JPS6043856A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6043856A
JPS6043856A JP58152648A JP15264883A JPS6043856A JP S6043856 A JPS6043856 A JP S6043856A JP 58152648 A JP58152648 A JP 58152648A JP 15264883 A JP15264883 A JP 15264883A JP S6043856 A JPS6043856 A JP S6043856A
Authority
JP
Japan
Prior art keywords
electrode
film
gate electrode
transfer gate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58152648A
Other languages
Japanese (ja)
Inventor
Toru Mochizuki
徹 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58152648A priority Critical patent/JPS6043856A/en
Publication of JPS6043856A publication Critical patent/JPS6043856A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To imporve a short channel effect, lower punch-through voltage and enhance the controllability of the gate length of a transfer gate electrode while increasing capacitance and the degree of integration by bringing a substrate section in the vicinity of the transfer gate electrode to low impurity concentration. CONSTITUTION:An element isolation region 22 is formed to the surface of a P type Si substrate 21 through a selective oxidation method, and a gate insulating film 24, a transfer gate electrode 25 consisting of polycrystalline silicon containing an impurity and a first SiO2 film 26 are formed to a predetermined section on an island region 23 in succession. An oxide film 28' as a thick insulator film is left on the side walls of the gate oxide film 24, the transfer gate electrode 25 and the SiO2 film 26 through reactive ion etching to an oxide film 28. A polycrystalline silicon layer 30 is shaped on the whole surface, a capacitance electrode 31 is also formed on one part of the transfer gate electrode 25, and an N type diffusion region 33 in which a section in the vicinity of the transfer gate electrode 25 is shallow and has low concentration and other regions are deep and have high concentration is formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in semiconductor devices.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導体装置例えば1容量1スイツチトランジスタ
を有するダイナミック型の半導体メモリとしては、第1
図に示すものが知られている。
Conventionally, in a semiconductor device, for example, a dynamic semiconductor memory having one capacitance and one switch transistor, the first
The one shown in the figure is known.

図中の1は、例えばP型の半導体基板であシ、表面に素
子分離領域2が形成されている。この素子分離領域2で
囲まれた島領域3の所定の表面には、N+層4が形成さ
れている。前記基板1上には、容量電極5が絶縁膜6を
介して一部が前記素子分離領域2上に延在するように設
けられて込る。前記容量電極5の周囲にはS 102膜
8が設けられている。前記耐層4の一部を含む基板1上
には、スイッチングトランジスタの一部を構成するトラ
ンスファゲート電極9がゲート絶縁膜10を介して一部
が前記容量電極5上に延在するように設けられている。
1 in the figure is, for example, a P-type semiconductor substrate, and an element isolation region 2 is formed on the surface thereof. An N+ layer 4 is formed on a predetermined surface of the island region 3 surrounded by the element isolation region 2. A capacitive electrode 5 is provided on the substrate 1 with an insulating film 6 interposed therebetween so that a portion thereof extends over the element isolation region 2. An S 102 film 8 is provided around the capacitor electrode 5 . A transfer gate electrode 9 constituting a part of a switching transistor is provided on the substrate 1 including a part of the breakdown layer 4 so as to partially extend over the capacitor electrode 5 with a gate insulating film 10 interposed therebetween. It is being

このトランス7アダート電極9等を含む全面には層間絶
縁膜11が設けられている。前記1層4の一部に対応す
る層間絶縁膜11にはコンタクトホール12が設けられ
、このコンタクトホール12には前記N+層4に接続す
る取出し電極13が設けら九ている。
An interlayer insulating film 11 is provided on the entire surface including the transformer 7 add electrode 9 and the like. A contact hole 12 is provided in the interlayer insulating film 11 corresponding to a part of the first layer 4, and an extraction electrode 13 connected to the N+ layer 4 is provided in this contact hole 12.

