煙脱硫装置の排水中に含まれるフツ
素イオンの除去方法に関するものである。 〔従来の技術〕 排煙脱硫装置の排水の特徴としては、硫酸マグ
ネシウムを主体にした水溶性塩類が多く含まれて
おり、通常塩類濃度5〜20〔wt%〕に及ぶことで
ある。 このような排水に従来方法を適用すると下記に
示す欠点を有している。 (1) カルシウム化合物(消石灰、生石灰、塩化カ
ルシウム)を用いる方法 フツ素イオンをカルシウムと反応させフツ化
カルシウムとして沈殿除去させる方法である
が、実施例1に示すようにかなり消石灰を添加
しても一般の排水規制値15〔mg/〕以下に抑
えることはむずかしい。 (2) 水酸化アルミニウム吸着剤による方法 溶解塩の少ない排水に対しては効果がある
が、溶解塩濃度の高い排水に対してはあまり効
果がない。 (猪狩淑将他「マグネシア系吸着剤によるフツ
素含有廃水の処理法」産業公害Vol.18No.2 22
〜29頁) (3) マグネシウム系吸着剤による方法 酸化マグネシウムが水和するときの活性水和
層のFの吸着現象を利用したものである。実施
例2に示すように一般排水規制値15〔mg/〕
以下に抑えることが可能であるが、添加量が多
く、また発生するスラツジはMg(OH)2主体の
ためろ過が難しい。また、薬品コストが高く高
価な処理となる。 〔発明が解決しようとする問題点〕 本発明は、これらの従来方法における欠点を解
消し、水酸化マグネシウムを吸収剤として用いる
湿式排煙脱硫法の排水中に含まれるフツ素イオン
の除去に最適な除去方法を提供することを目的と
するものである。 〔発明の構成〕 本発明は、水酸化マグネシウムを吸着剤として
使用する排ガス中の硫黄酸化物を吸収除去する湿
式排煙脱硫装置から排出される排水中のフツ素イ
オンを除去する方法において、該廃液に消石灰を
添加し、反応させた後固液分離し、さらに分離し
た液に酸化マグネシウムを含む固体を添加し反応
させた後固液分離させることを特徴とするフツ素
イオンの除去方法である。 例1に示すように消石灰の添加による場合、排
水規制値15〔mg/〕にまでFを除去することは
むずかしいまでも、30〜100〔mg/〕の範囲内に
抑えるには添加量も比較的少なくてすむので本発
明においては、先づ、消石灰により排水中のフツ
素イオンを或る程度除去する。このようにすれ
ば、添加する消石灰の量はすくなくてすみ、発生
するスラツジ量も低減する。ついで、固液分離
後、分離した液に酸化マグネシウムを含む固体を
添加し、排水規制値以下になるまで除去する。こ
の酸化マグネシウムを含む固体は例3に示すよう
にマグネシウム吸着剤、酸化マグネシウム、軽焼
マグネシア、軽焼ドロマイトいずれも効果がある
ことがわかる。固液分離後の生成スラツジは水酸
化マグネシウムを主体とするものであり、これは
排煙脱硫の際の吸収剤として再利用することがで
き、この結果、ろ過性の悪いMg(OH)2主体のス
ラツジをわざわざろ過することなく、またスラツ
ジの排出もなく、スラツジを有効に利用すること
により吸収剤のMg(OH)2の使用量の低減にも役
立つことになる。 本プロセスでは系外に排出されるフツ素化合物
はカルシウム塩でフツ化カルシウムとして固定さ
れるものだけであり、天然にも存在する安定な物
質である。また水酸化マグネシウムに吸着された
フツ素イオンは吸収系にて再利用される際に液中
にその一部が再溶解し、排液中のフツ素イオンは
高めになる。このことは、例1に示すように、フ
ツ素イオン濃度が高い程、カルシウム塩の利用効
率は高いのでむしろ好ましいといえる。 上記のように、本発明は先づフツ素イオンをカ
ルシウム化合物と反応させてフツ化カルシウムと
して系外に排出し、この反応の後に酸化マグネシ
ウムを主体とする化合物と反応させて、排水中の
フツ素イオンを高度に除去し、生成した水酸化マ
グネシウム主体のスラツジを再び排煙脱硫装置の
吸収剤として再利用し、スラツジ処理の問題をな
くすることができるという効果があり、水酸化マ
グネシウムを吸収剤として用いる湿式排煙脱硫装
置の排水中のフツ素除去方法としては最適な方法
といえる。 つぎに、第1図に基いて本発明を詳しく説明す
る。 第1図において、1は脱硫排水導入管、2は曝
気槽、3はブロア、4はCa(OH)2導入管、5は
Ca(OH)2溶解槽、6はフイルター、7は反応槽、
8は凝集槽、9はMgO含有物質導入管、10は
高分子凝集剤流入管、11は沈殿槽、12は中和
層、13は硫酸注入管、14はスラリー受槽、1
5はスラリー移送ポンプ、16はスラリー返送
管、17は処理液放流管を示す。 水酸化マグネシウムを吸収剤として使用する湿
式排煙脱硫装置から排出されるMgSO4等の塩類
およびフツ素を含む排液は脱硫排水導入管1より
曝気槽2に導入され、Ca(OH)2溶解槽5から所
定量のCa(OH)2をCa(OH)2流入管4を経て供給
しながら、ブロア3から空気を曝気槽底部より導
入し撹拌する。この曝気槽は排水中に含まれてい
るSO3 2-をSO4 2-に酸化するためのものであるが、
この第1図に示す方法においてはCa(OH)2とF-
との反応槽をも兼ねているものである。Ca
(OH)2とF-との反応は曝気槽と別個の反応槽を
設け、その中で行わせてもよい。 曝気槽2から排出される液はフイルター6でス
ラツジを分離した後反応槽7に導入し、酸化マグ
ネシウム含有物質導入管9より注入されるMgO
と反応させた後、凝集槽8を経て沈殿槽11に導
入し、凝集槽8で高分子凝集剤導入管10より注
入される高分子凝集剤によりMgOを含むスラツ
ジをスラリーとして沈降分離させる。沈降したス
ラリーは沈降槽11の底よりスラリー受槽14に
抜き出され、ついでスラリー移送ポンプによりス
ラリー返送管16経て、排煙脱硫装置に吸収剤と
して供給される。沈降槽11中でスラリーを分離
された液は、ついで中和槽12に導入し、硫酸導
入管より注入される硫酸により中和した後、管1
7を経て放流される。 使用するCa(OH)2の量、MgO含有物質の量は
排水中に含まれるMgSO4、F-の濃度、希望する
F-の除去割合、MgOの種類等により、当業者な
らば容易に決定することができる。 例 1 フツ素イオンを含む排煙脱硫排水で、MgSO4
を夫々50g/、100g/の割合で含有する液
に、Ca(OH)2の添加量を変えてCa(OH)2を添加
し45分間均一撹拌し、静置後、上澄み液のフツ素
イオン濃度を調べた。結果を第2図に示す。 例 2 フツ素イオンを含む排煙脱硫排水でMgSO4
夫々50g/、100g/の割合で含有する液に
マグネシア吸着剤の添加量をかえてマグネシア吸
着剤を添加し45分間均一撹拌し、静置後、上澄み
液のフツ素イオン濃度を調べた。結果を第3図に
示す。 例 3 フツ素イオンを含む排煙脱硫排水でMgSO4
夫々50g/、100g/の割合で含有する液に
酸化マグネシウム、軽焼マグネシア、軽焼ドロマ
イトの粉体を加え45分間均一撹拌し、静置後、上
澄み液のフツ素イオン濃度を調べた。結果を第4
図に示す。 実施例 1 表−1に示す濃度のF-およびMgSO4を含有す
る排煙脱硫の吸収液に先づ表−1に示す量のCa
(OH)2を添加後45分間撹拌しろ過した。 ついで得られたろ液に表−1に示す量のマグネ
シアを添加し、45分間撹拌した後、上澄液のフツ
素イオン濃度を調べた。 結果を表−1に示す。
[Industrial Field of Application] The present invention relates to a method for removing fluorine ions contained in waste water from a wet flue gas desulfurization equipment using magnesium hydroxide as an absorbent. [Prior Art] A characteristic feature of wastewater from flue gas desulfurization equipment is that it contains a large amount of water-soluble salts, mainly magnesium sulfate, and the salt concentration usually ranges from 5 to 20 [wt%]. When conventional methods are applied to such wastewater, they have the following drawbacks. (1) Method using calcium compounds (slaked lime, quicklime, calcium chloride) This is a method in which fluoride ions are reacted with calcium and precipitated and removed as calcium fluoride, but as shown in Example 1, even if a considerable amount of slaked lime is added, It is difficult to keep it below the general wastewater regulation value of 15 [mg/]. (2) Method using aluminum hydroxide adsorbent This method is effective for wastewater with low dissolved salts, but not very effective for wastewater with high dissolved salt concentrations. (Yoshimasa Igari et al. “Method for treating fluorine-containing wastewater using magnesia-based adsorbent” Industrial Pollution Vol.18 No.2 22
