JPS6047409A - Manufacture of anisotropic composite magnet - Google Patents

Manufacture of anisotropic composite magnet

Info

Publication number
JPS6047409A
JPS6047409A JP15597583A JP15597583A JPS6047409A JP S6047409 A JPS6047409 A JP S6047409A JP 15597583 A JP15597583 A JP 15597583A JP 15597583 A JP15597583 A JP 15597583A JP S6047409 A JPS6047409 A JP S6047409A
Authority
JP
Japan
Prior art keywords
mold
magnet
magnetic
magnets
anisotropic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15597583A
Other languages
Japanese (ja)
Inventor
Shigeo Tanigawa
茂穂 谷川
Shuichi Shiina
椎名 修一
Kimio Uchida
内田 公穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP15597583A priority Critical patent/JPS6047409A/en
Priority to EP84106414A priority patent/EP0128508B1/en
Priority to DE8484106414T priority patent/DE3484406D1/en
Priority to US06/618,183 priority patent/US4604042A/en
Publication of JPS6047409A publication Critical patent/JPS6047409A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0252PM holding devices
    • H01F7/0268Magnetic cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy

Abstract

PURPOSE:To improve production efficiency by using a mold for injection molding having a plurality of molding spaces, in which magnets for generating magnetomotive force are provided on outside of yokes, and permanent magnets for forming repulsion magnetic circuit are provided between the yokes. CONSTITUTION:A mold has a plurality of cavities 51-54 inside of a base 7 made of soft magnetic material, the cavities being provided with magnetic cores 61-64, respectively, inside thereof. Permanent magnets 11 and 12 for generating magnetomotive force and yokes 31, 32 are placed at the positions corresponding to the magnetic poles on the periphery of the cavity 5. Between the yokes, permanent magnets 21 and 22 are placed for forming repulsion magnetic circuit. Further, non-magnetic spacers 41 and 42 are placed outside of the magnets 21 and 22. The cavities 52-54 are also surrounded by a similar structure to that of the cavity 51. Mixture mainly consisting of ferromagnetic powder and thermoplastic resin is injection molded in the mold. The peripheral surface of the molded body thus obtained is magnetized in the same direction with the orientation by the magnetic field. Thus, the production efficiency can be improved.

Description

【発明の詳細な説明】 本発明は強磁性粉末と熱可塑性樹脂を主体とする混線物
を磁界中で金型内に射出成形して磁気黄方性を付与せし
める異方性複合磁石の製造方法に関する。
[Detailed Description of the Invention] The present invention is a method for manufacturing an anisotropic composite magnet in which a mixed material mainly composed of ferromagnetic powder and a thermoplastic resin is injection molded into a mold in a magnetic field to impart magnetic yellowing. Regarding.

近年、小型モーター、センサー、発電機等の分野でフェ
ライト粉末や希土類コバルト粉末等の強磁性粉末と熱9
丁塑性樹脂を主体とする混線物を、磁界中で射出成形し
て得られた異方性複合磁石が注目されており、実用化さ
れつつある。
In recent years, ferromagnetic powders such as ferrite powders and rare earth cobalt powders have been used in the fields of small motors, sensors, generators, etc.
Anisotropic composite magnets obtained by injection molding in a magnetic field a hybrid material mainly composed of plastic resin are attracting attention and are being put into practical use.

この異方性複合磁石の製造に2いて、従来は軟磁性材と
非磁性材を組合わせた金型の内部に、磁化電源に接続さ
れた磁化コイルを設置する(例えば特公昭58−140
4<i号公報参照)、あるいは該金型の外部に磁化コイ
ルを設置して、磁化コイルに通電して磁界を励起させる
ことにより異方性を付与させるのが一般的である。
To manufacture this anisotropic composite magnet, conventionally a magnetizing coil connected to a magnetizing power source was installed inside a mold made of a combination of soft magnetic materials and non-magnetic materials (for example, in Japanese Patent Publication No. 58-140
4 (see Publication No. i), or it is common to provide anisotropy by installing a magnetizing coil outside the mold and applying electricity to the magnetizing coil to excite a magnetic field.

