JPS6150368B2 - - Google Patents

Info

Publication number
JPS6150368B2
JPS6150368B2 JP55113893A JP11389380A JPS6150368B2 JP S6150368 B2 JPS6150368 B2 JP S6150368B2 JP 55113893 A JP55113893 A JP 55113893A JP 11389380 A JP11389380 A JP 11389380A JP S6150368 B2 JPS6150368 B2 JP S6150368B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic
magnetic field
orientation
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55113893A
Other languages
Japanese (ja)
Other versions
JPS5737803A (en
Inventor
Katsue Kenmochi
Tamotsu Wakahata
Hideyuki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11389380A priority Critical patent/JPS5737803A/en
Publication of JPS5737803A publication Critical patent/JPS5737803A/en
Publication of JPS6150368B2 publication Critical patent/JPS6150368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 本発明は異方化磁石の異方化処理に関するもの
であり、磁石の表面磁束密度を向上するための磁
場配向異方化処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to anisotropy treatment of an anisotropic magnet, and more particularly to a magnetic field orientation anisotropy treatment method for improving the surface magnetic flux density of a magnet.

磁気異方性を有する磁性粉体を所定の強さを有
する磁場中で配向させる方法は古くから知られて
いる。例えば異方性焼結フエライト(特公昭29―
885号公報)、異方性樹脂マグネツト(特公昭37―
3321号公報,特公昭39―28287号公報)などがあ
る。
A method of orienting magnetic powder having magnetic anisotropy in a magnetic field having a predetermined strength has been known for a long time. For example, anisotropic sintered ferrite
885 Publication), Anisotropic Resin Magnet (Special Publication No. 1978)
Publication No. 3321, Special Publication No. 39-28287), etc.

異方化処理の目的は、磁気異方性を有する粉体
を磁石として用いる時の磁力線の方向に整列させ
て、磁石としての性質を有効に発揮させることに
ある。この目的からすれば、着磁の際の磁気回路
と等しいか、またはそれに似た磁気回路による磁
場を異方化するための配向磁場として用いること
が望ましい。このこともまた公知であり、様々な
工夫がなされている。例えば、着磁分布に合わせ
て金型中にN.S交互に磁石を配置する方法(特公
昭39―28287号公報)、着磁ヨークに似たコイルと
ヨークを有する金型を用いパルス磁場で配向を行
なう方法、同じく着磁ヨーク同様の磁気回路を有
する金型を用い定常磁場により配向する方法など
がある。
The purpose of the anisotropy treatment is to align the powder having magnetic anisotropy in the direction of magnetic lines of force when used as a magnet, so that it can effectively exhibit its properties as a magnet. For this purpose, it is desirable to use a magnetic field generated by a magnetic circuit that is equal to or similar to the magnetic circuit used for magnetization as an orienting magnetic field for anisotropy. This is also well known, and various efforts have been made. For example, there is a method in which magnets are arranged alternately in NS in a mold according to the magnetization distribution (Japanese Patent Publication No. 39-28287), and a method in which a mold with a coil and yoke similar to a magnetization yoke is used to achieve orientation using a pulsed magnetic field. There are two methods, including a method in which a mold having a magnetic circuit similar to the magnetizing yoke is used and a steady magnetic field is used for orientation.

以上の方法で期待する効果を端的に、かつ図式
的に表現すれば、第1図、第2図のような表わし
方が許される。第1図は異方性磁石粉体の異方化
方向を表わすものであり、平たい粉体1の広い面
に垂直な方向(矢印の方向)に磁化容易軸を有す
る。こうして表わされる粉体が理想的な配列とし
た場合を第2図に示す。即ち磁石体2は同一面上
に異極を有するとした時に、第1図と同様の粉体
3の面は、好ましい磁力線の方向(破線4で示
す)に垂直になるように配向していることが理想
である。
If the expected effects of the above method are expressed simply and diagrammatically, expressions such as those shown in FIGS. 1 and 2 are acceptable. FIG. 1 shows the anisotropic direction of the anisotropic magnet powder, which has an axis of easy magnetization in the direction perpendicular to the wide surface of the flat powder 1 (in the direction of the arrow). FIG. 2 shows a case where the powder thus represented is arranged in an ideal manner. That is, assuming that the magnet 2 has different poles on the same surface, the surface of the powder 3 similar to that in FIG. 1 is oriented perpendicular to the direction of the preferred magnetic field lines (indicated by the broken line 4). That is the ideal.

第2図に示すような配向をさせるためには、異
方性磁石粉末を成形する際に破線4で示される磁
力線の方向を有する磁場を与えることが必要であ
り、このことに基いて前記のような配向方法が提
案されている。
In order to obtain the orientation shown in FIG. 2, it is necessary to apply a magnetic field having the direction of the lines of magnetic force shown by the broken line 4 when molding the anisotropic magnetic powder, and based on this, the above-mentioned Such orientation methods have been proposed.

ところが、実際に前述の如き磁場を得ようとす
るといくつかの困難がある。
However, there are several difficulties when attempting to actually obtain the magnetic field as described above.

