JPH02213108A - Manufacture of anisotropic multipole plastic magnet - Google Patents

Manufacture of anisotropic multipole plastic magnet

Info

Publication number
JPH02213108A
JPH02213108A JP3285989A JP3285989A JPH02213108A JP H02213108 A JPH02213108 A JP H02213108A JP 3285989 A JP3285989 A JP 3285989A JP 3285989 A JP3285989 A JP 3285989A JP H02213108 A JPH02213108 A JP H02213108A
Authority
JP
Japan
Prior art keywords
magnetic
cavity
poles
permanent magnet
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3285989A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Matsuoka
松岡 三芳
Giichi Kawashima
川島 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP3285989A priority Critical patent/JPH02213108A/en
Publication of JPH02213108A publication Critical patent/JPH02213108A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the ferromagnetic powder in a plastic magnet orient sufficiently by arranging the same number of magnetic cores comprising high permeability material as the number of magnetic poles perpendicularly to the surface of a cavity and permanent magnets around the cavity of a metal mold so that the polarities of the poles of the permanent magnets are the same polarities on both sides of the magnetic core. CONSTITUTION:The same number of magnetic ores 3 made of high permeability material as the number of magnetic poles and permanent magnets 4 are arranged perpendicularly to the surface of a cavity around the cavity 1 of a metal mold. The polarities of the poles of the permanent magnets 4 are the same polarities on both sides of the magnetic core 3. A magnetic path is formed with the magnetic core 3, the permanent magnet 4 and the cavity space. In this constitution, the direction of a magnetic field generated in the cavity space agrees with the direction of a magnetic field in a molded product when many poles are provided on the product. Devices 6, 8 and 9 for attaching the permanent magnet 4 are provided in the metal mold 5. A molding material incorporating magnetic powder is injected into the metal mold 5, and molding is performed. For example, when said permanent magnet 4 is attached to the metal mold 5, a pulse current is made to flow through the winding 6 when the iron pin 8 is made to protrude, and the magnetic field as shown with broken lines in the figure is generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金キ中ビティー周囲にキャビティー面に垂直
に着磁極数と同数の磁芯と永久磁石を永久磁石の極が磁
芯の両側で同極となるように配置した金型に磁性粉末を
含む成形材料を射出して異方性多極プラスチック磁石を
製造する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is based on a method in which magnetic cores and permanent magnets with the same number of magnetized poles as the number of magnetized poles are placed around a cavity in a metal cavity perpendicularly to the cavity surface. The present invention relates to a method of manufacturing an anisotropic multipolar plastic magnet by injecting a molding material containing magnetic powder into a mold arranged so that both sides have the same polarity.

〔従来の技術〕[Conventional technology]

第3図は異方性8極磁石(12)の例であるが、図中の
矢印の方向に磁石中の磁路が構成されるように強磁性体
粉末を配向させる方法として、従来、第4図に示すよう
な金型キャビティー(1)の周辺に着磁極数だけ磁芯(
3)に巻線(8)を設けた電磁石を配置し、図中の矢印
の方向に磁界を印加して配向させるものがあった。とこ
ろが、極数が多くなると!磁石を金型(6)内に組み込
むことが回能であった。
FIG. 3 shows an example of an anisotropic octupole magnet (12). Conventionally, as a method of orienting ferromagnetic powder so that a magnetic path in the magnet is formed in the direction of the arrow in the figure, As shown in Figure 4, as many magnetic cores (as the number of magnetized poles) are placed around the mold cavity (1).
3), an electromagnet equipped with a winding (8) is arranged, and a magnetic field is applied in the direction of the arrow in the figure for orientation. However, when the number of poles increases! The solution was to incorporate the magnet into the mold (6).

次に第5図に示すように電磁石のかわりに永久磁石(l
O)を配置するという方法があったが、配向磁場の磁気
回路を永久磁石とキャビティー(1)、空隙(1,1)
のみで構成するため磁気抵抗が大きくキャビティー(1
)に配向に必要な十分大きな磁界が得にくく、また長年
の使用に伴い永久磁石が減磁するという欠点があった。
Next, as shown in Figure 5, a permanent magnet (l) is used instead of the electromagnet.
There was a method of arranging the magnetic circuit of the orienting magnetic field with a permanent magnet, a cavity (1), and an air gap (1, 1).
The magnetic resistance is large because the cavity (1
) has the disadvantage that it is difficult to obtain a sufficiently large magnetic field necessary for orientation, and that the permanent magnets become demagnetized with long-term use.