しかしながらこの種金型を用いて異方性複合磁石を製造
する場合は、設備が高価になりかつ大型化するほかに次
のような問題点があった。
However, when manufacturing an anisotropic composite magnet using this type of mold, the equipment becomes expensive and large, and there are the following problems.

前述の小型モーター等に使用される複合磁石はラジアル
方間に異方性を付与されたリング状磁石であり、径方向
に対称2極を有するものと4極以上の多極異方性を有す
るものに大別されるが、いずれにしても複数個取りが極
めて困難であり、特に多極異方性を付与したリング状磁
石の複数個取りは不可能であり、生産性が低いという問
題点があった。
The above-mentioned composite magnets used in small motors, etc. are ring-shaped magnets that have anisotropy in the radial direction, and some have two symmetrical poles in the radial direction, and others have multipole anisotropy with 4 or more poles. There are two main types of magnets, but in any case, it is extremely difficult to produce multiple magnets, and in particular, it is impossible to produce multiple ring-shaped magnets with multipolar anisotropy, resulting in low productivity. was there.

また、例えば特開昭56−69805号公報に記載され
ているように、安価な設備で多極異方性複合磁石を得る
ために、金型に配設された永久磁石による磁界を印加し
て磁場配向することも提案されている。しかしてこの場
合は、多数個取りは可能であるが、磁気回路としては成
形空間に近接して磁極部分に対応する位置に永久磁石を
設けかつ永久磁石によって形成される磁界の乱れを防ぐ
ために金製に非磁性材料を用いただけであることから、
十分な異方性化は達成できないという問題がある。
Furthermore, as described in JP-A-56-69805, for example, in order to obtain a multipolar anisotropic composite magnet with inexpensive equipment, a magnetic field is applied by a permanent magnet placed in a mold. Magnetic field orientation has also been proposed. However, in the case of levers, it is possible to produce multiple pieces, but the magnetic circuit is equipped with a permanent magnet at a position corresponding to the magnetic pole part close to the molding space, and a metal plate is used to prevent disturbance of the magnetic field formed by the permanent magnet. Since only non-magnetic materials were used for the manufacture,
There is a problem that sufficient anisotropy cannot be achieved.

本発明の目的は、上述の従来技術の問題点を排除し、安
価な設備で高性能の2極又は多極異方性を有する複合磁
石を効率よく得られる異方性複合磁石の製造方法を提供
することである。
An object of the present invention is to provide a method for manufacturing an anisotropic composite magnet that eliminates the problems of the prior art described above and can efficiently produce a composite magnet with high performance bipolar or multipolar anisotropy using inexpensive equipment. It is to provide.

本発明の異方性永久磁石の製造方法は、強磁性粉末と熱
可塑性樹脂を主体とする混合物を磁界を印加しながら金
型内に射出成形し、得られた成形体の外周面に前記磁界
による配向と同方向に着磁を施した異方性複合磁石の製
造方法において、敞記金型として、複数個の成形空間を
有し、該成形空間の周囲の磁極部分に対応する位置に各
々ヨークを設置しかつ該ヨークの外側に各々起磁力発生
用の永久磁石を設置するとともに相隣るヨークIWに該
永久磁石との間に反発磁気回路を形成する永久磁石を設
けてなる金型を用いたことを特徴としている。
The method for producing an anisotropic permanent magnet of the present invention involves injection molding a mixture mainly composed of ferromagnetic powder and thermoplastic resin into a mold while applying a magnetic field, and applying the magnetic field to the outer peripheral surface of the obtained molded body. In the manufacturing method of an anisotropic composite magnet magnetized in the same direction as the orientation according to A mold is provided in which a yoke is installed, a permanent magnet for generating magnetomotive force is installed on the outside of each yoke, and a permanent magnet is provided in an adjacent yoke IW to form a repulsive magnetic circuit between the permanent magnets. It is characterized by the fact that it was used.

以下本発明の詳細を図面により説明する。The details of the present invention will be explained below with reference to the drawings.

第1図は本発明で使用される金型の一例を示す断面図、
第2図は第1図の金型に組込まれる永久磁石の斜視図、
第6図は本発明で使用される金型の他の例を示す断面図
、第4図は第6図の金型に組込まれる永久磁石の斜視図
である。
FIG. 1 is a sectional view showing an example of a mold used in the present invention,
Figure 2 is a perspective view of a permanent magnet incorporated into the mold shown in Figure 1;
FIG. 6 is a sectional view showing another example of the mold used in the present invention, and FIG. 4 is a perspective view of a permanent magnet incorporated into the mold shown in FIG.

