JPS6042184B2 - Manufacturing method for dense chromium oxide refractories - Google Patents

Manufacturing method for dense chromium oxide refractories

Info

Publication number
JPS6042184B2
JPS6042184B2 JP12204677A JP12204677A JPS6042184B2 JP S6042184 B2 JPS6042184 B2 JP S6042184B2 JP 12204677 A JP12204677 A JP 12204677A JP 12204677 A JP12204677 A JP 12204677A JP S6042184 B2 JPS6042184 B2 JP S6042184B2
Authority
JP
Japan
Prior art keywords
chromium oxide
oxide
manufacturing
refractories
dense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12204677A
Other languages
Japanese (ja)
Other versions
JPS5455012A (en
Inventor
和男 沖
一成 小出
謙次 杉浦
正俊 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP12204677A priority Critical patent/JPS6042184B2/en
Publication of JPS5455012A publication Critical patent/JPS5455012A/en
Publication of JPS6042184B2 publication Critical patent/JPS6042184B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は緻密質酸化クロム耐化物の製造方法に関し、
とくにガラス溶解炉用内張材として好適な酸化クロム耐
火物の製造方法に係る。
[Detailed description of the invention] The present invention relates to a method for producing a dense chromium oxide resistant material,
In particular, the present invention relates to a method for producing a chromium oxide refractory suitable as a lining material for a glass melting furnace.

一般に、酸化クロムは硼珪酸ガラス等の侵蝕性の大き
い溶融ガラスに対して優れた耐蝕性を有するが、この酸
化クロムをガラス溶融炉の内張材として用いるには緻密
体としなければその特性を充分発揮できない。
In general, chromium oxide has excellent corrosion resistance against highly corrosive molten glass such as borosilicate glass, but in order to use this chromium oxide as a lining material for glass melting furnaces, its properties must be made into a dense body. I can't perform to my full potential.

しかしながら、酸化クロム自体は焼結性が乏しく、かつ
良好な焼結助剤がないため、得られた耐火物は気孔率が
高く、到底上記内張材として実用化できないのが実状で
あつた。 このようなことから、本発明者は上記欠点を
解消するために鋭意研究を重ねた結果、酸化クロムに酸
化マンガン、酸化鉄、酸化ニッケル及びアルカリ土類金
属酸化物から選ばれる1種または2種の焼結助剤を所定
量添加し、焼成せしめることによつて、焼結性が著しく
向上し、気孔率が低く耐蝕性が良好な緻密質酸化クロム
耐化物が得られると共に大型形状の耐火物の製造も可能
となる方法を見い出した。 以下、本発明を詳細に説明
する。
However, since chromium oxide itself has poor sinterability and there is no good sintering aid, the resulting refractory has a high porosity and cannot be put to practical use as the above-mentioned lining material. In view of this, the inventors of the present invention have conducted extensive research to eliminate the above-mentioned drawbacks, and have found that chromium oxide contains one or two types selected from manganese oxide, iron oxide, nickel oxide, and alkaline earth metal oxides. By adding a predetermined amount of sintering aid and firing, sinterability is significantly improved, and a dense chromium oxide refractory with low porosity and good corrosion resistance can be obtained, as well as large-sized refractories. We have discovered a method that makes it possible to manufacture The present invention will be explained in detail below.

まず、酸化クロム粉に酸化マンガン粉、酸化鉄粉、酸
化ニッケル粉及び酸化カルシウム、酸化バリウムなどの
アルカリ土類金属酸化物粉から選はれる1種または2種
以上の焼結助剤を添加混合して原料とする。
First, one or more sintering aids selected from manganese oxide powder, iron oxide powder, nickel oxide powder, and alkaline earth metal oxide powder such as calcium oxide and barium oxide are added and mixed to chromium oxide powder. and use it as raw material.