(~29 pages) (3) Method using magnesium-based adsorbent This method utilizes the adsorption phenomenon of F in the active hydrated layer when magnesium oxide is hydrated. As shown in Example 2, the general wastewater regulation value is 15 [mg/]
Although it is possible to reduce the amount below, the amount added is large and the sludge generated is mainly Mg(OH) 2 , making it difficult to filter. In addition, the chemical costs are high and the treatment is expensive. [Problems to be Solved by the Invention] The present invention eliminates the drawbacks of these conventional methods and is optimal for removing fluoride ions contained in the wastewater of the wet flue gas desulfurization method using magnesium hydroxide as an absorbent. The purpose is to provide a method of removal. [Structure of the Invention] The present invention provides a method for removing fluorine ions from wastewater discharged from a wet flue gas desulfurization equipment that uses magnesium hydroxide as an adsorbent to absorb and remove sulfur oxides from flue gas. This is a method for removing fluoride ions, which is characterized by adding slaked lime to waste liquid, causing a reaction, and then performing solid-liquid separation, and further adding a solid containing magnesium oxide to the separated liquid, causing a reaction, and then performing solid-liquid separation. . As shown in Example 1, when adding slaked lime, it is difficult to remove F to the wastewater regulation value of 15 [mg/], but in order to keep it within the range of 30 to 100 [mg/], the amount added should be compared. In the present invention, first, fluorine ions in the waste water are removed to some extent using slaked lime. In this way, the amount of slaked lime added can be reduced, and the amount of sludge generated can also be reduced. Then, after solid-liquid separation, a solid containing magnesium oxide is added to the separated liquid and removed until it reaches a wastewater regulation value or less. As shown in Example 3, it can be seen that the solid containing magnesium oxide is effective as a magnesium adsorbent, magnesium oxide, lightly calcined magnesia, or lightly calcined dolomite. The sludge produced after solid-liquid separation is mainly composed of magnesium hydroxide, which can be reused as an absorbent during flue gas desulfurization. There is no need to go through the trouble of filtering the sludge, there is no need to discharge the sludge, and by using the sludge effectively, it also helps to reduce the amount of Mg(OH) 2 used in the absorbent. In this process, the only fluorine compound discharged outside the system is a calcium salt fixed as calcium fluoride, which is a stable substance that also exists in nature. Further, when the fluorine ions adsorbed on magnesium hydroxide are reused in the absorption system, some of them are re-dissolved in the liquid, resulting in a higher level of fluorine ions in the waste liquid. This can be said to be rather preferable since, as shown in Example 1, the higher the fluorine ion concentration, the higher the utilization efficiency of calcium salt. As described above, the present invention first reacts fluoride ions with a calcium compound and discharges them out of the system as calcium fluoride, and after this reaction, reacts them with a compound mainly composed of magnesium oxide to remove fluorine ions from the wastewater. It has the effect of removing elemental ions to a high degree and reusing the generated sludge, which mainly consists of magnesium hydroxide, as an absorbent in flue gas desulfurization equipment, eliminating problems with sludge treatment, and absorbing magnesium hydroxide. This method can be said to be the best method for removing fluorine from wastewater from wet flue gas desulfurization equipment used as a reagent. Next, the present invention will be explained in detail based on FIG. In Figure 1, 1 is a desulfurization wastewater introduction pipe, 2 is an aeration tank, 3 is a blower, 4 is a Ca(OH) 2 introduction pipe, and 5 is a