その第一は、磁場の強さにある。磁場の強さは
配向する磁性粉体の抗磁力よりも強く、更にその
数倍を要するとされている。例えば、最も普通に
用いられているストロンチウムフエライトは、
iHcで約3000エルステツドを有しており、配向磁
場としては焼結体、樹脂マグネツトを問わず5000
エスステツド以上、一般には10キロエルステツド
以上を要する。これに対して、特公昭39―28287
号公報に示されるような磁石を用いる方法では所
定の磁場を得ることが難しい。従つて、実際上は
コイルと強磁性体を用いる方法に限られる。
The first is the strength of the magnetic field. It is said that the strength of the magnetic field is stronger than the coercive force of the oriented magnetic powder, and several times stronger than the coercive force of the oriented magnetic powder. For example, the most commonly used strontium ferrite is
It has approximately 3000 oersted in iHc, and the orientation magnetic field is 5000 oersted regardless of whether it is a sintered body or a resin magnet.
It generally requires at least 10 km oersted. On the other hand, the special public official 39-28287
It is difficult to obtain a predetermined magnetic field with the method using a magnet as shown in the publication. Therefore, in practice, the method is limited to methods using coils and ferromagnetic materials.

第2の問題はコイルを用いる際の発熱にある。
前述の磁場を得るために、3×104アンペアター
ン程度の起磁力が必要である。そのためには、通
常数千ターンの巻数と数十アンペアの電流を要す
る。限られたスペースの中で数多くの巻数を得る
ためには、必然的に線径を細くすることになり、
所定の電流を流した場合の発熱量が多くなり、結
果として線の被覆が耐えられなくなる。特に多極
モーター用マグネツトのように同一面上に異極が
交互に設けられ、例えば極間の寸法が30mm以下の
マグネツトであれば、30mm以下のピツチでコイル
を設置するすることが要求される。このような例
においては、極端に細い線が要求され、抵抗値が
それにつれて極端に大きくなり、電源装置の制限
により所定の電流を流すことさえ難しくなる。
The second problem is the heat generated when using the coil.
In order to obtain the above-mentioned magnetic field, a magnetomotive force of about 3×10 4 ampere turns is required. This typically requires several thousand turns and several tens of amperes of current. In order to obtain a large number of turns in a limited space, it is necessary to reduce the wire diameter.
When a predetermined current is applied, the amount of heat generated increases, and as a result, the wire coating becomes unbearable. In particular, if the magnet has different poles arranged alternately on the same surface, such as a magnet for a multi-pole motor, and the distance between the poles is 30 mm or less, the coils must be installed at a pitch of 30 mm or less. . In such an example, an extremely thin wire is required, the resistance value becomes extremely large, and it becomes difficult to even flow a predetermined current due to power supply limitations.

第3の問題は、配向磁場を継続する時間にあ
る。発熱の問題は、コイルに電流を流す時間を短
かくすることにより解決するかの如くに考えられ
る。即ち、5×103アンペア程度の電流でも、通
電時間が10-2秒程度のパルス電流で、かつ、電流
を流してから次の電流を流すまでの時間を十分長
く(102秒オーダー)とれば、直径1mmの銅線に
特殊な被覆をした線を用いることにより発熱に耐
えることができる。しかしながら配向磁場を持続
するべき時間はこれよりはるかに長い。即ち例え
ば焼結フエライトにおける磁場プレス工程におい
ては、粉体の密度が粗の状態から密の状態になる
までのプレス工程で磁場は継続されていなければ
ならず、また樹脂マグネツトを用いた射出成形工
程においては、溶融状態にある組成物を射出開始
して、組成物が固化するまでの間、磁場を継続さ
せる必要がある。この時間は概略数〜十数秒であ
り、前述のパルス電流によるパルス磁場では一旦
配向した粒子が互いに影響を及ぼすことや、外力
により崩れるため十分な配向が得られない。
The third problem lies in the time for which the orienting magnetic field is continued. It is thought that the problem of heat generation can be solved by shortening the time during which current is passed through the coil. In other words, even if the current is about 5 × 10 3 amperes, the pulse current should be applied for about 10 -2 seconds, and the time from one current to the next current should be sufficiently long (on the order of 10 -2 seconds). For example, by using a 1 mm diameter copper wire with a special coating, it can withstand heat generation. However, the time for which the orienting magnetic field should be maintained is much longer than this. That is, for example, in the magnetic field pressing process for sintered ferrite, the magnetic field must be continued during the pressing process until the density of the powder changes from a coarse state to a dense state, and in the injection molding process using a resin magnet. In this case, it is necessary to continue applying a magnetic field until the injection of the molten composition starts and the composition solidifies. This time is approximately several to ten-odd seconds, and sufficient orientation cannot be obtained in the pulsed magnetic field generated by the above-mentioned pulsed current because once oriented particles influence each other or are disrupted by external force.

上記問題点を有するため、磁場配向法について
は、第2図に示すような理想的な配向はされてお
らず、実際には第3図に示すような装置により、
第4図に示す配向を行ない、第5図に示す着磁を
施すことが普通に行なわれている。
Due to the above-mentioned problems, the ideal orientation shown in Figure 2 is not achieved using the magnetic field orientation method, and in reality, the apparatus shown in Figure 3 is used to achieve the ideal orientation.
It is common practice to perform the orientation shown in FIG. 4 and the magnetization shown in FIG. 5.