しかしながら、前述した構造の半導体メモリーIcヨレ
t、j:、デバイスの集積化なされると込う長所を有す
るものの、スイッチングトランジスタのダート長(L)
が容量電極5に対する整合技術によって決定されるため
、ダート長の制御が困難となシ、微細なトランジスタを
有する半導体メモリには不向きである。
However, although the semiconductor memory IC of the above-mentioned structure has the advantage of being integrated, the dart length (L) of the switching transistor is
Since the dart length is determined by the matching technique for the capacitor electrode 5, it is difficult to control the dart length, and it is not suitable for semiconductor memories having fine transistors.

このよう表ことから、最近、第2図に示すような半導体
メモリが知られている。即ち、この半導体メモリは、ト
ランスファダート電極9′ヲ容量電極5上に延在せずに
、スイッチングトランジスタが島領域3表面のN+l(
ドレイン)14全介して容量電極5に結合される構造と
なっている。なお、かかる構造の場合、N+層4をソー
スと呼ぶ。しかしながら、第2図図示の半導体メモリは
、ダート両端の島領域3にソース、ドレイン4.14が
設けられた構造となっているため、容量が小さいととも
に、ダート長が1.0μm程度まで短縮化された場合、
ショートチャネル効果が大きくなるという欠点金有する
Because of this, a semiconductor memory as shown in FIG. 2 has recently become known. That is, in this semiconductor memory, the transfer dart electrode 9' does not extend over the capacitance electrode 5, and the switching transistor is connected to N+l (on the surface of the island region 3).
It has a structure in which it is connected to the capacitor electrode 5 through the entire drain (drain) 14. In addition, in the case of such a structure, the N+ layer 4 is called a source. However, since the semiconductor memory shown in FIG. 2 has a structure in which the source and drain 4.14 are provided in the island region 3 at both ends of the dart, the capacity is small and the dart length is shortened to about 1.0 μm. If it is done,
This method has the disadvantage of increasing short channel effects.

一般に、フォトリソグラフィー技術によって決定される
最短ダート・トランジスタの短チヤネル効果を防止する
手段としては、ソース、ドレイン4.14’z形成する
場合に発生する横方向の拡散(即ち、ダート端部よシ内
側に拡散するr層の形成)を防止することが有力である
In general, as a means to prevent the short channel effect of the shortest dart transistor determined by photolithography technology, the lateral diffusion that occurs when forming the source and drain (i.e., from the dirt edge to the It is effective to prevent the formation of an r-layer that diffuses inward.

このため、近年においては、イオン注入法等によシ拡散
係数の小さな砒素をn型不純物として用い、0.1−〜
0,3μm0層の浅い接合層を形成する方法が試みられ
ている。しかしながら、こうした方法によれは、浅い接
合層はその比抵抗も高く、トランジスタのソース、ドレ
イン4゜14に直夕II′JJf、抗を形成し、動作上
好ましくない。
For this reason, in recent years, arsenic with a small diffusion coefficient has been used as an n-type impurity by ion implantation, etc.
A method of forming a shallow bonding layer of 0.3 μm0 layer has been attempted. However, with this method, the shallow junction layer has a high resistivity and forms a direct resistance between the source and drain of the transistor, which is not favorable for operation.

また、接合層は応々にして電極配線としてもルーられる
ので、拡散層は信号を遅延させるので好1しくない。こ
のような観点から、現在の半導体メモリでは総合的な最
適化が行われ、N+層においては例えば接合深さ0.3
μm1比抵抗50Ω/口の値が採用されている。
Further, since the bonding layer can be used as an electrode wiring in some cases, the diffusion layer is not preferable because it delays signals. From this point of view, current semiconductor memories are comprehensively optimized, and in the N+ layer, for example, the junction depth is reduced to 0.3.
A value of μm1 specific resistance of 50Ω/mouth is adopted.