まず第1図において、この金型は、対称2極リング状磁
石を製造するために使用されるものであり、軟磁性体か
らなるペース7の内部に複数個(図では4個)のキャビ
ティ5、〜54を有しており、各キャビティの内部には
磁性コア6、〜64が装着されている。またキャピテイ
6、+62+68及び6.の周囲の磁極部分に対応する
位置には、それぞれ起磁力を発生するための永久磁石1
1と1..1sと14.1.と1゜および17と1.な
らびに永久磁石から生ずる磁束線をキャビティ内に有効
に収束させるための軟磁性体からなるヨーク3.と3□
、33と3. 、3.と36および67と36が設置さ
れている。また各ヨーク間には、上記永久磁石からの漏
洩磁束を防ぐために第2図に示す如く磁化された(図中
矢印は磁化方向を示す)永久磁石2.と2. 、2.と
2. 、2.と26および27と2+が設置され、さら
に各永久磁石2.〜28の外側にはそれぞれ非磁性スペ
ーサ4、〜48が設置されている。
First, in FIG. 1, this mold is used to manufacture a symmetrical bipolar ring-shaped magnet, and has a plurality of (four in the figure) cavities 5 inside a pace 7 made of a soft magnetic material. , ~54, and a magnetic core 6, ~64 is installed inside each cavity. Also capacity 6, +62+68 and 6. Permanent magnets 1 for generating magnetomotive force are placed at positions corresponding to the magnetic poles around the
1 and 1. .. 1s and 14.1. and 1° and 17 and 1. and a yoke 3 made of a soft magnetic material to effectively converge the magnetic flux lines generated from the permanent magnet into the cavity. and 3□
, 33 and 3. , 3. and 36 and 67 and 36 are installed. Moreover, between each yoke, there is a permanent magnet 2. magnetized as shown in FIG. and 2. , 2. and 2. , 2. , 26, 27, and 2+ are installed, and each permanent magnet 2. Nonmagnetic spacers 4 and 48 are installed outside of 28, respectively.

上記金型によれば、金型内に複数個のキャピテイが設け
られているため複数個の成形体を同時に得ることができ
ると共に、永久磁石による磁束を有効に成形空間内に収
束できるために、従来の如くの磁場電源や磁化コイルを
用いるまでもなく異方性化に必要な、6000〜aoo
o□e程度の配向磁界を容易に得ることができる。
According to the above mold, since a plurality of cavities are provided in the mold, it is possible to obtain a plurality of molded bodies at the same time, and the magnetic flux from the permanent magnet can be effectively converged within the molding space. 6000~aoo which is necessary for anisotropy without using a conventional magnetic field power supply or magnetization coil.
An orientation magnetic field of approximately o□e can be easily obtained.

次に第6図において(第1図と同一1幾能部分は同一の
参照符号で示す)、この金型は対称44f&の異方性リ
ング状磁石を製造するためのもので、軟磁性体からなる
ベース7の内部に2個のキャビティ5.オ・5よび5.
を有しており、各キャビティの内部には磁性コア6、 
、6.が装着されている。またキャビティ51および5
.の周囲の磁極部分に対応する位置には、それぞれ起磁
力を発生させるための永久磁石” ” ! T ’41
13および14 + 16 + 16 + 1?、永久
磁石から生ずる磁束線をキャビティ内に有効に収束させ
るための軟磁性体からなるヨーク51 r 51 + 
53 + 54および’II + 36 + 37 +
 311が設置されている。また各ヨーク間には、上記
永久磁石群のうち相隣る永久磁5間で短絡する磁束を実
質的に無くすために、第4図に示す如く磁化された(図
中矢印は磁化方向を示す)台形状の永久磁石2. 、2
2・・・28が設置されている。
Next, in Fig. 6 (the same 1 geometrical parts as in Fig. 1 are indicated by the same reference numerals), this mold is for manufacturing an anisotropic ring-shaped magnet with a symmetry of 44 f&, and is made from a soft magnetic material. There are two cavities inside the base 7. E.5 and 5.
Each cavity has a magnetic core 6,
,6. is installed. Also cavities 51 and 5
.. Permanent magnets are placed at positions corresponding to the magnetic poles around the `` `` to generate magnetomotive force, respectively. T'41
13 and 14 + 16 + 16 + 1? , a yoke 51 r 51 + made of a soft magnetic material to effectively converge the magnetic flux lines generated from the permanent magnet into the cavity.
53 + 54 and 'II + 36 + 37 +
311 is installed. In addition, the space between each yoke is magnetized as shown in Fig. 4 in order to substantially eliminate magnetic flux short-circuiting between adjacent permanent magnets 5 of the permanent magnet group (arrows in the figure indicate magnetization directions). ) Trapezoidal permanent magnet 2. ,2
2...28 are installed.