第3図は磁場配向装置の断面を示しており、
5,6はコイル7,8は磁性体、9,10は非磁
性体、11はマグネツトが形成されるキヤビテイ
空間である。キヤビテイ11には配向させるに十
分な磁場が発生可能であり、磁力線の方向は、磁
性体7と磁性体8を結ぶ方向であり、かつ磁束の
密度はどこも大体均一である。
Figure 3 shows a cross section of the magnetic field orientation device.
Coils 7 and 8 are made of magnetic material, 9 and 10 are made of non-magnetic material, and 11 is a cavity space in which a magnet is formed. A magnetic field sufficient for orientation can be generated in the cavity 11, the direction of the magnetic lines of force is the direction connecting the magnetic bodies 7 and 8, and the density of the magnetic flux is approximately uniform everywhere.

第4図は第3図の装置から得られるマグネツト
の配向状態を模擬的に表わす部分断面図である。
マグネツト12を構成する個々の異方性磁石粉末
13はそれぞれ同じ方向に配向しており、マグネ
ツトの一面をN極とすれば、その裏面がS極とな
る。
FIG. 4 is a partial sectional view simulating the orientation state of the magnet obtained from the apparatus of FIG. 3.
The individual anisotropic magnet powders 13 constituting the magnet 12 are oriented in the same direction, and if one side of the magnet is the north pole, the back side is the south pole.

第5図は、第4図で示すマグネツトを一旦脱磁
した後、シールド板を接着し、更に着磁した状態
での磁気回路を模擬的に示す部分断面図である。
マグネツト12の同一面上にN極,S極を交互に
設けるように着磁操作を施すことにより、マグネ
ツト12の内部を通る磁力線は、主として、一旦
裏面に集まり、シールド板14を介して隣の異極
と結ばれるような分布を示すものと理解される。
FIG. 5 is a partial sectional view schematically showing a magnetic circuit in a state in which the magnet shown in FIG. 4 is once demagnetized, a shield plate is bonded to the magnet, and the magnet is further magnetized.
By performing a magnetizing operation such that N and S poles are alternately provided on the same surface of the magnet 12, the lines of magnetic force passing through the inside of the magnet 12 are mainly concentrated on the back surface and then transferred to the adjacent magnet via the shield plate 14. It is understood that it shows a distribution that is connected to different poles.

こうして成る異方性マグネツトは、第2図と比
較すると容易に解るように極間で磁石として有効
に動作しない部分13′があるため、磁気回路の
効率が悪く、結果として極表面に取り出される磁
束量が少なくなり、磁束密度が理想状態に比べて
低下する。このことは磁石としての性能が低いこ
とを意味し、モータではトルクが小さくなりダイ
ナモでは起電力が小さくなる。
As can be easily seen by comparing FIG. 2, this anisotropic magnet has a portion 13' between the poles that does not function effectively as a magnet, so the efficiency of the magnetic circuit is poor, and as a result, the magnetic flux is taken out to the pole surface. The amount decreases, and the magnetic flux density decreases compared to the ideal state. This means that the performance as a magnet is low, and the torque of a motor is small and the electromotive force of a dynamo is small.

第5図に説明する磁気回路における効率の低下
は、異方性磁性粉体の配向率が向上する程顕著と
なり、配向率の向上により観察される配向方向で
の磁気特性の向上(BrおよびBHmax)とはかけ
離れた実用上の効果しか果し得ない。例えば、ス
トロンチウムフエライト系樹脂マグネツトにおい
て、配向率Br/Bs=0.87でBHmax1.2MGOeの特
性を有するマグネツトを用いた時の表面磁束密度
が840Gであつたのに対し、Br/Bs=0.9でβ
Hmax1.6MGOeの特性を有するものでは880Gに
しか向上しない。この例において比例的に期待し
得る値は920G程度であり、更に理想的な配向を
行なえばそれ以上の磁束密度が得られることが期
待される。
The decrease in efficiency in the magnetic circuit illustrated in Figure 5 becomes more pronounced as the orientation rate of the anisotropic magnetic powder increases, and the improvement in magnetic properties in the orientation direction observed due to the increase in orientation rate (Br and BHmax ) can achieve only a practical effect that is far removed from that. For example, in a strontium ferrite resin magnet, the surface magnetic flux density was 840G when using a magnet with an orientation ratio of Br/Bs=0.87 and a BHmax of 1.2MGOe, whereas when Br/Bs=0.9, β
The one with the characteristic of Hmax1.6MGOe only improves to 880G. In this example, the value that can be expected proportionally is about 920G, and it is expected that a higher magnetic flux density can be obtained if more ideal orientation is performed.

本発明は、かかる磁気回路上のロスを少なくし
効率の良い磁気回路を与える方法を提供するもの
であり、かつ、前述の如く、非現実的な方法では
なく十分に実用化でき、しかも広い応用範囲を有
する方法である。
The present invention provides a method for reducing the loss in such a magnetic circuit and providing a highly efficient magnetic circuit, and as described above, it is not an unrealistic method but can be fully put into practical use, and has a wide range of applications. This is a method that has a range.

