JPS62163374A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62163374A
JPS62163374A JP556386A JP556386A JPS62163374A JP S62163374 A JPS62163374 A JP S62163374A JP 556386 A JP556386 A JP 556386A JP 556386 A JP556386 A JP 556386A JP S62163374 A JPS62163374 A JP S62163374A
Authority
JP
Japan
Prior art keywords
region
film
gate electrode
forming
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP556386A
Other languages
Japanese (ja)
Inventor
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP556386A priority Critical patent/JPS62163374A/en
Publication of JPS62163374A publication Critical patent/JPS62163374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor device enabling the formation of a second conductivity type impurity diffusion region of high concentration which does not contact with a p-pocket and realizing the simultaneous achievement of high speed and control of a short channel effect, by forming a spacer on the side wall of a gate electrode and by ion-implanting a second conductivity type impurity for activation with these elements used as a mask, etc. CONSTITUTION:After a thin insulation film 23, a polycrystalline silicon film 25 and a conductive film 26 are formed in an insular region of a semiconductor layer 21 of a first conductivity type, a resist pattern is formed, and the periphery thereof is etched selectively to form a gate electrode 29 and an opening 28. Next, an impurity of a first conductivity type is doped through the opening 28 to form a pocket region 30 of high concentration. Then, the conductive film 26, the polycrystalline silicon film 25 and the insulation film 23 other than the gate electrode 29 are removed, and an impurity of a second conductivity type is doped with the gate electrode 29 and an element isolating region 22 used as a mask, so as to form two low concentration impurity diffusion regions 32. Subsequently, a spacer 33 is formed on the side wall of the gate electrode 29, and the impurity of the second conductivity type is doped with the gate electrode 29, the spacer 33 and the element isolating region 22 used as a mask, so as to form two high concentration impurity diffusion region 35.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にNIO3型
半導体装ろ”の製造方法の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to an improvement in a method for manufacturing a NIO3 type semiconductor device.

〔従来の技術〕[Conventional technology]

近年、MO8型半導体集積回路においては高密度化、高
速化が色速に進んでいる。かかる集積回路では、ゲート
長の微細化がなされているが、それに伴なってショート
チャンネル効果やブレークダウン電圧が問題となる。
In recent years, MO8 type semiconductor integrated circuits have been increasing in density and speed at a color speed. In such integrated circuits, the gate length has been miniaturized, but short channel effects and breakdown voltages have become problems as a result.

このような問題を改善するMOS型半導体装置の製造方
法として、5eiki Ogura @tal’″A 
T(ALFMICROMOSFET USING DU
BLE IMPLANTED LDD ’rEDM ’
82. PP 7 ] 8〜721が提案さね、ている
5eiki Ogura @tal'''A is a method for manufacturing MOS type semiconductor devices that improves these problems.
T(ALF MICROMOSFET USING DU
BLE IMPLANTED LDD 'rEDM'
82. PP 7 ] 8 to 721 are proposed.

こ21′Iを第2啄1(a) 、 (b)を参照して以
下に説明する。
This 21'I will be explained below with reference to the second chapter 1(a) and (b).

1ず、p型シリコン基板1表面に素子分離領域としての
フィールド酸化膜2を選択的に形成した後、フィールド
酸化膜2で分離された基板1の店頭+−2K熱酸化膜3
を形成する。つづいて、全面に不純物ドープ多結晶シリ
コン膜を堆積し、パターニングしてゲート電極4を形成
した後、該ゲート電極4及びフィールド酸化膜2をマス
クとしてp型不紳物をイオン注入して島領域にp型領域
51r52を形成し、更に同r−ト輩極4等をマスクと
して島領域に該p型領域より接合深さが浅−低濃度のn
型領域61+62を形成する(第2図(a)図示)。
1. After selectively forming a field oxide film 2 as an element isolation region on the surface of a p-type silicon substrate 1, a +-2K thermal oxide film 3 is formed on the substrate 1 separated by the field oxide film 2.
form. Subsequently, an impurity-doped polycrystalline silicon film is deposited on the entire surface and patterned to form a gate electrode 4. Using the gate electrode 4 and field oxide film 2 as a mask, p-type impurity ions are implanted into island regions. A p-type region 51r52 is formed in the island region using the same r-type region 4 as a mask, and an n-type region with a shallower junction depth and lower concentration than the p-type region is formed in the island region.
Form regions 61+62 (as shown in FIG. 2(a)).