(発明が解決しようとする課題) 本発明は高磁力の異方性多種プラスチック磁石を得んと
して研究した結果、金型キャビティーの周囲に垂直に配
!した電磁石の作る磁界のかわりに高透磁率材料で作ら
れた磁芯と永久磁石を永久磁石の極が磁芯の両側で同じ
になるように配置し、磁芯、永久磁石及びキャビティー
空間で磁路を構成して作る磁界によってプラスチック磁
石中の強磁性体を配向させ、金型内に前述の永久磁石を
着磁する装置を設けることで永久磁石の減磁の心配もせ
ずに、高磁力の異方性多極プラスチック磁石が得られる
という知見を得、更にこの知見に基づき種々の研究を進
めて本発明を完成するに至ったものである。
(Problems to be Solved by the Invention) As a result of research aimed at obtaining anisotropic multi-species plastic magnets with high magnetic force, the present invention has developed a magnet that is arranged perpendicularly around the mold cavity. Instead of the magnetic field generated by the electromagnet, a magnetic core made of a high permeability material and a permanent magnet are arranged so that the poles of the permanent magnet are the same on both sides of the magnetic core, and the magnetic core, permanent magnet, and cavity space are By orienting the ferromagnetic material in the plastic magnet using the magnetic field created by configuring the magnetic path, and installing a device in the mold that magnetizes the above-mentioned permanent magnet, high magnetic force can be achieved without worrying about demagnetization of the permanent magnet. They obtained the knowledge that an anisotropic multipolar plastic magnet can be obtained, and based on this knowledge, they proceeded with various studies and completed the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は金型キャビティーの周囲にキャビティー面に対
して垂直に着M1極数と同数の高透磁率材料で作られた
磁芯と永久磁石を永久磁石の極が磁芯の両側で同掻とな
るように配置し、磁芯、永久磁石及びキャビティー空間
で磁路を構成し、キャビティー空間に発生する磁界の方
向が成形品を多極着磁した場合の成形品中の磁界の方向
に一敗するように構成した金型に磁性粉末を含む成形材
料を射出して成形し、金型内に前述の永久磁石を着磁す
る装置を設けて減磁した際に再着磁することを特徴とす
る異方性多極プラスチック磁石の製造方法である。
The present invention uses a magnetic core made of a high magnetic permeability material and a permanent magnet with the same number of M1 poles attached perpendicularly to the cavity surface around the mold cavity, so that the poles of the permanent magnet are the same on both sides of the magnetic core. The magnetic core, permanent magnet, and cavity space constitute a magnetic path, and the direction of the magnetic field generated in the cavity space is the same as that of the magnetic field in the molded product when the molded product is multipolar magnetized. Molding is carried out by injecting a molding material containing magnetic powder into a mold configured to bend in one direction, and a device for magnetizing the above-mentioned permanent magnet is installed in the mold to re-magnetize it when it is demagnetized. This is a method of manufacturing an anisotropic multipolar plastic magnet characterized by the following.

〔作  用〕[For production]

第1図は本発明の異方性多極プラスチック磁石の製造用
磁場配向金型である。また第2図は第1図のZl−22
−23断面図である。
FIG. 1 shows a magnetically oriented mold for manufacturing an anisotropic multipolar plastic magnet according to the present invention. Also, Figure 2 shows Zl-22 in Figure 1.
-23 sectional view.

まず、射出成形時の成形品の磁場配向用磁気回路につい
て説明する。
First, a magnetic circuit for magnetic field orientation of a molded product during injection molding will be described.

円柱状、円筒状又は多角形状のキャビティー(1)の周
囲に非磁性の環(2)をはさんで、キャビティー面に垂
直に高透磁率材料で作られた磁芯(3)と永久磁石(4
)で磁路を構成している。
A non-magnetic ring (2) is sandwiched around a cylindrical, cylindrical or polygonal cavity (1), and a permanent magnetic core (3) made of a high magnetic permeability material is placed perpendicular to the cavity surface. Magnet (4
) constitutes a magnetic path.

成形品を成形後切削する場合または外観の出来映えをと
られれない場合は非磁性の環(2)は不用である。
The non-magnetic ring (2) is unnecessary when cutting the molded product after molding or when the appearance cannot be maintained.