即ち、本発明は、マグネツト表面に設けられる
べき極の配置に応じて、極部分の磁場が強くなる
ように粗密を有する磁場中で配向を行なうことに
より、高効率なマグネツトを提供するものであ
る。
That is, the present invention provides a highly efficient magnet by performing orientation in a magnetic field having density and density so that the magnetic field at the pole portion becomes stronger depending on the arrangement of the poles to be provided on the magnet surface. .

本発明の理解を深めるために、第2図、第4図
に相当する本発明での模擬的な配向のモデルを示
せば第6図のようになる。第6図は、配向後の状
態を示すものであり、マグネツト15は全体とし
て一面がN極であれば他面がS極となるように極
を持ち、マグネツト15を構成する異方性磁石粉
体は、強い磁場に引きづられて強磁場部の方を向
いている粉体16、平均的な磁場の方向に向いて
いる粉体17、弱磁場のため異方化処理が完全に
行なわれず全体的な配向の方向とは異なる方向に
向いている粉体18がそれぞれ、磁場の強弱に応
じて出現するものと理解される。
In order to deepen the understanding of the present invention, a simulated orientation model according to the present invention, which corresponds to FIGS. 2 and 4, is shown in FIG. 6. FIG. 6 shows the state after orientation, and the magnet 15 as a whole has poles such that one side is a N pole and the other side is an S pole. Powder 16 is pulled by a strong magnetic field and is facing toward the strong magnetic field, powder 17 is facing in the direction of the average magnetic field, and the anisotropy process has not been completed completely due to the weak magnetic field. It is understood that powders 18 oriented in a direction different from the overall orientation appear depending on the strength of the magnetic field.

第7図は第6図に示すマグネツトを脱磁した
後、強磁場部に極を設け、同一面上に異極を構成
するように着磁をした場合の磁力線の方向を示す
ものであり、第6図の粉体17の如き平均的な配
向をした粉体から成る区域19、同じく粉体16
の如き強く配向した粉体から成る区域20、同じ
く粉体18の如き配向度の低い粉体から成る区域
21と特徴づけて考えると、磁力線イは主として
区域21を通るため、第2図に示す理想モデルよ
り効率は劣るものの、異方化程度が低いため、第
5図に示す配向モデルより効率が高い。また磁力
線ロについては、理想モデルと同等と考えられ、
第5図のモデルより優れている。磁力線ハについ
てはいづれも同等と考えられる。従つて全体とし
て従来の方式より優れ、理想状態に近い配向を示
す。
FIG. 7 shows the direction of the lines of magnetic force when the magnet shown in FIG. 6 is demagnetized, a pole is provided in the strong magnetic field part, and the magnet is magnetized so that different poles are formed on the same surface. Area 19 consisting of averagely oriented powder, such as powder 17 in FIG.
If we characterize them as a region 20 consisting of strongly oriented powder such as powder 18, and a region 21 consisting of less oriented powder such as powder 18, the magnetic field lines A mainly pass through the region 21, as shown in FIG. Although the efficiency is lower than the ideal model, since the degree of anisotropy is low, the efficiency is higher than the orientation model shown in FIG. In addition, regarding magnetic field lines B, it is considered to be equivalent to the ideal model,
This is better than the model shown in Figure 5. Regarding the magnetic field lines C, both are considered to be equivalent. Therefore, as a whole, this method is superior to the conventional method and exhibits an orientation close to the ideal state.

第6図、第7図は理解を深めるためのモデルで
あり、厳密なものではない。
Figures 6 and 7 are models for better understanding and are not exact.

上記配向状態を与えるためには、第3図に示す
配向装置に工夫を要する。この点も本発明の一つ
のポイントである。即ち、配向磁場を与える磁力
線の通り易さに難易をつけ、その結果、キヤビテ
イ表面での磁束密度の粗密を生じせしめること、
つまり強磁場部と弱磁場部を設けることである。
In order to provide the above-mentioned orientation state, the orientation apparatus shown in FIG. 3 requires some ingenuity. This point is also one of the points of the present invention. That is, making it difficult for the magnetic lines of force that provide the orienting magnetic field to pass through, resulting in uneven magnetic flux density on the cavity surface;
In other words, a strong magnetic field section and a weak magnetic field section are provided.

磁力線の通り易さを調節するために、本発明で
は、キヤビテイ近傍の強磁性体中に弱磁性体を弱
磁場部が要求される個所に配した金型を用いるこ
とにより可能ならしめる。
In order to adjust the ease with which the lines of magnetic force pass, the present invention makes it possible by using a mold in which a weak magnetic material is placed in a ferromagnetic material near the cavity at a location where a weak magnetic field is required.