上記金型によっても、複数個の成形体を単一の金型で得
ることができ、しかも永久磁石を含む磁気回路により異
方性化に必要な配向磁界を容易に得ることができる。
With the above-mentioned mold, a plurality of molded bodies can be obtained with a single mold, and the orientation magnetic field necessary for anisotropy can be easily obtained by the magnetic circuit including the permanent magnet.

上記の各金型において、起磁力発生源である永久磁石と
してはフェライト磁石、アルニコ磁石、Fe −Cr−
Co磁石、希土類コバルト磁石、pt−(:’o磁石、
Mn−Al−C磁石等の公知の種々の永久磁石が使用で
きるが、実用的にはフェライト磁石、Fe−Cr−Co
磁石、希土類コバルト磁石の内から選択することが望ま
しい。なお永久磁石1. 、1.・・・ と永久磁石2
. 、2.・・・は同じ材質の永久磁石を使用してもあ
るいは異種材質の永久磁石を使用しても構わない。
In each of the above molds, the permanent magnet that is the source of magnetomotive force is a ferrite magnet, an alnico magnet, a Fe-Cr-
Co magnet, rare earth cobalt magnet, pt-(:'o magnet,
Various known permanent magnets such as Mn-Al-C magnets can be used, but for practical purposes, ferrite magnets, Fe-Cr-Co
It is desirable to select from magnets and rare earth cobalt magnets. In addition, permanent magnet 1. , 1. ... and permanent magnet 2
.. , 2. ... may use permanent magnets made of the same material or different materials.

以上の説明では、2極又は4極のリング状磁石の製造に
ついて述べたが、磁極数はこれに限らす6種以上が可能
であり、又キャピテイの数も2個又は4個に限らないこ
とは言うまでもない。また金型に使用される永久磁石や
ヨーク等の形状、寸法については、要求される磁気特性
、磁極数、製品の形状・寸法に応じて有限要素法等の解
析手法により適宜設定すればよい。
In the above explanation, we have talked about manufacturing a ring-shaped magnet with two or four poles, but the number of magnetic poles is not limited to this, but six or more types are possible, and the number of cavities is not limited to two or four. Needless to say. Further, the shapes and dimensions of the permanent magnets, yokes, etc. used in the mold may be appropriately set according to the required magnetic properties, the number of magnetic poles, and the shape and dimensions of the product using an analytical method such as the finite element method.

本発明においては、上記の金型を用いて例えば次のよう
にして異方性複合磁石が得られる。
In the present invention, an anisotropic composite magnet is obtained using the above-mentioned mold, for example, in the following manner.

まず原料としては、B(L7エライトもしくはSrフェ
ライトなどのフェライト粉末、アルニコ磁石粉末、ll
i”e −Cr−co磁石粉末あるいは希土類コバルト
磁石粉末とスチレン・ブタジェン共重合体、エチレン酢
酸ビニル共重合体、ポリエチレン、ポリアミド等の熱可
塑性樹脂(1種又は2種以上)の混線物を準備する。た
だし強磁性粉末の配合量は磁気特性の点から60重量%
以上(より好ましくは80重量%以上)が好ましい。原
料としてはこれ以外にも、成形性を改善するためにポリ
エチレン、ステアリン酸カルシウム等の滑剤を少量(数
重量%)加えてもよ(、更に強磁性粉末と熱可塑性樹脂
とのぬれ性を改善のために有機ケイ素化合物あるいは有
機チタネート化合物などの添加物を加えてもよい。
First, as raw materials, B (ferrite powder such as L7 elite or Sr ferrite, alnico magnet powder,
Prepare a mixture of i”e -Cr-co magnet powder or rare earth cobalt magnet powder and thermoplastic resin (one or more types) such as styrene-butadiene copolymer, ethylene-vinyl acetate copolymer, polyethylene, polyamide, etc. However, the amount of ferromagnetic powder blended is 60% by weight from the viewpoint of magnetic properties.
or more (more preferably 80% by weight or more). In addition to these raw materials, a small amount (several percent by weight) of a lubricant such as polyethylene or calcium stearate may be added to improve moldability. For this purpose, additives such as organosilicon compounds or organotitanate compounds may be added.