次いで、ゲート電極4をマスクとして熱r浚化膜3を選
択的にエツチングしてf−)酸化膜7を形成し、更に全
面にCVD−8IO7膜を堆積した後、リアクティブイ
オンエツチング(RIE )法によりCvD−8I02
膜をその膜厚程度エツチングしてr−トff極4の側面
にスペーサ8を形成する。つづいて、ゲートit極4.
スペーサ8及びフィールド酸化M2をマスクとしてn型
不純物をイオン注入し、活性化してn型領域91+92
を形成する。この工程によりn型領域6!とn+型領領
域91からなるソース領域10.並びVcn型領域62
とn+型領領域9zからなるドレイン領域11が夫々形
成さね−る。またn型領域61 。
Next, using the gate electrode 4 as a mask, the thermally dredged film 3 is selectively etched to form an f-) oxide film 7, and a CVD-8IO7 film is further deposited on the entire surface, followed by reactive ion etching (RIE). CvD-8I02 by law
A spacer 8 is formed on the side surface of the r-to-ff electrode 4 by etching the film to the same thickness. Next, gate it pole 4.
Using spacer 8 and field oxide M2 as a mask, n-type impurity is ion-implanted and activated to form n-type regions 91+92.
form. With this step, n-type region 6! and a source region 10 consisting of an n+ type region 91. Arranged Vcn type region 62
and a drain region 11 consisting of an n+ type region 9z are formed. Also, an n-type region 61.

62の下層にp型領竣(pボケ、ト領H)y:zl。A p-type region is formed in the lower layer of 62 (p blur, to region H) y:zl.

122が残存される。ひきつづき、全面に白金膜を蒸着
し、熱処理を施して基板1の1霧出したn+型領領域9
1*92白金シリサイド層131゜132を形成した後
、未反応の白金膜を除去する(第2図(b)図示)。こ
の後図示しないが、常法に従ってCVD−8r 02膜
(層間絶縁膜)を堆積し、コンタクトホールの開口、金
属配線のパターニングを行なってMOS型半導体装置を
完成する。
122 remain. Subsequently, a platinum film is deposited on the entire surface and heat treated to form a n+ type region 9 of the substrate 1.
After forming the 1*92 platinum silicide layers 131 and 132, the unreacted platinum film is removed (as shown in FIG. 2(b)). Thereafter, although not shown, a CVD-8R02 film (interlayer insulating film) is deposited according to a conventional method, contact holes are opened, and metal wiring is patterned to complete a MOS type semiconductor device.

上述した方法によV製造さhたMOS型半導体装置にあ
っては、ブレイクダウン電圧をLDD構造のn型領域6
2により改善し、ショートチャンネル効果をn型領域6
1+62の下層に付加的に設けられたpポケット領域1
21,12゜により改善できる。
In the MOS type semiconductor device manufactured by the method described above, the breakdown voltage is set to the n-type region 6 of the LDD structure.
2 improves the short channel effect by adding n-type region 6
p pocket region 1 additionally provided in the lower layer of 1+62
It can be improved by angles of 21 and 12 degrees.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来方法では次のような問題点があ
る。
However, the above conventional method has the following problems.

(1)pポケット領域12..12.は、その目的よシ
トレイン領域11がら空乏層がチャンネル領域へ拡がる
のを抑え、ショートチャンネル効果を抑制するために、
濃度をより高くすることが望ましい。しかしながら、p
iチケット域121,12.け第2図(b)に示すよう
にpポケット領域121.ノ2.とn+型領領域919
゜とが接しているため、pyJrケット領域12! 。
(1) p pocket region 12. .. 12. The purpose of this is to suppress the expansion of the depletion layer from the strain region 11 to the channel region, and to suppress the short channel effect.
Higher concentrations are desirable. However, p
i-ticket area 121, 12. As shown in FIG. 2(b), the p pocket region 121. No2. and n+ type region 919
Since ゜ is in contact with pyJrket area 12! .

122の濃度を高くすると、それらの間の接合容量が大
きくなり、高速化の妨げとなる。したがって、ショート
チャンネル効果を抑制しようとすると、高速化が犠牲と
なり、逆に高速化を維持しようとすると、ショートチャ
ンネル効果の抑制化が図れなくなる。
If the concentration of 122 is increased, the junction capacitance between them will increase, which will impede speeding up. Therefore, if you try to suppress the short channel effect, you will sacrifice the speed increase, and conversely, if you try to maintain the high speed, you will not be able to suppress the short channel effect.

(2)n+型領領域91+92形成する工程においては
、該r型領域91+92とその前工程で形成したp&チ
ケット域となるp型領域51  +52の間の全体に亘
って接合容量が生じるのを防止するために、n+型領領
域9I92の接合深さくxj)をp堡領域51 、’5
鵞の接合深さくxj)より深くする必要がある。その結
果、n+型領領域91+92接合深さが深くなることに
伴なう横方向の拡散によ、Qn型領域61+62の幅が
狭くなったり、場合によっては消滅する問題が生じる。
(2) In the step of forming the n+ type regions 91+92, it is possible to prevent junction capacitance from occurring throughout between the r-type regions 91+92 and the p-type regions 51+52, which are the p&ticket regions formed in the previous step. In order to
It is necessary to make it deeper than the joint depth xj). As a result, a problem arises in that the width of the Qn type regions 61+62 becomes narrower or disappears in some cases due to lateral diffusion caused by the deeper junction depth of the n+ type regions 91+92.