やはり本発明の理解を深めるために、実施例を
用いて説明すれば、第8図は、本発明を実施する
金型装置を示す断面図である。本装置は、樹脂マ
グネツトを射出成形加工にて成形し、同時に磁場
配向を実施するための装置である。固定側と可動
側にそれぞれ、コイル22,23,磁性体24,
25,非磁性26,27を設け、固定側の磁性体
にはスプル孔28、ランナ溝29が設けられてい
る。また磁性体24と磁性体25との間にはキヤ
ビテイ30が設けられている。また磁性体25の
キヤビテイ面には非磁性32が、ランナー部には
非磁性31が設けられている。こうしてなる金型
を用いることにより、コイルに通電すればキヤビ
テイ空間に非磁性体の配置の仕方により任意の
強,弱を有する磁場を発生させることがでる。然
る後、加熱溶融状態にある樹脂マグネット組成物
を射出成形機のノズル(図示せず)からスプル孔
28、ランナー29を通つてキヤビテイ30に射
出注入すれば、所定の配向状態が得られる。キヤ
ビテイ内の樹脂が冷却固化した後にコイルへの通
電を断ち、型開きを行ない、配向した樹脂マグネ
ツト成形品を得ることができる。
In order to deepen the understanding of the present invention, an example will be used to explain the present invention. FIG. 8 is a sectional view showing a mold apparatus for implementing the present invention. This device is a device for molding a resin magnet by injection molding and simultaneously performing magnetic field orientation. Coils 22, 23, magnetic material 24, on the fixed side and movable side, respectively.
25, non-magnetic materials 26 and 27 are provided, and a sprue hole 28 and a runner groove 29 are provided in the magnetic material on the fixed side. Further, a cavity 30 is provided between the magnetic body 24 and the magnetic body 25. Further, a non-magnetic material 32 is provided on the cavity surface of the magnetic body 25, and a non-magnetic material 31 is provided on the runner portion. By using such a mold, it is possible to generate a magnetic field of arbitrary strength or weakness in the cavity space by energizing the coil, depending on how the non-magnetic material is arranged. Thereafter, by injecting the resin magnet composition in a heated and molten state from a nozzle (not shown) of an injection molding machine into the cavity 30 through the sprue hole 28 and the runner 29, a predetermined orientation state can be obtained. After the resin in the cavity is cooled and solidified, the current to the coil is cut off and the mold is opened, thereby making it possible to obtain an oriented resin magnet molded product.

本発明で言う強磁性体とは飽和磁束密度が
10KG以上のものを指し、具体的な例としては
SS41,S45C,S55C,SK3,SKD11,SKD61など
ふつうに用いられる鋼材がある。勿論、パーメン
ジユール,センダスト,パーマロイの如き商品名
を有する良好な磁性体も強磁性体である。
The ferromagnetic material referred to in this invention has a saturation magnetic flux density.
This refers to items over 10KG, and specific examples include:
There are commonly used steel materials such as SS41, S45C, S55C, SK3, SKD11, and SKD61. Of course, good magnetic materials with trade names such as Permendial, Sendust, and Permalloy are also ferromagnetic materials.

また弱磁性体とは、しんちゆう,Be―Cu合金
ステンレス鋼SUS304などのいわゆる非磁性体に
加え、フエロチツク,超硬合金鋼など処理方法に
よつては10KG以下の低い飽和磁束密度を示す焼
結体および合金類も含まれる。
In addition, weakly magnetic materials include so-called non-magnetic materials such as stainless steel and Be-Cu alloy stainless steel SUS304, as well as ferrotic materials and cemented carbide steels, which exhibit a low saturation magnetic flux density of 10 KG or less depending on the processing method. Also included are solids and alloys.

第9図は第8図の金型によつて得られる成形品
を示す外観図で、第8図とは上下を逆にして描か
れたものである。成形品33の一面上に強磁性体
と接触して成形された区域34と非磁性体と接触
して成形された区域35とが交互に配置されてい
る。得られた成形品を一旦脱磁した後、区域35
に交互にS極とN極が形成されるように着磁する
ことにより表面磁束密度の優れた磁石が得られ
る。
FIG. 9 is an external view showing a molded product obtained by the mold shown in FIG. 8, and is drawn upside down from FIG. 8. On one surface of the molded product 33, regions 34 molded in contact with a ferromagnetic material and regions 35 molded in contact with a nonmagnetic material are alternately arranged. After once demagnetizing the obtained molded product, area 35
By magnetizing so that S and N poles are formed alternately, a magnet with excellent surface magnetic flux density can be obtained.

第10図は同様にして得られた円盤状のマグネ
ツトであり、マグネツト36とシールド板38と
が接着され、接着面と反対の平面上に強磁性体と
接触触して形成された区域37が12個所設けられ
ており、最終的に6個のN極と6個のS極が交互
に設けられている。こうして得られたマグネツト
の磁束密度分布を第11図および第12図に示
す。第11図は配向後の平面上磁束密度を円周方
向の分布を本発明の方法と従来の均一な磁場の方
法との比較として示したものである。
FIG. 10 shows a disk-shaped magnet obtained in the same manner, in which a magnet 36 and a shield plate 38 are bonded together, and a region 37 formed by contact with a ferromagnetic material is formed on a plane opposite to the bonded surface. There are 12 locations, and finally 6 N poles and 6 S poles are alternately provided. The magnetic flux density distribution of the magnet thus obtained is shown in FIGS. 11 and 12. FIG. 11 shows the distribution of the magnetic flux density on the plane after orientation in the circumferential direction as a comparison between the method of the present invention and the conventional method using a uniform magnetic field.