Ca(OH) 2 dissolution tank, 6 is filter, 7 is reaction tank,
8 is a flocculation tank, 9 is an MgO-containing substance introduction pipe, 10 is a polymer flocculant inflow pipe, 11 is a settling tank, 12 is a neutralization layer, 13 is a sulfuric acid injection pipe, 14 is a slurry receiving tank, 1
5 is a slurry transfer pump, 16 is a slurry return pipe, and 17 is a processing liquid discharge pipe. The waste liquid containing salts such as MgSO 4 and fluorine discharged from a wet flue gas desulfurization equipment that uses magnesium hydroxide as an absorbent is introduced into the aeration tank 2 through the desulfurization wastewater introduction pipe 1, where Ca(OH) 2 is dissolved. While supplying a predetermined amount of Ca(OH) 2 from the tank 5 through the Ca(OH) 2 inflow pipe 4, air is introduced from the bottom of the aeration tank from the blower 3 and stirred. This aeration tank is for oxidizing SO 3 2- contained in wastewater to SO 4 2- .
In the method shown in Figure 1, Ca(OH) 2 and F -
It also serves as a reaction tank. Ca
The reaction between (OH) 2 and F - may be carried out in an aeration tank and a separate reaction tank. The liquid discharged from the aeration tank 2 is introduced into a reaction tank 7 after separating sludge with a filter 6, and MgO is injected from a magnesium oxide-containing material introduction pipe 9.
After the reaction, the MgO-containing sludge is introduced into a settling tank 11 via a flocculating tank 8, and in the flocculating tank 8, the sludge containing MgO is sedimented and separated as a slurry by a polymer flocculant injected from a polymer flocculant introduction pipe 10. The settled slurry is extracted from the bottom of the settling tank 11 into a slurry receiving tank 14, and then supplied as an absorbent to a flue gas desulfurization device via a slurry return pipe 16 by a slurry transfer pump. The liquid separated from the slurry in the sedimentation tank 11 is then introduced into the neutralization tank 12, where it is neutralized with sulfuric acid injected from the sulfuric acid introduction pipe.
It is released after 7. The amount of Ca(OH) 2 used, the amount of MgO-containing substances depends on the concentration of MgSO 4 , F - contained in the wastewater, the desired
A person skilled in the art can easily determine this based on the removal rate of F - , the type of MgO, etc. Example 1 Flue gas desulfurization wastewater containing fluorine ions, MgSO 4
Ca(OH) 2 was added in varying amounts to a solution containing 50 g/100 g/of Ca(OH) 2 and stirred uniformly for 45 minutes. After standing still, the fluoride ions in the supernatant solution were I checked the concentration. The results are shown in Figure 2. Example 2 Magnesia adsorbent was added to flue gas desulfurization wastewater containing fluorine ions and containing MgSO 4 at a ratio of 50 g/100 g/each, and the amount of magnesia adsorbent was changed, and the mixture was stirred uniformly for 45 minutes, then allowed to stand still. After standing, the fluorine ion concentration of the supernatant was examined. The results are shown in Figure 3. Example 3 Powders of magnesium oxide, lightly calcined magnesia, and lightly calcined dolomite were added to a liquid containing MgSO 4 in flue gas desulfurization wastewater containing fluoride ions at a ratio of 50 g/100 g/each, and the mixture was stirred uniformly for 45 minutes, then allowed to stand still. After standing, the fluorine ion concentration of the supernatant was examined. 4th result
As shown in the figure. Example 1 First, an amount of Ca shown in Table 1 was added to an absorption liquid for flue gas desulfurization containing F - and MgSO 4 at the concentrations shown in Table 1.
After adding (OH) 2 , the mixture was stirred for 45 minutes and filtered. Then, magnesia in the amount shown in Table 1 was added to the obtained filtrate, and after stirring for 45 minutes, the fluorine ion concentration of the supernatant was examined. The results are shown in Table-1.