次にこの原料混線物を上記金型を有する射出成形機に投
入し、磁界中で成形しついで冷却固化する。得られた成
形体をそのままあるいは機械加工後、異方性方向と同方
向に着磁して異方性複合磁石が得られる。
Next, this mixed raw material is put into an injection molding machine having the above mold, molded in a magnetic field, and then cooled and solidified. The obtained compact is magnetized in the same direction as the anisotropic direction, either as it is or after machining, to obtain an anisotropic composite magnet.

実施例1 平均粒径1μmのフェライト粉末(B2O・6Fe2.
Os )8.5 Kfにポリアミド樹脂(ナイロン6;
商品名)15Kgを加えてバッチ式ニーダ−により約2
40 Cの温度で混練した。この混線物を第1図に示す
金型なそなえた市販の射出成形機(山域精機製5AV6
0−52型)に投入し、270Cの温度及び70¥iの
圧力下で該金型内に射出しついで冷却固化した。
Example 1 Ferrite powder (B2O.6Fe2.
Os ) 8.5 Kf with polyamide resin (nylon 6;
Product name) Add 15Kg and use a batch kneader to process about 2
The mixture was kneaded at a temperature of 40C. A commercially available injection molding machine (5AV6 manufactured by Yamagou Seiki Co., Ltd., manufactured by Sangei Seiki Co., Ltd.) equipped with the mold shown in Fig.
0-52 mold), injected into the mold at a temperature of 270C and a pressure of 70 yen, and then cooled and solidified.

この場合、金型にお℃・て、永久磁石11〜18として
は40mX 30++anX 10mの5−Co、系希
土類コバルト磁石 (Br −85000,IHC−8
,00口Oe 、 (BH)%cLz −17,5MG
O6)そして永久磁石2I〜28としてはFe−Cr−
co磁石(Br・−1!1500G、 +Hc = 6
5000e l(BH)maw −5,5MGOe )
を用い、ヨーク31〜5.及びベース7としてSS材を
用い、スペーサ4.〜48としてステンレス鋼を用い、
又キャビティ51〜540寸法は30tanφX20調
φx30餌とした。
In this case, the permanent magnets 11 to 18 are 5-Co rare earth cobalt magnets (Br -85000, IHC-8
,00 mouths Oe, (BH)%cLz -17,5MG
O6) and permanent magnets 2I to 28 are Fe-Cr-
co magnet (Br・-1!1500G, +Hc = 6
5000e l(BH)maw -5,5MGOe)
using yokes 31-5. And the base 7 is made of SS material, and the spacer 4. Using stainless steel as ~48,
The dimensions of cavities 51 to 540 were 30 tan φ x 20 tone φ x 30 bait.

得られたリング状成形体の外周面に2極幻称着磁を施し
た結果、第5図に示すような良好な磁気特性を有する異
方性複合磁石が得られた。
As a result of subjecting the outer circumferential surface of the obtained ring-shaped compact to bipolar phantom magnetization, an anisotropic composite magnet having good magnetic properties as shown in FIG. 5 was obtained.