本発明による磁束密度分布を曲線A(実線)で
示し、従来法による磁束密度分布を曲線B(破
線)で示している。このような磁束密度分布を有
するマグネツトはそのままでも回転数や回転方向
を検出するマグネツトなどに使用することができ
る。
The magnetic flux density distribution according to the present invention is shown by curve A (solid line), and the magnetic flux density distribution according to the conventional method is shown by curve B (broken line). A magnet having such a magnetic flux density distribution can be used as it is as a magnet for detecting the number of rotations and the direction of rotation.

第12図は着磁後の磁束分布を示すものであ
り、第11図と同様に曲線Aは本発明による分布
を示し、曲線Bは従来法による分布を示す。この
場合には、最大表面磁束密度で約20%の向上がな
された。
FIG. 12 shows the magnetic flux distribution after magnetization; similarly to FIG. 11, curve A shows the distribution according to the present invention, and curve B shows the distribution according to the conventional method. In this case, the maximum surface magnetic flux density was improved by about 20%.

第13図は本発明をリング状マグネツトに応用
した場合の金型構造を示す平面図である。コア3
9およびキヤビテイプレート40は強磁性体で構
成され、コア39には周囲に6ケ所の非磁性体4
2が一体化されている。こうした構成においてコ
ア39とキヤビテイプレート40との間に磁界が
発生するように前述の構成によるコイルと磁性体
を配置すれば、キヤビテイ空間41には、破線4
3で示す磁力線の方向が得られ、さきの実施例と
同様にして樹脂マグネツトを成形すれば、所定の
異方化処理を施したマグネツトが得られる。
FIG. 13 is a plan view showing a mold structure when the present invention is applied to a ring-shaped magnet. core 3
9 and the cavity plate 40 are made of ferromagnetic material, and the core 39 has six non-magnetic materials 4 around it.
2 are integrated. In such a configuration, if the coil and magnetic body according to the above-described configuration are arranged so that a magnetic field is generated between the core 39 and the cavity plate 40, the cavity space 41 will have a broken line 4
If the direction of the magnetic lines of force shown by 3 is obtained, and a resin magnet is molded in the same manner as in the previous example, a magnet that has been subjected to a predetermined anisotropic treatment can be obtained.

第14図は本発明の別の実施態様を示す金型の
部分断面図である。固定側および可動側の磁性体
44および45にそれぞれ非磁性体46を設け、
非磁性体46は、固定側と可動側とでは配置され
るピツチは等しいが、位置がお互いにずれている
ように設けられており、磁力線47は主として斜
めに生ずるようになる。
FIG. 14 is a partial sectional view of a mold showing another embodiment of the present invention. A non-magnetic body 46 is provided on each of the magnetic bodies 44 and 45 on the fixed side and the movable side,
The non-magnetic material 46 is arranged at the same pitch on the fixed side and the movable side, but the positions are shifted from each other, so that the lines of magnetic force 47 mainly occur obliquely.

第15図は第14図の金型で得られたマグネツ
トの実用形態を示すものであり、48はマグネツ
ト、49はシールド板を示し、マグネツト48の
中で強く配向している部分を短いバー50で示し
ている。この強く配向している部分は、第14図
における磁力線47の生じている部分に相当す
る。
FIG. 15 shows a practical form of the magnet obtained with the mold shown in FIG. 14, where 48 is a magnet, 49 is a shield plate, and the strongly oriented portion of the magnet 48 is shown as a short bar 50. It is shown in This strongly oriented portion corresponds to the portion where the lines of magnetic force 47 in FIG. 14 occur.

この方法によれば、表面,裏面の区別なく使用
することが出来るため、特別な検出装置を用いる
ことなくシールド板との組立てが出来ること、お
よび両面が同時に使用できる特徴を有する。
According to this method, it is possible to use the front side and the back side without distinction, so that it can be assembled with a shield plate without using a special detection device, and both sides can be used at the same time.

第16図は本発明を実施する別の例の金型を示
す部分断面図であり、固定側磁性体51と可動側
磁性体52との間にキヤビテイ空間53を配し、
可動側磁性体52の内部のキヤビテイ部に近い所
にキヤビテイ表面には現われない非磁性体54を
設けることにより、所定の配向磁場の強弱を得る
ことができる。この実施例に従えば、金型組立上
の複雑さが取除かれ、耐摩耗性の低い非磁性体
(例えばBe―Cu,しんちゆう,SUS304など)を
用いてもフエライト粉による極度な摩耗を避ける
ことができる。
FIG. 16 is a partial sectional view showing another example of a mold for implementing the present invention, in which a cavity space 53 is arranged between a fixed magnetic body 51 and a movable magnetic body 52,
By providing a non-magnetic material 54 that does not appear on the cavity surface inside the movable magnetic material 52 near the cavity, a predetermined strength of the orientation magnetic field can be obtained. According to this embodiment, the complexity of mold assembly is removed, and even if non-magnetic materials with low wear resistance (for example, Be-Cu, Shinchiyu, SUS304, etc.) are used, extreme wear due to ferrite powder can be avoided. can be avoided.

本発明の実施例は樹脂マグネツトの例を多く用
いたが、これに制限されず、焼結法における配向
プレス法にも実施し得る。
Although many examples of resin magnets have been used in the embodiments of the present invention, the present invention is not limited thereto, and may also be implemented by an oriented pressing method in a sintering method.