(3)pポケット領域121,122 となるp型領域
51.5.とn型領域fxr62rI′i二重イオン打
込みにより形成しているため、島領域へのダメージ発生
を招く。こうしたダメージは高温熱処理により回復され
るが、ソース、ドレイン領域のシャロー化に伴なう低温
プロセスへの移行により十分に回復し得ない問題が生じ
る。
(3) p-type regions 51.5 to become p-pocket regions 121, 122; Since the n-type region fxr62rI'i is formed by double ion implantation, damage to the island region occurs. Although such damage can be recovered by high-temperature heat treatment, a problem arises in which sufficient recovery is not possible due to the shift to a low-temperature process that accompanies the shallowing of the source and drain regions.

本発明は、上記欠点を解決するためになされたもので、
ポケット領域と高濃度不純物拡散領域を制御性よく形成
してその接合容量の発生を防止し、高速化を図ると同時
に、微細化に伴なうショートチャンネル効果を抑制する
ことが可能なMO8型半導体集積回路等の半導体装置を
製造し得る方法を提供しようとするものである。
The present invention was made to solve the above drawbacks, and
MO8 type semiconductor that can form pocket regions and high-concentration impurity diffusion regions with good control to prevent the generation of junction capacitance, increase speed, and at the same time suppress the short channel effect that accompanies miniaturization. The present invention aims to provide a method for manufacturing semiconductor devices such as integrated circuits.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は第】導電型の半導体層表面に選択的に素子分離
領域を形成する工程と、この素子分離領域で分離された
半導体層の島領域に薄い絶縁膜を形成する工程と、多結
晶シリコン膜を形成し、全面にレジストパター7周辺の
下地逼択エツチング性を有する導電性被膜を形成した後
、該′a模膜上e−)電極予定部にレジストパターンを
形成する工程と、このレジストノやターン周辺の導電性
被膜及び多結晶シリコン膜を選択的に工、チングしてf
−ト電極を形成する2井に、p/チケット成用開口部を
形成する工程と、この開口部を通して第1導電、型の不
純物を前記半導体層にその表面より深い領域にドーピン
グし、該半導体層よp高濃度のボケ、ト領域を形成する
工程と、前記ゲート電極以外の導電性被膜及び多結晶シ
リコン膜を除去した後、不要な鷺い絶縁膜を除去してゲ
ート絶縁膜を形成する工程と、前記y−h電極及び素子
分離領域をマスクとして第2導1i型の不純物を前記島
領域にドーピングして互に電気的に分離された2つの低
濃度不純物拡散領域を形成する工程、前記ゲート電極の
側壁に少なくとも前記ポケット領域上方の半導体層表面
を覆うようにスペーサを形成する工程と、ゲート電極、
スペーサ及び素子分離領域をマスクとして第2導電型の
不純物を前記島領域にドーピングして互に電気的に分離
された2つの高濃度不純物拡散領域を形成する工程とを
具備することを骨子とするものである。
The present invention comprises: a step of selectively forming an element isolation region on the surface of a conductive type semiconductor layer; a step of forming a thin insulating film on an island region of the semiconductor layer separated by the element isolation region; After forming a conductive film having selective etching properties around the resist pattern 7 on the entire surface, a process of forming a resist pattern on the patterned film e-) in the area where the electrode is to be formed; The conductive film and polycrystalline silicon film around the turns are selectively processed and etched.
- forming an opening for forming a p/ticket in the second well for forming a gate electrode; doping a first conductivity type impurity into the semiconductor layer deeper than the surface thereof through the opening; After the step of forming a p-high concentration blur region in the layer and removing the conductive film and polycrystalline silicon film other than the gate electrode, unnecessary insulating film is removed to form a gate insulating film. a step of doping the island region with a second conductive 1i type impurity using the yh electrode and the element isolation region as a mask to form two low concentration impurity diffusion regions electrically isolated from each other; forming a spacer on a sidewall of the gate electrode so as to cover at least a surface of the semiconductor layer above the pocket region; a gate electrode;
doping the island region with a second conductivity type impurity using the spacer and the element isolation region as a mask to form two high-concentration impurity diffusion regions electrically isolated from each other. It is something.

上記半導体層とは、半導体基板又は基板上に直接もしく
は絶縁層を介して形成された半導体層、或いは絶縁基板
上に形放さi″した半導体層を意味するものである。
The above-mentioned semiconductor layer refers to a semiconductor substrate, a semiconductor layer formed directly or through an insulating layer on a substrate, or a semiconductor layer exposed on an insulating substrate.

上記導電性被膜としてはモリブデン膜、モリブデンシリ
サイド膜等を挙げることができる。
Examples of the conductive film include a molybdenum film and a molybdenum silicide film.

〔作用〕[Effect]

上述した本発明によればゲート電極側壁にスペーサを形
成し、これらをマスクとして第2導M型不紳物をイオン
注入し、活性化することによって、pポケットと接触し
ない高濃度の第2導を型不純物拡散領域を形成でき、既
述の如く高速化とショートチャンネル効果の抑制とを同
時に達成した半導体装置を得ることができる。
According to the present invention described above, spacers are formed on the side walls of the gate electrode, and a second conductive M-type impurity is ion-implanted and activated using these spacers as a mask. A type impurity diffusion region can be formed, and a semiconductor device can be obtained which simultaneously achieves high speed and suppression of the short channel effect as described above.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をnチャンネルMO8−ICの製造に適用
した例について第】図(IL)〜(g)を参照して説明
する。
Hereinafter, an example in which the present invention is applied to the manufacture of an n-channel MO8-IC will be described with reference to FIGS.