また、不純物の横方向の拡散の防止ひいてはショートチ
ャネル効果の防止という観点から、図示しないが、トラ
ンスファダート電極の側壁にS i O2膜等の絶縁体
を設けてイオン注入時のマスクとし、横方向の拡散を実
質的に防止しようとする手段が採られている。しかしな
がら、かかる方法によれば、側壁部を十分覆うように拡
散層全深くしなければならないため、ダート長が1,0
μn1程度まで短縮したデバイスではソース、ドレイン
領域間のノ4ンチスルー電圧が低下するという欠点を有
する。更に、接合層が浅く即ち横方向拡散長が短い場合
には、側壁によってチャンネル領域とソース、ドレイン
が分離されるという欠点を有する。
In addition, from the viewpoint of preventing the lateral diffusion of impurities and further preventing the short channel effect, although not shown in the figure, an insulator such as a SiO2 film is provided on the side wall of the transfer dart electrode as a mask during ion implantation. Measures are being taken to substantially prevent the spread of. However, according to this method, since the diffusion layer must be made completely deep to sufficiently cover the side wall portion, the dart length is 1.0.
A device shortened to approximately μn1 has the disadvantage that the through voltage of 4 inches between the source and drain regions is reduced. Furthermore, when the junction layer is shallow, that is, when the lateral diffusion length is short, there is a drawback that the channel region is separated from the source and drain by the sidewalls.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、トランス7
アダート電極9傍の基板部分を低不純物濃度にして短チ
ャンネル効果、ノクンチスルー電圧の低下及びトランス
ファダート電極のダート長の実質的な長さを制御性よく
するとともに、容量電極をトランスファダート電極と自
己整合で形成して容量の増大と高集積化をなしえる半導
体装ft’e−提供することを目的とするものである。
The present invention has been made in view of the above circumstances.
The substrate portion near the adder electrode 9 is made to have a low impurity concentration to improve the controllability of the short channel effect, the reduction of the no-kunchi-through voltage, and the actual dart length of the transfer dart electrode, and the self-alignment of the capacitor electrode with the transfer dart electrode. The object of the present invention is to provide a semiconductor device ft'e- which can be formed to increase capacity and achieve high integration.

〔発明の概要〕[Summary of the invention]

本発明は、第1導電型の半導体基板と、この基板上にダ
ート絶縁膜を介して設けられたトランスファグート電極
と、このダート電極の側壁に形成されたダート絶縁膜よ
シ厚い絶縁膜、前記基板上に絶縁膜を介して設けられる
とともに一部が前記ダート電極上に厚い絶縁♂V介して
設けられた容量電極と、この容量電極と反対側のダート
電極近傍の基板表面に設けられた第2導電壓の低濃度の
第1の不純物層と、前記容量電極と反対側でかつダート
電極から遠ざかる基板表面に前記第1の不純物層と隣接
して設けられた第2導電型の高濃度の記2の不純物層と
を具備することを特徴とし、既述した目的を達成するこ
とを骨子とするものである。
The present invention provides a semiconductor substrate of a first conductivity type, a transfer electrode provided on the substrate via a dirt insulating film, an insulating film thicker than the dirt insulating film formed on the side wall of the dirt electrode, and A capacitor electrode is provided on the substrate via an insulating film and a portion is provided on the dirt electrode via a thick insulating ♂V, and a capacitor electrode is provided on the substrate surface near the dirt electrode on the opposite side of the capacitor electrode. a low concentration first impurity layer of a second conductivity type; and a second conductivity type high concentration impurity layer provided adjacent to the first impurity layer on the substrate surface opposite to the capacitor electrode and away from the dirt electrode. The present invention is characterized by comprising the impurity layer described in item 2, and is aimed at achieving the above-mentioned object.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例に係るN−チャネル型の半導体
メモリーラ製造工程顔に第3図(、)〜(g)を参照し
て説明する。
Hereinafter, a process for manufacturing an N-channel type semiconductor memory device according to an embodiment of the present invention will be described with reference to FIGS. 3(a) to 3(g).