本発明の実施例では弱磁性体として主に非磁性
体と称せられるものを用いたが、本文にもあるよ
うに飽和磁束密度の低い材質を用いても可能であ
る。
In the embodiments of the present invention, what is mainly called a non-magnetic material is used as the weakly magnetic material, but as mentioned in the text, it is also possible to use a material with a low saturation magnetic flux density.

本発明の効果は主として、異方性マグネツトの
表面磁束密度を向上することにあるが、その特徴
として、 1 極めて実際的に使用し得る金型構造を採用し
ている。
The effect of the present invention is mainly to improve the surface magnetic flux density of an anisotropic magnet, and its features include: 1. It employs a mold structure that can be extremely practically used.

2 製品の磁気回路に適した配向形態が選択でき
る。
2. The orientation form suitable for the product's magnetic circuit can be selected.

3 理想の配向状態に近い磁気回路が得られるこ
とが挙げられる。
3. A magnetic circuit close to the ideal orientation state can be obtained.

また、本発明は、次のように特有の効果を奏す
るものである。
Further, the present invention has the following unique effects.

(1) 異方化処理を行う磁石の磁極を設ける面に当
接する配向装置の磁極面の極性が、その面内に
おいて同一になつているため、配向装置の一対
の磁極のみによつて、磁石に複数組の配向を生
じさせることができ、したがつて磁石に設ける
極数に応じて配向のためのコイルや磁極を増加
させる必要がなく、配向装置がより単純にな
る。
(1) Since the polarity of the magnetic pole surface of the orienting device that comes into contact with the surface on which the magnetic poles of the magnet to be anisotropically treated is the same within that plane, the magnet can be A plurality of sets of orientations can be generated, and therefore, there is no need to increase the number of coils and magnetic poles for orientation according to the number of poles provided on the magnet, and the orientation device becomes simpler.

(2) 磁場配向時に磁場が対向する磁極間に、磁石
内を横断する形で生じるため、磁石の透磁性が
低い場合でも配向装置としての機能の低下を抑
制することができる。
(2) At the time of magnetic field orientation, a magnetic field is generated between opposing magnetic poles in a form that traverses the inside of the magnet, so even if the magnetic permeability of the magnet is low, it is possible to suppress the deterioration of the function as an orientation device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は異方性磁石粉体の異方性を説明するモ
デル図、第2図は理想的な配向状態を説明するモ
デル図、第3図は従来の異方化処理装置の断面
図、第4図は第3図により得られるマグネツトの
配向状態を示すモデル図、第5図は第4図の配向
を示すマグネツトを着磁した場合の磁力線の方向
を示すモデル図、第6図は本発明の配向形態を示
すモデル図、第7図は第6図の配向形態において
着磁した場合の形態を説明するためのモデル図、
第8図は本発明の一実施例の金型の断面図、第9
図は第8図の金型より得られたマグネツトの外観
図、第10図は本発明の別の実施例によるマグネ
ツトの外観図、第11図,第12図は、第10図
のマグネツト形状における円周方向の磁束密度分
布を説明するグラフ、第13図は本発明の別の実
施例の金型の平面図、第14図は本発明の更に別
の実施例の金型の部分断面図、第15図は第14
図に示す金型により得られたマグネツトの使用状
態を示す断面図、第16図は更に別の本発明の実
施例を示す金型の部分断面図である。
Fig. 1 is a model diagram explaining the anisotropy of anisotropic magnet powder, Fig. 2 is a model diagram explaining the ideal orientation state, and Fig. 3 is a cross-sectional view of a conventional anisotropy processing device. Fig. 4 is a model diagram showing the orientation state of the magnet obtained from Fig. 3, Fig. 5 is a model diagram showing the direction of the lines of magnetic force when the magnet is magnetized with the orientation shown in Fig. A model diagram showing the orientation form of the invention, FIG. 7 is a model diagram for explaining the form when magnetized in the orientation form of FIG. 6,
FIG. 8 is a sectional view of a mold according to an embodiment of the present invention, and FIG.
The figure shows an external view of a magnet obtained from the mold shown in Fig. 8, Fig. 10 shows an external view of a magnet according to another embodiment of the present invention, and Figs. 11 and 12 show the magnet in the shape of the magnet shown in Fig. A graph explaining the magnetic flux density distribution in the circumferential direction, FIG. 13 is a plan view of a mold according to another embodiment of the present invention, and FIG. 14 is a partial cross-sectional view of a mold according to yet another embodiment of the present invention. Figure 15 is the 14th
FIG. 16 is a sectional view showing a state in which a magnet obtained by the mold shown in the figure is used, and FIG. 16 is a partial sectional view of a mold showing still another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 磁場配向法により異方化処理を施し、然る後
同一面上に複数の極を設ける磁石の製造方法にお
いて、前記極を設ける面に相当する配向装置の面
での極性を同一となし、かつ前記極の配置に応じ
た磁場の強弱を有するように極相当部を強磁性体
となし、極間相当部を弱磁性体となした配向装置
で異方化処理を施した異方性磁石の製造方法。 2 異方化処理を施した磁石を磁気的に更に処理
を行ない、強磁性体相当部を極となすにあたり複
数の極のうち少なくとも一つを他と異極となした
ことを特徴とする特許請求の範囲第1項記載の異
方性磁石の製造方法。
[Scope of Claims] 1. In a method for producing a magnet in which anisotropic treatment is performed using a magnetic field orientation method, and then a plurality of poles are provided on the same surface, the magnet is The anisotropic treatment is performed using an orientation device in which the pole-corresponding parts are made of a ferromagnetic material and the inter-pole corresponding parts are made of a weakly magnetic material so that the polarities are the same and the strength of the magnetic field is determined according to the arrangement of the poles. The manufacturing method of the anisotropic magnet. 2. A patent characterized in that a magnet subjected to anisotropy treatment is further magnetically treated so that at least one of the plurality of poles is made different from the others when the ferromagnetic material equivalent portion is made into a pole. A method for manufacturing an anisotropic magnet according to claim 1.
JP11389380A 1980-08-18 1980-08-18 Manufacture of anisotropic magnet Granted JPS5737803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11389380A JPS5737803A (en) 1980-08-18 1980-08-18 Manufacture of anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11389380A JPS5737803A (en) 1980-08-18 1980-08-18 Manufacture of anisotropic magnet