まず、p型シリコン基板2ノ表面に選択酸化技術により
素子分離領域としてのフィールド酸化膜22を選択的に
形成した。つづいて、熱酸化処理を施して、フィールド
酸化膜22で分離さfl、次基板2ノの島領域に例えば
厚さ2501の熱酸化膜23を成長した後、閾値制御の
ためのボロンを島領域にイオン注入してボロンイオン層
24を形成した。この後、全面に多結晶シリコン25を
例えば4000X堆積し、さらに2000Xのモリブデ
ン膜26を堆積(蒸着)させた(第1図(a)図示)。
First, a field oxide film 22 as an element isolation region was selectively formed on the surface of a p-type silicon substrate 2 by selective oxidation technology. Subsequently, a thermal oxidation process is performed to separate fl from the field oxide film 22, and then a thermal oxide film 23 with a thickness of 2,501 cm, for example, is grown on the island region of the substrate 2, and then boron is applied to the island region for threshold control. A boron ion layer 24 was formed by ion implantation. Thereafter, polycrystalline silicon 25 was deposited, for example, at 4000X on the entire surface, and a molybdenum film 26 at 2000X was further deposited (evaporated) (as shown in FIG. 1(a)).

つづいて、同図(b)に示すように多結晶シリコンM2
5.モリブデン膜26上のゲート電極予定部に写真蝕刻
法によりレジストパターン22を形成した。ひきつづき
、CC24+02(70%)、 0.28W/cIF?
、 4 paの条件でRIEを行なった。この時、同時
(c)に示すようにレジス) /?ターン27周辺の下
地(モリブデン膜26)のみエツチングされ、この際に
露出した多結晶シリコンをさらにエツチングすることに
より、pポケット用開口部28が形成されると共に、開
口部28で分離された多結晶シリコン膜25’ 、モリ
ブデン膜26′からなるr−ト電極29が形成される。
Next, as shown in the same figure (b), polycrystalline silicon M2
5. A resist pattern 22 was formed on the molybdenum film 26 at a portion where the gate electrode was to be formed by photolithography. Continuing, CC24+02 (70%), 0.28W/cIF?
, 4 pa conditions. At this time, as shown in (c), Regis) /? Only the base (molybdenum film 26) around the turn 27 is etched, and by further etching the exposed polycrystalline silicon, a p-pocket opening 28 is formed and the polycrystalline silicon separated by the opening 28 is etched. An r-to-electrode 29 consisting of a silicon film 25' and a molybdenum film 26' is formed.

この開口部28の幅はエツチング時間によりサブミクロ
ンから数ミクロンの範囲で変更できる。なお、前記下地
の選択エツチング技術は例えば文献”5IRIEとペリ
フェラル−エツチング深野哲、 Sem1conduc
torWorld、 1983.10に報告されている
The width of this opening 28 can be varied from submicrons to several microns depending on the etching time. The selective etching technique for the underlying layer is described in, for example, the document "5IRIE and Peripheral Etching" by Satoshi Fukano, Sem1conduc.
torWorld, 1983.10.

次いで、pポケット用不純物、例えばボロ/を加速電圧
100 keV、ドーズ量5X]O(mの条件でイオン
注入した。この時、同図(d)に示すようにゲート電極
29以外の残存したモリブデン膜26′および多結晶シ
リコン膜25′並びにレジストパターン27がピロンイ
ンプラのマスクとして作用し、前記開口部28から露出
する島領域の表面より0.25μmに不紳物演度ピーク
をもつpポケット領域301,302が形成された。こ
うしたイオン注入において、ピロンを熱酸化膜23を通
して行なったが、こhはゲート電極以外の残存モリブデ
ン膜26′および多結晶シリコン膜25′を除去する際
のマスクとするためである。
Next, p-pocket impurities, such as boro/, were ion-implanted at an acceleration voltage of 100 keV and a dose of 5X]O (m).At this time, as shown in FIG. The film 26', the polycrystalline silicon film 25', and the resist pattern 27 act as a mask for the pilon implant, and a p-pocket region 301 is formed which has an undesirable performance peak at 0.25 μm from the surface of the island region exposed from the opening 28. , 302 was formed. In this ion implantation, pyrons were implanted through the thermal oxide film 23, which was used as a mask when removing the remaining molybdenum film 26' and polycrystalline silicon film 25' other than the gate electrode. It's for a reason.

次いで、レジストパターン27をマスクとして通常のエ
ツチング、例えばCC24+02(30%)のRIEを
行なって露出した残存モリブデン膜26′および多結晶
シリコン膜25′を除去した後、露出した酸化膜23を
選択的にエツチングしてゲート酸化膜31を形成した。
Next, using the resist pattern 27 as a mask, normal etching, for example CC24+02 (30%) RIE, is performed to remove the exposed remaining molybdenum film 26' and polycrystalline silicon film 25', and then the exposed oxide film 23 is selectively etched. A gate oxide film 31 was formed by etching.