〔i)まず、例えばP型のSt基板21表面に選択酸化
法によ多素子分離領域22を形成した。
[i) First, a multi-element isolation region 22 was formed on the surface of, for example, a P-type St substrate 21 by selective oxidation.

なお、この素子分離領域22で囲まれた基板21表面は
、島領域23となる(第3図(、)図示)。
Note that the surface of the substrate 21 surrounded by this element isolation region 22 becomes an island region 23 (as shown in FIG. 3(,)).

つづいて、島領域23上の所定部分に熱酸化法、CVD
法等によシ、厚さ200Xのダート絶縁膜24、厚さ3
000Xの不純物を含む多結晶シリコンからなるトラン
スファダート電極25、及び厚さ3000Xの第1の8
102膜26を順次形成した。
Subsequently, a predetermined portion on the island region 23 is subjected to thermal oxidation and CVD.
Dirt insulating film 24 with a thickness of 200X, thickness 3 according to the law etc.
A transfer dart electrode 25 made of polycrystalline silicon containing impurities of 000X, and a first 8 with a thickness of 3000X.
102 films 26 were sequentially formed.

次いで、前記5102膜26′ftマスクとして島領域
23表面にn型禾純物例えば砒素を加速電圧た( gp
、 3図1(h)図示)。更に、全面にCVD法によシ
厚さ約3000Xの陵化Pzsを形成した(第3図(c
)図示)。
Next, as a 26'ft mask of the 5102 film, an n-type pure substance such as arsenic was applied to the surface of the island region 23 at an accelerating voltage (gp
, 3 (illustrated in Figure 1(h)). Furthermore, a ridge Pzs with a thickness of about 3000X was formed on the entire surface by CVD method (Fig. 3(c)
).

〔11〕次に、前記酸化膜゛28をCF 2/H2のガ
ス雰囲気中で反心性イオンエップーング(RIE)によ
り、エツチング除去し、前i11ケ゛−ト酸化N、?4
、)だ(第3図(d)図示)。つづいて、露出する島領
域23上に厚さ100Xの第2の8102胎29を熱酸
化法によシ形成した後、全面に厚さ3000Xの多結晶
シリコン層30 ’i CVD法により形成した(第3
図(、)図示)。次いで、写真蝕刻法によシ、前記多結
晶シリコン層30を選択的にエツチング除去し、一部が
素子分離領域22上に延出するとともに、前記トランス
ファゲート電極25の一部上にも第1のS i O2膜
26及び残存酸化膜28/會介して延出した容量電極3
1を形成した0なお、容量電極31はトランスファゲー
ト電極25に対し自己整合的に形成された。更に、この
容量電極3ノ、第1の5i02膜26及び残存酸化膜2
8′ヲマスクとして島領域22表面に砒素を加速電圧4
0kV、ドーズ量1×10 /′crnでイオン注入し
高濃度で深いN”W層32を形成した・その結果、前記
トランスファダート電極2゛5近傍が浅くかつ低濃度で
、゛その他の領域が深くかつ高濃度のN型の拡散領域3
3全形成した(第a 図(f)図示) 、 更K、全面
にcvD−sio□膜34t−形成した後、前記拡散領
域33の一部に対応するCVD−8i O2膜34、第
2のSiO2膜29全29全開孔ンタクトホール35を
形成した。しかる後前記CVD−S i O2膜34上
にこのコンタクトホール35を介して拡散領域33に接
続する取出し電極36全形成して半導体メモリーを製造
した(第3図(g)図示)。
[11] Next, the oxide film 28 was etched away by anticentric ion etching (RIE) in a CF 2 /H 2 gas atmosphere, and the oxidized N,? 4
, ) (as shown in Figure 3(d)). Subsequently, a second 8102 layer 29 with a thickness of 100X was formed on the exposed island region 23 by a thermal oxidation method, and then a polycrystalline silicon layer 30'i with a thickness of 3000X was formed on the entire surface by a CVD method ( Third
Figure(,)Illustrated). Next, the polycrystalline silicon layer 30 is selectively etched away by photolithography, so that a portion of the polycrystalline silicon layer 30 extends over the element isolation region 22 and a first layer also extends over a portion of the transfer gate electrode 25. The capacitor electrode 3 extending through the SiO2 film 26 and the residual oxide film 28/
Note that the capacitor electrode 31 was formed in a self-aligned manner with respect to the transfer gate electrode 25. Furthermore, this capacitor electrode 3, the first 5i02 film 26 and the remaining oxide film 2
Arsenic is applied to the surface of the island region 22 as a mask at an accelerating voltage of 4
Ion implantation was performed at 0 kV and a dose of 1 x 10 /'crn to form a highly concentrated and deep N''W layer 32. As a result, the vicinity of the transfer dart electrode 2'5 was shallow and lightly doped, and the other regions were Deep and highly concentrated N-type diffusion region 3
After forming the CVD-sio□ film 34t on the entire surface (as shown in FIG. All 29 fully open contact holes 35 were formed in the SiO2 film 29. Thereafter, an extraction electrode 36 connected to the diffusion region 33 through the contact hole 35 was completely formed on the CVD-S i O 2 film 34 to manufacture a semiconductor memory (as shown in FIG. 3(g)).