【表】 表−1の結果からわかるように、実施例1にお
いてはMgSO4の濃度により、Ca(OH)2及びMgO
の添加量は異なつてはいるが、何れの場合にもフ
ツ素イオンの濃度が15〔mg/〕以下に低下して
いることがわかる。 Ca(OH)2単独では第2図からわかるように添
加量を5000〔mg/〕にしてもフツ素イオン濃度
を15〔mg/〕にするのは困難であり、また、酸
化マグネシウムを含む固体単独では第3図及び第
4図にみられるように、F-濃度が高い場合や、
吸収液中のMgSO4濃度が高い場合には、添加量
を5000〔mg/〕としてもフツ素イオン濃度を15
〔mg/〕以下にするのは困難な場合があるが、
本発明によれば、F-の吸収液を先づCa(OH)2
より処理してある程度F-の濃度を低下させた後
MgOを含む固体で処理することによりフツ素イ
オン濃度を15〔mg/〕以下まで低減させること
ができる。
[Table] As can be seen from the results in Table 1, in Example 1 , Ca(OH) 2 and MgO
It can be seen that although the amount of fluoride added was different, the concentration of fluorine ions decreased to 15 [mg/] or less in all cases. As can be seen from Figure 2, with Ca(OH) 2 alone, it is difficult to achieve a fluorine ion concentration of 15 [mg/] even if the amount added is 5000 [mg/]. When used alone, as shown in Figures 3 and 4, when the F - concentration is high,
If the MgSO 4 concentration in the absorption liquid is high, even if the amount added is 5000 [mg/], the fluorine ion concentration will be 15%.
Although it may be difficult to reduce the amount to less than [mg/],
According to the present invention, the F - absorption liquid is first treated with Ca(OH) 2 to reduce the F - concentration to some extent, and then
By treating with a solid containing MgO, the fluorine ion concentration can be reduced to 15 [mg/] or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するためのフロー概略
図、第2図は排液にCa(OH)2を、第3図は排液
にマグネシア吸着剤を、第4図は排液に酸化マグ
ネシウム等を添加した場合の夫々の添加量とフツ
素イオン濃度の関係を示す図である。 1……脱硫排水導入管、2……曝気槽、3……
ブロワー、5……Ca(OH)2溶解槽、6……フイ
ルター、7……反応槽、8……凝集槽、9……酸
化マグネシウム含有物質流入管、10……高分子
凝集注入管、11……沈殿槽、12……中和層、
14……スラリー受槽。
Fig. 1 is a flow diagram for explaining the present invention, Fig. 2 shows Ca(OH) 2 in the effluent, Fig. 3 shows magnesia adsorbent in the effluent, and Fig. 4 shows magnesium oxide in the effluent. FIG. 3 is a diagram showing the relationship between the amount of each additive and the fluorine ion concentration when fluorine ions are added. 1... Desulfurization wastewater introduction pipe, 2... Aeration tank, 3...
Blower, 5... Ca (OH) 2 dissolution tank, 6... Filter, 7... Reaction tank, 8... Coagulation tank, 9... Magnesium oxide-containing substance inflow pipe, 10... Polymer coagulation injection pipe, 11 ... Sedimentation tank, 12 ... Neutralization layer,
14...Slurry receiving tank.