つづいて、レジストパターン27を除去し、ゲート電極
29及びフィールド酸化膜22をマスクとしてn型不純
物、例えばリンを加速電圧30keV、  ドーズM 
2 X 1013(m2の条件でイオン注入した後、熱
処理により活性化して前記島領域に互に分離された低一
度のn型領域321,322を形成した(同図(e)図
示)。
Subsequently, the resist pattern 27 is removed, and using the gate electrode 29 and field oxide film 22 as a mask, an n-type impurity such as phosphorus is added at an acceleration voltage of 30 keV and a dose of M.
After ion implantation under the condition of 2.times.10.sup.13 (m2), the ions were activated by heat treatment to form low-degree n-type regions 321 and 322 separated from each other in the island region (as shown in FIG. 3(e)).

次いで、全面に厚さ4000X程度ノc′VD−8Io
2膜を堆積した後、RIE法により8102Mをその膜
厚程度エツチングしてゲート電極29の側壁に前記pポ
ケット領域301,30.上方の基板21表面領域を覆
うスペーサ33を形成した。
Next, the entire surface was coated with c'VD-8Io to a thickness of about 4000X.
After depositing two films, 8102M is etched to the same thickness by RIE to form the p pocket regions 301, 30 . A spacer 33 was formed to cover the surface area of the upper substrate 21.

つづいて、y−ト*極29、スペーサ33及びフィール
ド酸化膜22をマスクとしてn型不純物、例えば砒素を
加速常圧40 keV、ドーズ量5X]Ocm  の条
件でイオン注入し、活性化して互に分離された高濃度の
n+型領領域35t35゜を形成した。この工程にエリ
n型領域321とn+型領領域351からなるソース領
域36、並びにn型領域322とn+型領領域352か
らなるドレイン領域37が夫々形成された。また、本実
施例においては、n+型領領域活性化熱処理の際にI”
−ト11に329を構成する多結晶シリコ:/’a25
’とモI)fデン膜26′が反応してモリブデンシリサ
イド膜34が形成された。これによりモリブデンシリサ
イドM34と多結晶シIJ jン膜25′よりなるゲー
ト電極29′が形成された(同図(f)図示)。
Next, using the y-to* electrode 29, spacer 33, and field oxide film 22 as masks, ions of an n-type impurity, such as arsenic, are implanted under conditions of accelerated normal pressure of 40 keV and dose of 5X]Ocm, and are activated to mutually interact. Separated high concentration n+ type regions 35t35° were formed. In this step, a source region 36 consisting of an n-type region 321 and an n + type region 351 and a drain region 37 consisting of an n-type region 322 and an n + type region 352 were formed, respectively. In addition, in this example, during the n+ type region activation heat treatment, I”
-Polycrystalline silicon constituting 329 on 11:/'a25
' and MoI)f reacted with each other to form a molybdenum silicide film 34. As a result, a gate electrode 29' made of molybdenum silicide M34 and a polycrystalline silicon film 25' was formed (as shown in FIG. 3(f)).

次いで、全面にリフロー用絶縁膜38を堆積し、平滑化
の之めの900℃の熱処理を行なり1コンタクトホール
39の開口、At膜の蒸着、パクーニングによるソース
、ドレイン取出しA2配線40.41を形成してnチャ
ンネルMO8−ICを製造した(同図(g)図示)。
Next, an insulating film 38 for reflow is deposited on the entire surface, heat treatment is performed at 900° C. for smoothing, opening of the first contact hole 39, deposition of an At film, and formation of source and drain A2 wirings 40 and 41 by pakuning. An n-channel MO8-IC was manufactured by forming an n-channel MO8-IC (as shown in the same figure (g)).

しかして、本発明方法によればレジスト・ぞターン27
周辺の下地選択エツチング性を有するモリブデン膜26
を利用しその下の多結晶シリコン膜25をエツチングす
ることにより、ゲート電極29とpポケット開口部28
とを自己整合的に形成できる。その結果、開口部28全
通してpTIF!ケット領域301,302を形成した
後、ゲート電、誕29をマスクとしたn型不純物のイオ
ン注入、活性化により低濃度のn型領域32! 、32
zを形成した際、該n型領域32.。
However, according to the method of the present invention, the resist
Molybdenum film 26 with selective etching properties on the surrounding substrate
By etching the underlying polycrystalline silicon film 25 using etching, the gate electrode 29 and the p pocket opening 28 are etched.
can be formed in a self-consistent manner. As a result, pTIF! After forming the ket regions 301 and 302, n-type impurity ions are implanted and activated using the gate electrode 29 as a mask to reduce the concentration of the n-type region 32! , 32
When forming the n-type region 32. .

322のチャンネル領域側下部にpZケット領域301
,302を自己整合的に位置させることができる。した
がって、ゲート電極29側壁にス啄−サ33を形成し、
これらをマスクとしてng不純物をイオン注入し、活性
化することにより、pポケyト301 +30x と接
触しない高濃度のn+型領領域351、?5□を形成で
きるため、以下に示す効果を有する。
The pZket region 301 is located at the bottom of the channel region side of 322.
, 302 can be positioned in a self-aligned manner. Therefore, a spacer 33 is formed on the side wall of the gate electrode 29,
Using these as a mask, ng impurities are ion-implanted and activated, resulting in a highly doped n+ type region 351 that does not come into contact with the p pocket 301 +30x. Since 5□ can be formed, it has the following effects.