つづいて、この原料を必要に応じて造粒し、これにポリ
ビニルアルコール、カルボニルメチルセルロース、熱硬
化性樹脂等の結合剤を添加混練し、金型プレス、ラバー
プレス等の公知の成型法により成形した後、この成形体
を焼成せしめて緻密質酸化クロム耐化物を造る。 本発
明に使用する焼結助剤は酸化マンガン粉、酸化鉄粉、酸
化ニッケル粉及びアルカリ土類金属酸化物粉から選ばれ
る1種または2種以上のものからなるが、とくに酸化マ
ンガン粉、酸化鉄粉、酸化ニッケル粉とアルカリ土類金
属酸化物粉とを併用すると、焼結性がさらに高められ、
緻密性を著しく向上てきる。
Next, this raw material was granulated as necessary, a binder such as polyvinyl alcohol, carbonyl methyl cellulose, or thermosetting resin was added and kneaded, and the mixture was molded using a known molding method such as mold press or rubber press. Thereafter, this molded body is fired to produce a dense chromium oxide resistant material. The sintering aid used in the present invention is composed of one or more selected from manganese oxide powder, iron oxide powder, nickel oxide powder, and alkaline earth metal oxide powder, but especially manganese oxide powder, oxidized When iron powder, nickel oxide powder, and alkaline earth metal oxide powder are used together, the sinterability is further improved.
The precision can be significantly improved.

本発明における焼結助剤の添加量を上記範囲に限定した
理由は、その添加量を1重量%未満にすると、所期の目
的てある緻密性の向上化効果を十分達成できず、かとい
つて1唾量%を越えると、焼結助剤のもつ侵蝕され易い
性質が顕在化して、得られた酸化クロム耐火物の耐蝕性
が低下するからである。
The reason why the amount of the sintering aid added in the present invention is limited to the above range is that if the amount added is less than 1% by weight, the desired effect of improving density cannot be sufficiently achieved. If the amount exceeds 1%, the corrosion-prone nature of the sintering aid becomes apparent, and the corrosion resistance of the obtained chromium oxide refractory decreases.

本発明における焼成温度は通常1500〜1750℃の
範囲にすればよい。
The firing temperature in the present invention may normally be in the range of 1,500 to 1,750°C.

次に、本発明の実施例を説明する。Next, examples of the present invention will be described.

実施例1〜9及び比較例 まず、酸化クロムと、酸化バリウム、酸化マンガン、酸
化ニッケル及び酸化鉄から選ばれる1種又は2種以上の
焼結助剤とを下記表に示す種々の配合割合で配合してな
る原料〔実施例1〜9〕、及び酸化クロム10喧量部の
単味からなる原料〔比較例〕を、夫々ゴムライニングポ
ットミルにて3時間湿式粉砕、混合し、これらにポリビ
ニルアルコール3.5%溶液を7重量部添加混練した後
、1000k91cItの加圧条件のラバープレスにて
50φX5OH順の10種の成形体を成形した。
Examples 1 to 9 and Comparative Examples First, chromium oxide and one or more sintering aids selected from barium oxide, manganese oxide, nickel oxide, and iron oxide were mixed at various blending ratios shown in the table below. The raw materials obtained by blending [Examples 1 to 9] and the raw material consisting of a single component of 10 parts of chromium oxide [Comparative Example] were wet-pulverized and mixed for 3 hours in a rubber-lined pot mill, and then polyvinyl alcohol was added to these materials. After adding and kneading 7 parts by weight of the 3.5% solution, 10 types of molded bodies in the order of 50φ×5OH were molded using a rubber press under pressure conditions of 1000 k91 cIt.

つづいて、これら成形体を1700℃の温度下にて1叫
間焼成せしめて1喝の酸化クロム耐火物を得た。しかし
て、上記実施例1〜9及び比較例の酸化クロム耐火物の
寸法変化率、見掛気孔率及びカサ比重を調べた。また、
これら酸化クロム耐火物を20×20×20TnI!L
の試料片とし、これら試料片を1400℃の硼珪酸ガラ
ス溶解液に10C@間浸漬する、いわゆるルツボ浸漬法
(ルツボAD−S法)に溶損率(体積減少率)を調べた
。これらの結果を下記表に示した。上表より明らかなよ
うに、本発明方法により得られた酸化クロム耐火物(実
施例1〜9)は酸化クロム単独からなる酸化クロム耐火
物(比較例)に比して気孔率が低く、緻密性に富み、し
かも硼硅酸ガラス溶解液に対する耐蝕性が優れているこ
とがわかる。
Subsequently, these molded bodies were fired at a temperature of 1,700° C. for one hour to obtain a chromium oxide refractory of one size. Therefore, the dimensional change rate, apparent porosity, and bulk specific gravity of the chromium oxide refractories of Examples 1 to 9 and Comparative Example were investigated. Also,
These chromium oxide refractories are 20×20×20TnI! L
The erosion rate (volume reduction rate) was investigated using the so-called crucible immersion method (crucible AD-S method) in which the sample pieces were immersed in a borosilicate glass solution at 1400° C. for 10 C@. These results are shown in the table below. As is clear from the above table, the chromium oxide refractories obtained by the method of the present invention (Examples 1 to 9) have lower porosity and are denser than the chromium oxide refractories made of chromium oxide alone (comparative example). It can be seen that it has excellent corrosion resistance against borosilicate glass solution.