実施例2 平均粒径1μmの希土類コバルト磁石粉末〔5−(Co
o、aa Feo、2s Cuo、oy Hfo−ox
 ) ?−1:) 92 Kfにポリアミド樹脂(ナイ
ロン12:商品名)o、5icpを加えてバッチ式ニー
ダ−により約24DCで混練した。この混練物を第3図
に示す金型なそなえた実施例1と同様の射出成形機に投
入し、270Cの温度及び70υの圧力下で該金型内に
射出し、ついで冷却固化した。
Example 2 Rare earth cobalt magnet powder [5-(Co
o, aa Feo, 2s Cuo, oy Hfo-ox
)? -1:) Polyamide resin (nylon 12: trade name) o, 5 icp was added to 92 Kf and kneaded at about 24 DC using a batch kneader. This kneaded material was put into an injection molding machine similar to that of Example 1 equipped with a mold shown in FIG. 3, injected into the mold at a temperature of 270 C and a pressure of 70 υ, and then cooled and solidified.

この場合、金型には、永久磁石11〜1.として20w
nx iOgx 10mmの寸法を有するS□coat
系永久磁石(Br−9200G、+Hc−asoooe
、(BH)max−22M(30e)を、。
In this case, the mold includes permanent magnets 11 to 1. as 20w
nx iOgx S□coat with dimensions of 10mm
System permanent magnet (Br-9200G, +Hc-asoooe
, (BH)max-22M(30e).

永久磁石21〜2.としてはフェライト磁石(13r−
5800G、1Hc−24000e 、(BH) ma
w−5,5MGOe )を、ヨーク6、〜38及びベー
ス7としてSS材を用い、そしてキャピテイ5. 、5
.の寸法を30+nmX20■φ×60閣とした。
Permanent magnets 21-2. As a ferrite magnet (13r-
5800G, 1Hc-24000e, (BH) ma
w-5,5MGOe), SS material is used for the yokes 6 to 38 and the base 7, and the capacity 5. , 5
.. The dimensions were set to 30 + nm x 20 mm x 60 mm.

得られたリング状成形体の外周面に4極対称着磁を施し
た結果、第6図に示すような良好な磁気特性を有する異
方性複合磁石が得られた。
As a result of subjecting the outer peripheral surface of the obtained ring-shaped compact to four-pole symmetrical magnetization, an anisotropic composite magnet having good magnetic properties as shown in FIG. 6 was obtained.

以上に記述の如く、本発明によれば安価でかつ小型の設
備でしかも高い生産性で、高性能の異方性複合磁石を得
ることができる。
As described above, according to the present invention, a high-performance anisotropic composite magnet can be obtained with inexpensive and small-sized equipment and with high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用される金型の一例を示す断面図、
第2図は第1図の金型に組込まれる永久磁石の斜視図、
第3図は本発明で使用される金型の他の例を示す断面図
、第4図は第3図の金型に組込まれる永久磁石の斜視図
、第5図および第6図はそれぞれ第1図および第3図の
金型を用いた製造した異方性複合磁石の表面磁束密度分
布を示す図である。 11〜1..2.〜2.・・・永久磁石、6、〜36・
・・ヨーク、 41〜4.・・・非磁性スペーサ、 5I〜54・・・キャビティ、 6、〜64・・・磁性コア。
FIG. 1 is a sectional view showing an example of a mold used in the present invention,
Figure 2 is a perspective view of a permanent magnet incorporated into the mold shown in Figure 1;
FIG. 3 is a sectional view showing another example of the mold used in the present invention, FIG. 4 is a perspective view of a permanent magnet incorporated into the mold shown in FIG. 3, and FIGS. FIG. 3 is a diagram showing the surface magnetic flux density distribution of an anisotropic composite magnet manufactured using the molds shown in FIGS. 1 and 3. FIG. 11-1. .. 2. ~2. ...Permanent magnet, 6, ~36・
...York, 41-4. ...Nonmagnetic spacer, 5I-54...Cavity, 6, -64...Magnetic core.

Claims (1)