(1)pポケット301,302とn+型領領域351
.35.とが接触しないため、n+型領領域35135
.との間の接合容量を考慮せずに、#pポケット領域3
01.302の濃度を高くできる。このため、高速化が
阻害されることなく、寸法の微細化に伴なうショートチ
ャンネル効果を可能なかぎり抑制できる。
(1) P pockets 301, 302 and n+ type region 351
.. 35. Since there is no contact with the n+ type region 35135
.. #p pocket region 3 without considering the junction capacitance between
01.302 concentration can be increased. Therefore, the short channel effect that accompanies miniaturization of dimensions can be suppressed as much as possible without hindering the increase in speed.

(2)n+型領領域351352の深さを、pポケット
領域301,302の深さに依存することなく自由に選
定できる。このため、n+型領領域351352の接合
深さを浅くでき、低濃度のn型領域321,32.への
横方向拡散による該領域321,322の幅縮小や消#
、を防止でき、ひいてはLDD vJ造を確実に実現で
き、それによるブレイクダウン電圧の向上化やインノ9
クトアイオニゼーションの緩和等を達成できる。
(2) The depth of the n+ type region 351352 can be freely selected without depending on the depth of the p pocket regions 301 and 302. Therefore, the junction depth of the n+ type region 351352 can be made shallow, and the low concentration n type regions 321, 32 . The width of the regions 321 and 322 is reduced or erased by lateral diffusion.
, and in turn, it is possible to reliably realize the LDD vJ structure, thereby improving the breakdown voltage and improving the Inno 9
It is possible to achieve mitigation of ionization, etc.

(3)p、1′Pケツト形成のための?ロンインプラに
お込で、残存した多結晶シリコン膜25′およびモリブ
デン膜26′がマスクとなり、基板2ノの島領域へのイ
ンプラダメージを防止できる。
(3) For formation of p, 1'P ketone? When performing a single implant, the remaining polycrystalline silicon film 25' and molybdenum film 26' serve as a mask to prevent implant damage to the island region of the substrate 2.

(4)最終的に形成されたグー)[極29′が多結晶シ
リコン膜とモリブデンシリサイド膜34(ポリサイド構
造)より構成されているため、その抵抗値を低くでき、
高速化が可能となる。
(4) Finally formed goo) [Since the pole 29' is composed of a polycrystalline silicon film and a molybdenum silicide film 34 (polycide structure), its resistance value can be lowered,
This makes it possible to increase the speed.

(5)pポケ、ト領域301,30.を♂型領域351
,35.より深くすることによって、下方向への空乏層
の回り込みに対するストッパとなるため、一層ショート
チャンネル効果に対して強い構造を実現できる。
(5) p pocket, g region 301, 30 . The male type area 351
, 35. By making the depth deeper, it becomes a stopper against the downward wraparound of the depletion layer, making it possible to realize a structure that is even more resistant to the short channel effect.

(6)pJチケット成のための?ロンインプラにオlx
で、f−)電極下部にチャネリングにより、ボロンイオ
ンが突き抜け、vTHの制御性を悪くする場合があるが
、本発明は、多結晶シリコン、モリブデン、レジストと
3層構造となっているため、突き抜けに対して強い構造
を有している。
(6) For pJ ticket generation? Lon in plastic and olx
f-) Boron ions may penetrate through the lower part of the electrode due to channeling, impairing the controllability of vTH.However, in the present invention, since it has a three-layer structure of polycrystalline silicon, molybdenum, and resist, the boron ions can penetrate through the lower part of the electrode. It has a strong structure against

(7)  ポリサイド給進のため従来の多結晶シリコン
ゲートの経験をそのまま生かせる。
(7) Because of polycide feeding, the experience of conventional polycrystalline silicon gates can be utilized as is.

なお、上記実施例ではpポケット領域の接合深さをn+
型領領域り深くしたが、n型領域と同深さ、もしくはそ
わ、よジ浅くしても差し支えない。
Note that in the above embodiment, the junction depth of the p pocket region is n+
Although the mold region is made deep, there is no problem in making it the same depth as the n-type region or slightly shallower.

上記実施例ではスペーサをそのま1残存させて層間絶縁
膜の一部として利用したが、層間絶縁膜の堆積前にエツ
チング除去してもよい。ス’−サn CV’D−S i
O2ノ代ジに515N4等のy−ト電極材料に対して選
択エツチング性を有するものを用いてもよい。
In the above embodiment, the spacer was left as is and used as a part of the interlayer insulating film, but it may be removed by etching before depositing the interlayer insulating film. Su'-san CV'D-S i
For the O2 layer, a material having selective etching properties with respect to the Y-toe electrode material, such as 515N4, may be used.