本発明に係る半導体メモリーは、第3図(g)に示す如
く、素子分離領域22で囲まれた81基板21の島領域
23上の所定部分にダート絶縁膜24’fc介り、てト
ランスファダート電極25を設け、島領域23上に容量
電極3ノを一部がトランスファダート電極25上に残存
酸化膜28′、第1の5lO2膜26を介して延在する
ように設け、更に前記容量電極31と反対側のトランス
ファゲート電極25近傍の島領域23表面に浅くかつ低
濃度で、その他の領域が深くかつ高濃度の拡散領域33
を設けた構造となっている。
As shown in FIG. 3(g), the semiconductor memory according to the present invention has a transfer dart on a predetermined portion of the island region 23 of the 81 substrate 21 surrounded by the element isolation region 22 via a dart insulating film 24'fc. An electrode 25 is provided, a capacitor electrode 3 is provided on the island region 23 so that a part thereof extends on the transfer dirt electrode 25 via the residual oxide film 28' and the first 5lO2 film 26, and the capacitor electrode A shallow and low concentration diffusion region 33 is formed on the surface of the island region 23 near the transfer gate electrode 25 on the opposite side from the diffusion region 31, and the other region is deep and high concentration.
It has a structure with

しかして、本発明によれば、容量電極31と反対側のト
ランス7アダート電極25近傍の島領域23表面に、拡
散領域33の一部をなすN型層272が設けられている
ため、短チャンネル効果、ノリチスルー電圧め低÷fす
るとともに、トランスファダート電極25の実質的なゲ
ート長の制御性全良好にできる。
According to the present invention, the N-type layer 272 forming a part of the diffusion region 33 is provided on the surface of the island region 23 near the transformer 7 adder electrode 25 on the opposite side from the capacitor electrode 31. As a result, the through voltage can be lowered by ÷f, and the substantial gate length of the transfer electrode 25 can be completely controlled.

マタ、トランス7丁ダート電極25をスイッチングトラ
ンジスタの一部とし、容量電極3ノ全容量の一部として
用いるとともに、容量電極31をトランスファダート電
極25に対して自己整合的に形成できるため、容量の増
大化と素子の高集積化が可能となる。
In addition, since the dart electrode 25 is used as a part of the switching transistor and is used as part of the total capacitance of the capacitor electrode 3, and the capacitor electrode 31 can be formed in a self-aligned manner with the transfer dart electrode 25, the capacitance can be reduced. It becomes possible to increase the number of devices and increase the integration of devices.