【特許請求の範囲】 1、 強磁性粉末と熱可塑性樹脂を主体とする混合物を
磁場を印加しながら金型内に射出成形し、得られた成形
体の外周面に前記磁場による配向と同方向に着磁を施し
た異方性複合磁石の製造方法において、前記金型として
、複数個の成形空間を有し、該成形空間の周囲の磁極部
分に対応する位置に各々ヨークを設けかつ該ヨークの外
側に起磁力発生用の永久磁石を設置するとともに相隣る
ヨーク間に該永久磁石との間に反炎磁気回路を形成する
永久磁石を設けてなる金層を用いたことを特徴とする異
方性複合磁石の木造方法。 2、起磁力発生用の永久磁石としてフェライト磁石、F
e−Cr−Co磁石、希土類コバルト磁石のうちから選
ばれた1種を用いることを特徴とする特許請求の範囲第
1項記載の異方性複合磁石の製造方法。 3、 成形空間を円筒状としたことを特徴とする特許請
求の範囲第1項記載の異方性複合磁石の製造方法。
[Claims] 1. A mixture mainly composed of ferromagnetic powder and thermoplastic resin is injection molded into a mold while applying a magnetic field, and the outer peripheral surface of the obtained molded body is oriented in the same direction as the orientation caused by the magnetic field. In the method for manufacturing an anisotropic composite magnet which is magnetized, the mold has a plurality of molding spaces, and each molding space has a yoke provided at a position corresponding to a magnetic pole portion around the molding space, and the yoke A gold layer is used, in which a permanent magnet for generating magnetomotive force is installed on the outside of the yoke, and a permanent magnet is provided between adjacent yokes to form an anti-flame magnetic circuit between the permanent magnets. Wooden method of anisotropic composite magnet. 2. Ferrite magnet, F as a permanent magnet for generating magnetomotive force
The method for manufacturing an anisotropic composite magnet according to claim 1, characterized in that one selected from e-Cr-Co magnets and rare earth cobalt magnets is used. 3. The method for manufacturing an anisotropic composite magnet according to claim 1, characterized in that the molding space is cylindrical.
JP15597583A 1983-06-08 1983-08-26 Manufacture of anisotropic composite magnet Pending JPS6047409A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15597583A JPS6047409A (en) 1983-08-26 1983-08-26 Manufacture of anisotropic composite magnet
EP84106414A EP0128508B1 (en) 1983-06-08 1984-06-05 Method and apparatus for producing anisotropic magnets
DE8484106414T DE3484406D1 (en) 1983-06-08 1984-06-05 METHOD AND APPARATUS FOR PRODUCING ANISOTROPIC MAGNETS.
US06/618,183 US4604042A (en) 1983-06-08 1984-06-07 Apparatus for producing anisotropic magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15597583A JPS6047409A (en) 1983-08-26 1983-08-26 Manufacture of anisotropic composite magnet

Publications (1)

Publication Number Publication Date
JPS6047409A true JPS6047409A (en) 1985-03-14

Family

ID=15617621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15597583A Pending JPS6047409A (en) 1983-06-08 1983-08-26 Manufacture of anisotropic composite magnet

Country Status (1)

Country Link
JP (1) JPS6047409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086443A (en) * 2001-09-11 2003-03-20 Sumitomo Special Metals Co Ltd Magnetic-field forming system and powder-forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086443A (en) * 2001-09-11 2003-03-20 Sumitomo Special Metals Co Ltd Magnetic-field forming system and powder-forming method

Similar Documents

Publication Publication Date Title
JPS6150368B2 (en)
JPS6047409A (en) Manufacture of anisotropic composite magnet
JPS59226367A (en) Production of anisotropic magnet roll
JP3702036B2 (en) Method for producing anisotropic resin magnet and mold for production
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JPS6214411A (en) Manufacture of ring-shaped magnetic molded matter
JP7381851B2 (en) Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet
JPH0220130B2 (en)
JP2563436B2 (en) Magnet roll manufacturing method
JPS62229817A (en) Manufacture of polar anisotropic long molded product
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPS60186008A (en) Manufacture of ring-shaped magnetic mold
JPH0259994B2 (en)
JPS6010278A (en) Manufacture of anisotropic cylindrical magnet
JPH0556644B2 (en)
JPS6221206A (en) Manufacture of ring-shaped multipolar magnet
JPS6211212A (en) Injection molding die for manufacturing plastic magnet
JPS61248407A (en) Cylindrical magnetic molding die
JPH0533802B2 (en)
JPH04304156A (en) Shifted anisotropic magnet, fabricating system therefor and dc linear motor
JPS6010610A (en) Manufacture of anisotropic magnet roll
JPS62251109A (en) Molding orientation device
JPH0719710B2 (en) Resin magnet manufacturing method
JPH02213108A (en) Manufacture of anisotropic multipole plastic magnet