また、上記実施例においてはモリブデン膜を使用し、n
+層活性化の際にシリサイド化させたが、n一層活性化
の際まfcは、n+層、n一層両方の活性化の際にシリ
サイド化を行われてもかまわない。
In addition, in the above embodiment, a molybdenum film is used, and n
Although silicide was performed when activating the + layer, fc may be silicided when activating both the n+ layer and the n1 layer.

上記実施例においては、モリブデン膜を使用して、多結
晶シリコンと反応させてモリブデンシリサイドを形成し
たが、モリブデンのかわりに最初から、モリブデンシリ
サイドを使用しても良い。この場合、多結晶シリコン膜
の膜厚等は、モリブデンの場合と別に最適化が必要とな
る。
In the above embodiment, molybdenum silicide was formed by using a molybdenum film and reacting with polycrystalline silicon, but molybdenum silicide may be used from the beginning instead of molybdenum. In this case, the film thickness of the polycrystalline silicon film, etc. must be optimized separately from the case of molybdenum.

上記実施例では、p−ポケットを中心として説明を行っ
たが、pチャンネルトランジスタの場合VCは、n−ポ
ケットとなり、同様な工程で作成する事ができる。
In the above embodiments, the description has focused on a p-pocket, but in the case of a p-channel transistor, VC becomes an n-pocket, which can be manufactured using a similar process.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば、ポケット領域とソ
ース、ドレイン領域を構成する高濃度不純物拡散領域と
を制御性よく形成してその接合容量の発生を防止し、高
速化を図ると共に、ブレイクダウン電圧の向上、微細化
に伴なうショートチャンネル効果の抑制を達成でき、ひ
いては高集積度、高速性、高信頼性のMO8型集積回路
等の半導体装置を製造し得る方法を提供できる。
As described in detail above, according to the present invention, the pocket region and the high-concentration impurity diffusion regions constituting the source and drain regions are formed with good controllability to prevent the generation of junction capacitance therebetween, and to increase the speed. It is possible to improve the breakdown voltage and suppress the short channel effect accompanying miniaturization, and furthermore, it is possible to provide a method for manufacturing semiconductor devices such as MO8 type integrated circuits with high integration, high speed, and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(g) ilt本発明の実施例における
nチャンネルMO8−ICの製造工程を示す断面図、第
2図(iL)、 (b)は従来の同MO8−ICの製造
工程を示す断面図である。 21・・・p型シリコン基板、22・・・フィールド酸
化膜、25・・・多結晶シリコン膜、26・・・モリブ
デン膜、27・・・レジストパターン、28・・・p2
ケット開口部、29.29’・・・ff−)電極、30
1.30g・・・pポケ、ト領域、32! 。 322・・・n fii域、33・・・スペーサ、34
・・・モリブデンシリサイド膜、351 .35.・・
・n+型領領域36・・・ソース領域、37・・・ドレ
イ/領域。 出願人代理人  弁理士 鈴 江 武 彦第 11; 11コ 1 図 i)゛ぎ 2 図
Figures 1 (al to g) are cross-sectional views showing the manufacturing process of an n-channel MO8-IC in an embodiment of the present invention, and Figures 2 (iL) and (b) are cross-sectional views showing the manufacturing process of the conventional MO8-IC. 21... p-type silicon substrate, 22... field oxide film, 25... polycrystalline silicon film, 26... molybdenum film, 27... resist pattern, 28... p2
socket opening, 29.29'...ff-) electrode, 30
1.30g...p pocket, to area, 32! . 322...n fii area, 33... Spacer, 34
...Molybdenum silicide film, 351. 35.・・・
- N+ type region 36... source region, 37... drain/region. Applicant's agent Patent attorney Takehiko Suzue No. 11; 11 1 Figure i) 2 Figure