Publications (2)

Publication Number Publication Date
JPS5737803A JPS5737803A (en) 1982-03-02
JPS6150368B2 true JPS6150368B2 (en) 1986-11-04

Family

ID=14623771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11389380A Granted JPS5737803A (en) 1980-08-18 1980-08-18 Manufacture of anisotropic magnet

Country Status (1)

Country Link
JP (1) JPS5737803A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180568U (en) * 1986-05-08 1987-11-16
JPS6377780U (en) * 1986-11-07 1988-05-23
JPS6393178U (en) * 1986-12-02 1988-06-16
JPS63154272U (en) * 1987-03-28 1988-10-11
JPS63288376A (en) * 1987-05-20 1988-11-25 Nec Corp Image data display system
JPH0195376U (en) * 1987-12-18 1989-06-23

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34229E (en) * 1982-12-02 1993-04-20 Hitachi Metals, Ltd. Cylindrical permanent magnet and method of manufacturing
US4547758A (en) * 1982-12-02 1985-10-15 Hitachi Metals, Ltd. Cylindrical permanent magnet and method of manufacturing
JPS59216453A (en) * 1983-05-20 1984-12-06 Hitachi Metals Ltd Manufacture of cylindrical permanent magnet
JPS60124812A (en) * 1983-12-09 1985-07-03 Seiko Epson Corp Manufacture of permanent magnet
JPS623685A (en) * 1985-06-28 1987-01-09 Nippon Kokan Kk <Nkk> Detector for tube welding position
JPS6211212A (en) * 1985-07-09 1987-01-20 Sumitomo Bakelite Co Ltd Injection molding die for manufacturing plastic magnet
JPS6211209A (en) * 1985-07-09 1987-01-20 Sumitomo Bakelite Co Ltd Magnet and manufacture thereof
JPH0612484Y2 (en) * 1985-09-02 1994-03-30 エスエムシー株式会社 Piston position detection device
JP7131890B2 (en) * 2017-04-17 2022-09-06 住友金属鉱山株式会社 Anisotropic magnet molding die and anisotropic magnet manufacturing method using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180568U (en) * 1986-05-08 1987-11-16
JPS6377780U (en) * 1986-11-07 1988-05-23
JPS6393178U (en) * 1986-12-02 1988-06-16
JPS63154272U (en) * 1987-03-28 1988-10-11
JPS63288376A (en) * 1987-05-20 1988-11-25 Nec Corp Image data display system
JPH0195376U (en) * 1987-12-18 1989-06-23

Also Published As

Publication number Publication date
JPS5737803A (en) 1982-03-02

Similar Documents

Publication Publication Date Title
JPS6150368B2 (en)
JPS6427208A (en) Cylindrical permanent magnet, motor using same and manufacture thereof
JPS6134249B2 (en)
Gould Permanent magnets
JP3702036B2 (en) Method for producing anisotropic resin magnet and mold for production
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JPH088134A (en) Anisotropic permanent magnet
JPS6210004B2 (en)
JPH0559572B2 (en)
JPH069471Y2 (en) Multipolar anisotropic cylindrical plastic magnet mold
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
GB2069766A (en) Improvements in or relating to methods of producing anisotropic permanent magnets and magnets produced by such methods
JPS59136916A (en) Manufacture of permanent magnet
JPS60124812A (en) Manufacture of permanent magnet
JPH02213108A (en) Manufacture of anisotropic multipole plastic magnet
JPH02153507A (en) Manufacture of resin-bonded type permanent magnet
KR100249968B1 (en) Magnetization yoke of permanent magnet in rare-earth system
Kim et al. Design of a Powder-Aligning-Fixture for a 4-Pole Anisotropic Bonded Nd-Fe-B Ring-Type Permanent Magnet
JPH053124B2 (en)
JPS642539Y2 (en)
JPH01289883A (en) Ferromagnetic adhesive
JPS5826979Y2 (en) Structure of radial anisotropic magnet forming machine
KR200174315Y1 (en) Stator for a motor
JP4926834B2 (en) Radial anisotropic ring magnet manufacturing equipment
JPH0523307Y2 (en)