Claims (1)

【特許請求の範囲】 1 水酸化マグネシウムを吸収剤として使用す
る、排ガス中の硫黄酸化物を吸収除去する湿式排
煙脱硫装置から排出される排液中のフツ素イオン
を除去する方法において、該廃液に消石灰を添加
し、反応させた後、固液分離し、さらに分離した
液に酸化マグネシウムを含む固体を添加し反応さ
せた後固液分離させることを特徴とするフツ素イ
オンの除去方法。 2 酸化マグネシウムを含む固体を添加反応させ
た後、固液分離させて得られるスラリーを排煙脱
硫装置のアルカリ剤として再利用する特許請求の
範囲第1項記載のフツ素イオンの除去方法。
[Claims] 1. A method for removing fluorine ions from a liquid discharged from a wet flue gas desulfurization equipment that uses magnesium hydroxide as an absorbent to absorb and remove sulfur oxides from exhaust gas. A method for removing fluorine ions, which comprises adding slaked lime to a waste liquid, causing a reaction, followed by solid-liquid separation, further adding a solid containing magnesium oxide to the separated liquid, causing a reaction, and then performing solid-liquid separation. 2. The method for removing fluorine ions according to claim 1, wherein the slurry obtained by adding and reacting a solid containing magnesium oxide and then performing solid-liquid separation is reused as an alkaline agent in a flue gas desulfurization device.
JP59248096A 1984-11-26 1984-11-26 Removal of fluorine from waste water of waste gas desulfurization apparatus Granted JPS61129090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248096A JPS61129090A (en) 1984-11-26 1984-11-26 Removal of fluorine from waste water of waste gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248096A JPS61129090A (en) 1984-11-26 1984-11-26 Removal of fluorine from waste water of waste gas desulfurization apparatus