なお、上記実施例では、トランスファダート電極、容量
電極の材料として、多結晶シリコンを用いたが、これに
限らず、Mo # W等の高融点金属あるいは高融点金
属との7リサイド化合物等を用いてもよい。
In the above embodiment, polycrystalline silicon was used as the material for the transfer dart electrode and the capacitor electrode. It's okay.

′また、上記実施例では、ダート絶縁膜、及びSt基板
と容量電極間に設けられた絶縁膜として、S iO2膜
を用いたが、これに限らず、Sl、N4膜、At203
咬、Ta205膜、これらの積層膜及びこれらの混合膜
を用いてもよい。
'Furthermore, in the above embodiment, an SiO2 film was used as the dirt insulating film and the insulating film provided between the St substrate and the capacitor electrode, but the invention is not limited to this.
A Ta205 film, a laminated film of these films, and a mixed film of these films may also be used.

更に、上記実施例でi1半導体装置として、N−チャネ
ル型の半導体メモリの場合について述べたが、これに限
らず、P−チャネル型の半導体メモリにも同様に適用で
きる〇 〔発明の効果〕 以上詳述した如く、本発明によれば、短チャンネル効果
、パンチスルー電圧の低下及びトランスファダート電:
匣のゲート長を制御できるとともに、容量の増大、高集
積化をなし得る半導体装置を提供できるものである。
Further, in the above embodiment, the case of an N-channel type semiconductor memory was described as the i1 semiconductor device, but the present invention is not limited to this, and can be similarly applied to a P-channel type semiconductor memory.〇 [Effects of the Invention] As detailed above, according to the present invention, short channel effects, reduction in punch-through voltage, and transfer dart voltage:
It is possible to provide a semiconductor device in which the gate length of the box can be controlled, and the capacity can be increased and the degree of integration can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の半導体メモリーの断面図、第
3図(、)〜(g)は本発明の一実施例に係る半導体メ
モリーラ製造工程順に示す断面図である。 2ノ・・・St基板(半導体基板)、22・・・素子分
離領域、23・・・島領域、24・・・ダート絶縁膜、
25・・・トランスファゲート電極、26.29・・・
S i O2膜、271.272 .32・・・N型層
、28・・・酸化膜、28′・・・残存酸化膜(厚い絶
縁体つ、30・・・多結晶シリコン層、3)・・・容量
電極、33・・・拡散領域、34・・・CVD−810
□膜、35・・・コンタクトホール、36・・・取出し
電極。 出願人代理人 弁理士 鈴 江 武 彦第1図 8 第3図
1 and 2 are sectional views of a conventional semiconductor memory, and FIGS. 3(a) to 3(g) are sectional views showing the steps of manufacturing a semiconductor memory device according to an embodiment of the present invention. 2 No.: St substrate (semiconductor substrate), 22: element isolation region, 23: island region, 24: dirt insulating film,
25... Transfer gate electrode, 26.29...
S i O2 film, 271.272. 32... N-type layer, 28... Oxide film, 28'... Residual oxide film (thick insulator layer, 30... Polycrystalline silicon layer, 3)... Capacitor electrode, 33... Diffusion region, 34...CVD-810
□Membrane, 35... Contact hole, 36... Extraction electrode. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 8 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも1組のMO8容量とトランジスタを有
する半導体装置において、第1導電型の半導体基板と、
この基板上にダート絶縁膜を介して設けられたトランス
ファダート電極と、ここの容量電極と反対側のダート電
極近傍の基板表面に設けられた第2導電型の低濃度の第
1の不純物層と、前記容量電極と反対側でかつダート電
極から遠ざかる基板表面に前記第1の不純物層と隣接し
て設けられた第2尋電型の高濃度の第2の不純物層とを
具備することを特徴とする半導体装置。
(1) In a semiconductor device having at least one set of an MO8 capacitor and a transistor, a semiconductor substrate of a first conductivity type;
A transfer dart electrode provided on this substrate via a dirt insulating film, and a low concentration first impurity layer of a second conductivity type provided on the substrate surface near the dirt electrode on the opposite side to the capacitor electrode. , comprising a second impurity layer of a second dielectric type with a high concentration provided adjacent to the first impurity layer on the substrate surface opposite to the capacitor electrode and away from the dirt electrode. semiconductor device.
(2)ダート電極、容量電極の材料として多結晶シリコ
ン、高融点金属あるいは高融点金属とのシリサイド化合
物を用いること’に%徴とする特許請求の範囲第1項記
載の半導体装置。
(2) The semiconductor device according to claim 1, characterized in that polycrystalline silicon, a high melting point metal, or a silicide compound with a high melting point metal is used as a material for the dart electrode and the capacitor electrode.
(3)厚い絶縁体睦基板と容量電極間に設けら/ゝ れた絶縁膜としてs io2膜、S i 、N4膜、A
t203膜、これらの積層膜及びこれらの混合物膜を用
いること’に%徴とする特許請求の範囲第1項記載の半
導体装置。
(3) SIO2 film, Si, N4 film, A
The semiconductor device according to claim 1, characterized in that it uses a T203 film, a laminated film thereof, and a mixture film thereof.
JP58152648A 1983-08-22 1983-08-22 Semiconductor device Pending JPS6043856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58152648A JPS6043856A (en) 1983-08-22 1983-08-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58152648A JPS6043856A (en) 1983-08-22 1983-08-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6043856A true JPS6043856A (en) 1985-03-08