使用される永久磁石は高磁力でかつ温度係数の小さい希
土類コバルト系磁石が望ましい、使用される磁心材料は
限定されるものではない、また本成形法によって使用さ
れる磁性材料も限定されるものではない。
The permanent magnet used is preferably a rare earth cobalt magnet with high magnetic force and a small temperature coefficient.The magnetic core material used is not limited, and the magnetic material used by this molding method is also not limited. do not have.

永久磁石(4)のN極より発生した磁束は磁芯(3)を
隔てた永久磁石のN極より発生した磁束と反発し、磁芯
(3)、非磁性の環(2)、キャビティー(1)、非磁
性の環(2)及び永久磁石(4)のS極側の磁芯を通っ
て永久磁石(4)のS側へ戻る。これに伴い、キャビテ
ィー(1)には第1回矢印に示されるような磁界が常に
生じており、この方向に磁場配向され異方性磁石が得ら
れる。
The magnetic flux generated from the N pole of the permanent magnet (4) is repelled by the magnetic flux generated from the N pole of the permanent magnet that separates the magnetic core (3), and the magnetic flux from the magnetic core (3), the non-magnetic ring (2), and the cavity. (1), returns to the S side of the permanent magnet (4) through the non-magnetic ring (2) and the magnetic core on the S pole side of the permanent magnet (4). Along with this, a magnetic field as shown by the first arrow is always generated in the cavity (1), and the magnetic field is oriented in this direction to obtain an anisotropic magnet.

磁芯の太さは、磁芯の両側に設置された永久磁石より発
生する磁束で飽和しない程度にすることが望ましい。
It is desirable that the thickness of the magnetic core is such that it will not be saturated by the magnetic flux generated by the permanent magnets installed on both sides of the magnetic core.

次に、前述の永久磁石(4)を金型内で着磁する磁気回
路について説明する。
Next, a magnetic circuit for magnetizing the above-mentioned permanent magnet (4) within the mold will be explained.

磁芯の外側に空間(7)をつくり、突出し時にこの部分
に鉄ピン(8)がくるようにする。
A space (7) is created on the outside of the magnetic core so that the iron pin (8) comes into this space when it is ejected.

さらに外側に鉄のI!(9)を配置し、鉄の環に極数と
同数の巻線(6)を配置する。
Iron I on the outside! (9), and arrange the same number of windings (6) as the number of poles on the iron ring.

突出し時に巻数にパルス電流を流し、第1図の、破線矢
印で示すような磁界を発生させ永久磁石(4)を着磁す
る。
At the time of ejection, a pulse current is passed through the windings to generate a magnetic field as shown by the broken line arrow in FIG. 1 to magnetize the permanent magnet (4).

〔発明の効果) 本発明の第1図の磁場配向金型を用いた異方性多極磁石
(10)の製造方法は第5図の金型を用いた方法に比べ
て、磁芯を設置するために磁気回路の磁気抵抗が小さく
なり、プラスチック磁石中の強磁性体粉末を十分に配向
させることができる。
[Effects of the Invention] The method of manufacturing an anisotropic multipolar magnet (10) using the magnetic field orientation mold shown in FIG. Therefore, the magnetic resistance of the magnetic circuit becomes small, and the ferromagnetic powder in the plastic magnet can be sufficiently oriented.

また、永久磁石(4)を金型内に設けた着磁装置で再着
磁することで永久磁石の減磁を防ぐこともできる。
Moreover, demagnetization of the permanent magnet can also be prevented by re-magnetizing the permanent magnet (4) with a magnetizing device provided in the mold.

以上のような理由から、工業的な異方性多極磁石の製造
方法として好適である。
For the above reasons, this method is suitable as an industrial method for manufacturing anisotropic multipolar magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の永久磁石を利用した異方性多極プラス
チック磁石の製造用磁場配向金型の断面図である。 第2図は第1図のZl−Z2−Z3断面図である。 第3図は異方性8極永久磁石の例の平面図である。 第4図は従来の電磁石を利用した異方性多極プラスチッ
ク磁石の製造用磁場配向金型の断面図である。 第5図は従来の永久磁石を利用した異方性多極プラスチ
ック磁石の製造用Idi場配向金型の断面図である。 特許出願人: 住友ベークライト株式会社第 図 8f灸ヒ゛ン 5金型(荘m+リミイ1ミ)
FIG. 1 is a sectional view of a magnetic field orientation mold for manufacturing an anisotropic multipolar plastic magnet using the permanent magnet of the present invention. FIG. 2 is a sectional view taken along Zl-Z2-Z3 in FIG. 1. FIG. 3 is a plan view of an example of an anisotropic octupole permanent magnet. FIG. 4 is a sectional view of a magnetic field orientation mold for manufacturing an anisotropic multipolar plastic magnet using a conventional electromagnet. FIG. 5 is a sectional view of a conventional Idi field orientation mold for manufacturing an anisotropic multipolar plastic magnet using permanent magnets. Patent applicant: Sumitomo Bakelite Co., Ltd. Fig. 8f Moxibustion 5 molds (Sho m + Rimy 1 mi)