以上詳述した如く、本発明によれば気孔率が低く硼硅酸
ガラスなどの侵蝕性の大きい溶融ガラスに対して優れた
耐蝕性を有する緻密質酸化クロム耐化物を得ることがで
きると共に、大型形状の耐火物の製造も可能となり、も
つてガラス溶解炉用内張材として有効に利用てきる等顕
著な効果を有する。
As described in detail above, according to the present invention, it is possible to obtain a dense chromium oxide resistant material that has low porosity and excellent corrosion resistance against highly corrosive molten glass such as borosilicate glass. It has become possible to manufacture shaped refractories, and has remarkable effects such as being able to be effectively used as a lining material for glass melting furnaces.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化クロムに、酸化マンガン、酸化鉄、酸化ニッケ
ル及びアルカリ土類金属酸化物から選ばれる1種または
2種以上の焼結助剤を1〜10重量%添加した原料を成
形した後、この成形体を焼成せしめることを特徴とする
緻密質酸化クロム耐化物の製造方法。
1 After molding a raw material in which 1 to 10% by weight of one or more sintering aids selected from manganese oxide, iron oxide, nickel oxide, and alkaline earth metal oxides are added to chromium oxide, this molding is performed. A method for producing a dense chromium oxide resistant material, which comprises firing the body.
JP12204677A 1977-10-12 1977-10-12 Manufacturing method for dense chromium oxide refractories Expired JPS6042184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12204677A JPS6042184B2 (en) 1977-10-12 1977-10-12 Manufacturing method for dense chromium oxide refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12204677A JPS6042184B2 (en) 1977-10-12 1977-10-12 Manufacturing method for dense chromium oxide refractories

Publications (2)

Publication Number Publication Date
JPS5455012A JPS5455012A (en) 1979-05-01
JPS6042184B2 true JPS6042184B2 (en) 1985-09-20

Family

ID=14826258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12204677A Expired JPS6042184B2 (en) 1977-10-12 1977-10-12 Manufacturing method for dense chromium oxide refractories

Country Status (1)

Country Link
JP (1) JPS6042184B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1982965A1 (en) * 2005-05-30 2008-10-22 Refractory Intellectual Property GmbH & Co. KG Refractory ceramic product
US8105683B2 (en) * 2007-03-07 2012-01-31 General Electric Company Treated refractory material and methods of making

Also Published As

Publication number Publication date
JPS5455012A (en) 1979-05-01

Similar Documents

Publication Publication Date Title
US3192058A (en) Refractories and methods of manufacture therefor
JPS6042274A (en) Manufacture of zirconia refractories
JPH0336778B2 (en)
JPS6042184B2 (en) Manufacturing method for dense chromium oxide refractories
US4435514A (en) Chromia magnesia refractory
CN114929646A (en) Particles for producing sintered refractory products, batch for producing sintered refractory products, method for producing sintered refractory products and sintered refractory products
JPS6042182B2 (en) Tin oxide refractories for glass melting furnaces
JPS59213669A (en) Manufacture of zircon-zirconia refrctories
JP2549976B2 (en) Heat-resistant mullite sintered body
US3244540A (en) High alumina refractory bodies
JPS6236987B2 (en)
KR830001463B1 (en) Manufacturing method of fire brick
US3765914A (en) Siliceous bonded refractory
JPH0224779B2 (en)
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JPS6120619B2 (en)
JPS5820904B2 (en) Thank you for your understanding.
JPS58185479A (en) Manufacture of zircon refractories
KR100265004B1 (en) Refractory material of magnesia-spinel type
JPS621345B2 (en)
SU945141A1 (en) Batch for making refractory material
JPS624351B2 (en)
CN114292090A (en) Tundish dry material added with monoclinic zircon ore and preparation method thereof
JPS6158858A (en) Manufacture of alumina ceramic sintered body