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型の半導体層表面に選択的に素子分離領
域を形成する工程と、この素子分離領域で分離された半
導体層の島領域に薄い絶縁膜を形成する工程と、この薄
い絶縁膜上に多結晶シリコン膜および導電性被膜を形成
する工程と、該被膜上のゲート電極予定部にレジストパ
ターンを形成する工程と、このレジストパターン周辺の
導電性被膜を選択的にエッチングし、更に露出した多結
晶シリコン膜をエッチングしてゲート電極を形成すると
共に、pポケット形成用開口部を形成する工程と、前記
開口部を通して第1導電型の不純物を前記半導体層にそ
の表面より深い領域にドーピングし、該半導体層より高
濃度のポケット領域を形成する工程と、前記ゲート電極
以外の導電性被膜を除去した後、不要な薄い絶縁膜を除
去してゲート絶縁膜を形成する工程と、前記ゲート電極
及び素子分離領域をマスクとして第2導電型の不純物を
前記島領域にドーピングして互に電気的に分離された2
つの低濃度不純物拡散領域を形成する工程と、前記ゲー
ト電極の側壁に少なくとも前記ポケット領域上方の半導
体層表面を覆うようにスペーサを形成する工程と、ゲー
ト電極、スペーサ及び素子分離領域をマスクとして第2
導電型の不純物を前記島領域にドーピングして互に電気
的に分離された2つの高濃度不純物拡散領域を形成する
工程とを具備したことを特徴とする半導体装置の製造方
法。
(1) A step of selectively forming an element isolation region on the surface of a semiconductor layer of a first conductivity type, a step of forming a thin insulating film on an island region of the semiconductor layer separated by this element isolation region, and a step of forming a thin insulating film on an island region of the semiconductor layer separated by the element isolation region. A step of forming a polycrystalline silicon film and a conductive film on the film, a step of forming a resist pattern on the film at a portion where the gate electrode is to be formed, selectively etching the conductive film around the resist pattern, and further etching the exposed polycrystalline silicon film to form a gate electrode and forming an opening for forming a p-pocket; and introducing impurities of a first conductivity type into the semiconductor layer through the opening to a region deeper than the surface thereof. a step of doping to form a pocket region with a higher concentration than the semiconductor layer; a step of removing a conductive film other than the gate electrode and then removing an unnecessary thin insulating film to form a gate insulating film; The island regions are doped with a second conductivity type impurity using the gate electrode and the element isolation region as a mask to electrically isolate the two regions from each other.
forming a spacer on the sidewall of the gate electrode so as to cover at least the surface of the semiconductor layer above the pocket region; 2
A method of manufacturing a semiconductor device, comprising the step of doping the island region with a conductive type impurity to form two high concentration impurity diffusion regions electrically isolated from each other.
(2)導電性被膜がモリブデンからなることを特徴とす
る特許請求の範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the conductive film is made of molybdenum.
(3)導電性被膜がモリブデンシリサイドからなること
を特徴とする特許請求の範囲第1項記載の半導体装置の
製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the conductive film is made of molybdenum silicide.
(4)pポケット領域の深さが高濃度不純物拡散領域の
深さと同じか、それ以上であることを特徴とする特許請
求の範囲第1項記載の半導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to claim 1, wherein the depth of the p-pocket region is equal to or greater than the depth of the high concentration impurity diffusion region.
JP556386A 1986-01-14 1986-01-14 Manufacture of semiconductor device Pending JPS62163374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP556386A JPS62163374A (en) 1986-01-14 1986-01-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP556386A JPS62163374A (en) 1986-01-14 1986-01-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62163374A true JPS62163374A (en) 1987-07-20

Family

ID=11614670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP556386A Pending JPS62163374A (en) 1986-01-14 1986-01-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62163374A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416033A (en) * 1992-11-13 1995-05-16 At&T Corp. Integrated circuit and manufacture
US5837587A (en) * 1991-09-30 1998-11-17 Sgs-Thomson Microelectronics, Inc. Method of forming an integrated circuit device
WO2001039273A1 (en) * 1999-11-29 2001-05-31 Advanced Micro Devices, Inc. Method of manufacturing a semiconductor device using a halo implantation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837587A (en) * 1991-09-30 1998-11-17 Sgs-Thomson Microelectronics, Inc. Method of forming an integrated circuit device
US5894158A (en) * 1991-09-30 1999-04-13 Stmicroelectronics, Inc. Having halo regions integrated circuit device structure
US6027979A (en) * 1991-09-30 2000-02-22 Stmicroelectronics, Inc. Method of forming an integrated circuit device
US5416033A (en) * 1992-11-13 1995-05-16 At&T Corp. Integrated circuit and manufacture
WO2001039273A1 (en) * 1999-11-29 2001-05-31 Advanced Micro Devices, Inc. Method of manufacturing a semiconductor device using a halo implantation
US7192836B1 (en) 1999-11-29 2007-03-20 Advanced Micro Devices, Inc. Method and system for providing halo implant to a semiconductor device with minimal impact to the junction capacitance

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
KR20010076304A (en) Semiconductor device and method of manufacturing the same
US5061649A (en) Field effect transistor with lightly doped drain structure and method for manufacturing the same
JP2001332630A (en) Method of manufacturing semiconductor device
JPS6055665A (en) Manufacture of semiconductor device
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
US20060194393A1 (en) Method of manufacturing semiconductor device
JPS62163374A (en) Manufacture of semiconductor device
JP2006173438A (en) Method of manufacturing mos type semiconductor device
US7176536B2 (en) Semiconductor device having metal silicide layer on source/drain region and gate electrode and method of manufacturing the same
US7186631B2 (en) Method for manufacturing a semiconductor device
JPH07263690A (en) Semiconductor device having salicide structure and its manufacture
JPH0243339B2 (en)
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JP2010067912A (en) Semiconductor device and method of manufacturing the same
JPS61134073A (en) Manufacture of semiconductor device
JPS60263468A (en) Manufacture of semiconductor device
JPH05291573A (en) Semiconductor device and manufacture thereof
JPS6276562A (en) Semiconductor device and manufacture thereof
JPH0221648A (en) Semiconductor device and manufacture thereof
JPS62221158A (en) Manufacture of semiconductor device
JPS5972173A (en) Mis type semiconductor device and manufacture thereof
JPH05243566A (en) Manufacture of semiconductor device
JPS61214578A (en) Manufacture of semiconductor device
JPS62179157A (en) Manufacture of semiconductor device