Family

ID=15545008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58152648A Pending JPS6043856A (en) 1983-08-22 1983-08-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6043856A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102272A (en) * 1979-01-31 1980-08-05 Chiyou Lsi Gijutsu Kenkyu Kumiai Method of fabricating mos semiconductor device
JPS57107070A (en) * 1980-12-17 1982-07-03 Ibm Method of producing high speed and high density mos dynamic ram integrated circuit structure with lightly doped-drain
JPS58118141A (en) * 1982-01-06 1983-07-14 Hitachi Ltd Semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102272A (en) * 1979-01-31 1980-08-05 Chiyou Lsi Gijutsu Kenkyu Kumiai Method of fabricating mos semiconductor device
JPS57107070A (en) * 1980-12-17 1982-07-03 Ibm Method of producing high speed and high density mos dynamic ram integrated circuit structure with lightly doped-drain
JPS58118141A (en) * 1982-01-06 1983-07-14 Hitachi Ltd Semiconductor memory device

Similar Documents

Publication Publication Date Title
US5444282A (en) Semiconductor device and a method of manufacturing thereof
JP3264264B2 (en) Complementary integrated circuit and manufacturing method thereof
US5213990A (en) Method for forming a stacked semiconductor structure
JPH07153952A (en) Semiconductor device and manufacture thereof
JPH098135A (en) Manufacture of semiconductor device
JPS59181062A (en) Manufacture of mos type semiconductor device
JP2004119884A (en) Semiconductor device
JPS61255069A (en) Insulated gate field-effect transistor
JPS6043856A (en) Semiconductor device
JP2727590B2 (en) MIS type semiconductor device
JPH0441502B2 (en)
JPH10163338A (en) Semiconductor device and its manufacturing method
JPS6043863A (en) Semiconductor device
JPH0252859B2 (en)
JPH06302779A (en) Semiconductor device and manufacture thereof
JP3043791B2 (en) Method for manufacturing semiconductor device
JPS58124269A (en) Complementary type insulated gate field effect semiconductor device
JPS61134058A (en) Manufacture of semiconductor device
JPH04162727A (en) Manufacture of semiconductor device
JPS62163374A (en) Manufacture of semiconductor device
JPS5856450A (en) Complementary mos semiconductor device
JPS63283065A (en) Manufacture of semiconductor device
JPS626664B2 (en)
JPS6129176A (en) Manufacture of semiconductor device
JPH06216382A (en) Semiconductor device and manufacture thereof