Publications (2)

Publication Number Publication Date
JPS61129090A JPS61129090A (en) 1986-06-17
JPH0371197B2 true JPH0371197B2 (en) 1991-11-12

Family

ID=17173151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248096A Granted JPS61129090A (en) 1984-11-26 1984-11-26 Removal of fluorine from waste water of waste gas desulfurization apparatus

Country Status (1)

Country Link
JP (1) JPS61129090A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340872A (en) * 2000-06-05 2001-12-11 Japan Organo Co Ltd Method for treating wastewater containing boron and/or fluorine
JP4878098B2 (en) * 2001-09-12 2012-02-15 奥多摩工業株式会社 Treatment method for fluorine-containing wastewater
JP2005211878A (en) * 2004-02-02 2005-08-11 Takuma Co Ltd Method and apparatus for removing carbon dioxide in exhaust gas
JP5000743B2 (en) * 2010-04-30 2012-08-15 株式会社クレハ環境 Treatment method for fluorine-containing wastewater
CN102838236B (en) * 2012-09-26 2014-04-02 河海大学 Equipment and method for removing manganese ions in underground water
CN102838199B (en) * 2012-09-26 2014-05-07 河海大学 Device and method for removing fluorine ions in groundwater
JP6853061B2 (en) * 2017-02-15 2021-03-31 株式会社クボタ Water treatment method and water treatment system
JP7057212B2 (en) * 2018-05-16 2022-04-19 株式会社クボタ Water treatment method

Also Published As

Publication number Publication date
JPS61129090A (en) 1986-06-17

Similar Documents

Publication Publication Date Title
JPH09192677A (en) Treatment of arsenic-containing waste water
CN103288236A (en) Treatment method for salt-containing wastewater
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
JPH0371197B2 (en)
JPH11137958A (en) Treatment of stack gas desulfurization waste water
JP2001000831A (en) Treatment of absorbed liquid slurry and flue gas desulfurization system
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
JP4972827B2 (en) Treatment method of flue gas desulfurization waste water
CN1092149C (en) Method of treating sludge containing arsenic
CN1270147A (en) Method for treating dreg containing arsenic
JP2758607B2 (en) Treatment method for desulfurization wastewater from wet exhaust gas desulfurization equipment
JP4543478B2 (en) Method for treating boron-containing water
JP2912237B2 (en) Treatment method for fluorine-containing wastewater
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JP4347097B2 (en) Waste water treatment system and exhaust gas treatment system using the same
JPS625027B2 (en)
JP2000176241A (en) Treatment of fluoride ions in waste water in stack gas desulfurization
JP2001286875A (en) Method for treating arsenic-containing waste water
JPH0338294A (en) Method for flocculation treatment of waste water
JPH0910548A (en) Treatment of drain containing fluorine
JPH0716425A (en) Flue gas desulfurization process
JPH11267662A (en) Method of removing fluorine in waste water of flue gas desulfurization
JPH08173755A (en) Method for removing fluorine in drainage of flue gas desulfurization
CN115259445A (en) Treatment method of wet desulphurization spray liquid for inhibiting generation of sulfur dioxide
KR100573184B1 (en) Scale Preventer for Wastewater Disposal Facility in Flue Gas Desulfurization System