Claims (1)

【特許請求の範囲】[Claims] 1.金型キャビティーの周囲にキャビティー面に対して
垂直に着磁極数と同数の高透磁率材料で作られた磁芯と
永久磁石を永久磁石の極が磁芯の両側で同極となるよう
に配置し、磁芯、永久磁石及びキャビティー空間で磁路
を構成し、キャビティー空間に発生する磁界の方向が成
形品を多極着磁した場合の成形品中の磁界の方向と一致
するように構成し、永久磁石を着磁する装置を設けた金
型に磁性粉末を含む成形材料を射出して成形することを
特徴とする異方性多極プラスチック磁石の製造方法。
1. Around the mold cavity, a magnetic core and permanent magnet made of high permeability material with the same number of magnetized poles are placed perpendicular to the cavity surface so that the poles of the permanent magnets are the same on both sides of the magnetic core. The magnetic core, permanent magnet, and cavity space form a magnetic path, and the direction of the magnetic field generated in the cavity space matches the direction of the magnetic field in the molded product when the molded product is multipolar magnetized. 1. A method for producing an anisotropic multipolar plastic magnet, which comprises injecting and molding a molding material containing magnetic powder into a mold equipped with a device for magnetizing a permanent magnet.
JP3285989A 1989-02-14 1989-02-14 Manufacture of anisotropic multipole plastic magnet Pending JPH02213108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285989A JPH02213108A (en) 1989-02-14 1989-02-14 Manufacture of anisotropic multipole plastic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285989A JPH02213108A (en) 1989-02-14 1989-02-14 Manufacture of anisotropic multipole plastic magnet

Publications (1)

Publication Number Publication Date
JPH02213108A true JPH02213108A (en) 1990-08-24

Family

ID=12370572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285989A Pending JPH02213108A (en) 1989-02-14 1989-02-14 Manufacture of anisotropic multipole plastic magnet

Country Status (1)

Country Link
JP (1) JPH02213108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416471A (en) * 2012-01-09 2012-04-18 湖南航天工业总公司 Pressing mold for manufacturing amplitude/multi-polar oriented whole permanent magnetic ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416471A (en) * 2012-01-09 2012-04-18 湖南航天工业总公司 Pressing mold for manufacturing amplitude/multi-polar oriented whole permanent magnetic ring

Similar Documents

Publication Publication Date Title
JPS6427208A (en) Cylindrical permanent magnet, motor using same and manufacture thereof
JPS6359243B2 (en)
JPS6150368B2 (en)
CS213750B1 (en) Method of making the anizotropic permanent magnets
JPS63228707A (en) Manufacture of anisotropic multi-pole plastic magnet
JPH02213108A (en) Manufacture of anisotropic multipole plastic magnet
JP3702036B2 (en) Method for producing anisotropic resin magnet and mold for production
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JPS588571B2 (en) Simultaneous orientation magnetization method in injection molding
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JPS6211212A (en) Injection molding die for manufacturing plastic magnet
JPS61176106A (en) Manufacture of permeable member
JPH0629139A (en) Anisotropic resin magnet with functional member
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
JPS60211908A (en) Manufacture of cylindrical permanent magnet
JPS6432611A (en) Manufacture of anisotropic multi-pole plastic magnet
JPH0220131B2 (en)
JP2800458B2 (en) Magnetic forming equipment for anisotropic plastic magnets
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPS6221206A (en) Manufacture of ring-shaped multipolar magnet
JPH088134A (en) Anisotropic permanent magnet
JPS59136916A (en) Manufacture of permanent magnet
JPH0523307Y2 (en)
JPS56111205A (en) Method for multipole magnetization on resin magnet
JPS6213015A (en) Manufacture of magnet