JPS6040694B2 - Heat treatment method for Group 3-5 compound semiconductors - Google Patents

Heat treatment method for Group 3-5 compound semiconductors

Info

Publication number
JPS6040694B2
JPS6040694B2 JP1160578A JP1160578A JPS6040694B2 JP S6040694 B2 JPS6040694 B2 JP S6040694B2 JP 1160578 A JP1160578 A JP 1160578A JP 1160578 A JP1160578 A JP 1160578A JP S6040694 B2 JPS6040694 B2 JP S6040694B2
Authority
JP
Japan
Prior art keywords
heat treatment
implanted
group
ion
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1160578A
Other languages
Japanese (ja)
Other versions
JPS54104770A (en
Inventor
二郎 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1160578A priority Critical patent/JPS6040694B2/en
Publication of JPS54104770A publication Critical patent/JPS54104770A/en
Publication of JPS6040694B2 publication Critical patent/JPS6040694B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は、イオン注入されたm−V族化合物半導体に対
するイオン注入後の熱処理法に関するものであり、特に
電気的、光学的に再現性及び均一性の良好なイオン注入
層を得る事を目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a post-ion implantation heat treatment method for ion-implanted m-V group compound semiconductors, and in particular, ion implantation with good electrical and optical reproducibility and uniformity. The purpose is to obtain layers.

従来、イオン注入されたm一V族化合物半導体、例えば
ガリウム机素において、その注入されたイオンを基板中
で充分に活性化させる為には高温での熱処理が必要とさ
れる。
Conventionally, ion-implanted m-V group compound semiconductors, such as gallium oxide, require heat treatment at high temperatures in order to sufficiently activate the implanted ions in the substrate.

しかし、高温での熱処理に際しては半導体基板自身が熱
分解してしまう。例えばガリウム枇素では熱分解の始ま
る温度が600oo前後と言われているが、この程度の
温度での熱処理ではイオン注入層の注入損傷を回復させ
るにはまだ不充分である。通常、800oo以上の高温
でガリウム枇素を熱処理すると、硯素の蒸発に起因する
と思われる熱ビットが発生する事がよく知られている。
そこで、二酸化珪素(Si02)、窒化珪素(Si3N
4)、窒化アルミニウム(AそN)等の絶縁膿で半導体
基板を保護して熱処理する事が通常行われてきた。
However, during heat treatment at high temperatures, the semiconductor substrate itself is thermally decomposed. For example, it is said that the temperature at which thermal decomposition of gallium begins is around 600 oo, but heat treatment at this temperature is still insufficient to recover the implantation damage in the ion-implanted layer. It is well known that when gallium borosilicate is heat treated at a high temperature of 800 oo or higher, thermal bits are generated which are thought to be caused by evaporation of borons.
Therefore, silicon dioxide (Si02), silicon nitride (Si3N
4) It has been customary to heat-treat the semiconductor substrate while protecting it with an insulating material such as aluminum nitride (ASON).

しかし乍ら、上記方法においては保護膜と半導体基板の
界面に於て、高温での熱処理後に変質層が出来ている事
が予想され、さらにピンホール、厚みむらによる保護膿
そのものの不均一性がそのままイオン注入層の不均一性
に影響する。しかも、保護膜の特性を常時安定に保つべ
く保護膜堆積装置を維持する事も簡単ではない。また保
護膜を用いた場合には熱応力によるクラックが保護膜に
発生することがしばいまであった。そこで、保護膜を用
いずにイオン注入基板を熱処理する方法がガリウム枇素
について報告されている。その一つは、硯素で飽和した
ガリウムとガリウム硯素の混合物を熱処理炉内に置く事
により、イオン注入されたガリウム批秦基板からの砥素
の蒸発を防ぎ水素気流中で熱処理する方法である。今一
つは、枇素で飽和したグラフアィトとガリウム枇素の粉
の中にイオン注入された試料を埋め込み水素気流中で熱
処理する方法である。しかし乍ら、第一の方法では二つ
の平坦な温度分布領域を持つ熱処理炉が必要であり、し
かも砥素の圧力の制御性にも問題がある。第二の方法で
は、これも枇素の圧力の制御性に大きく欠けるものであ
る。したがって第}及び第二のいずれの方法も効果的に
再現性良く熱処理を行う為には問題が多い。本発明は、
上述の点に鑑み保護膜を用いずに「再現性及び均一性よ
くイオン注入層の熱処理ができるようにしたm−V族化
合物半導体の熱処理法を提供するものである。
However, in the above method, it is expected that a degraded layer will be formed at the interface between the protective film and the semiconductor substrate after heat treatment at high temperature, and furthermore, the protective layer itself will be non-uniform due to pinholes and uneven thickness. This directly affects the non-uniformity of the ion-implanted layer. Furthermore, it is not easy to maintain the protective film deposition apparatus in order to keep the characteristics of the protective film stable at all times. Furthermore, when a protective film is used, cracks often occur in the protective film due to thermal stress. Therefore, a method of heat-treating an ion-implanted substrate without using a protective film has been reported for gallium diode. One method is to prevent the evaporation of arsenic from the ion-implanted gallium substrate by placing a mixture of gallium saturated with boron and gallium boride in a heat treatment furnace, and to perform heat treatment in a hydrogen stream. be. Another method is to embed the ion-implanted sample in powder of graphite and gallium ion saturated with phosphorus and heat-treat it in a hydrogen stream. However, the first method requires a heat treatment furnace with two flat temperature distribution regions, and there is also a problem in the controllability of the abrasive pressure. In the second method, the controllability of the phosphor pressure is also greatly lacking. Therefore, both methods } and 2 have many problems in order to effectively perform heat treatment with good reproducibility. The present invention
In view of the above points, it is an object of the present invention to provide a heat treatment method for an m-V group compound semiconductor that allows heat treatment of an ion implantation layer with good reproducibility and uniformity without using a protective film.

本発明は、イオン注入されたm−V族化合物半導体を保
護膜を用いずに熱処理を行うようになすもので、特に熱
処理炉内にV族の水素化物とキャリア・ガスの混合気体
を供給し、この混合気流中にイオン注入された熱処理さ
れるべきm一V族化合物半導体を配し、且つ熱処理炉内
でのV族元素の圧力が上記半導体の熱分解によるV族元
素の分解圧以上となるような量のV族水素化物を供給し
、熱処理炉内において上記半導体の熱分解を抑制して熱
処理するようになすことを特徴とするものである。
The present invention heat-treats ion-implanted m-V group compound semiconductors without using a protective film, and in particular supplies a mixed gas of a group V hydride and a carrier gas into a heat treatment furnace. , an ion-implanted m-V group compound semiconductor to be heat-treated is arranged in this mixed gas flow, and the pressure of the V group element in the heat treatment furnace is higher than the decomposition pressure of the V group element due to thermal decomposition of the semiconductor. The present invention is characterized in that the group V hydride is supplied in such an amount that the semiconductor is heat-treated in a heat treatment furnace while suppressing thermal decomposition of the semiconductor.

以下、図面を用いて本発明によるm一V族化合物半導体
の熱処理法の一例を説明しよう。
Hereinafter, an example of the heat treatment method for a m-V group compound semiconductor according to the present invention will be explained using the drawings.

本発明においては、第1図に示すように例えば石英より
なる炉心管1の外側に電気炉2を配設し、さらに管1内
に石英の内管3を配して成る関管式の熱処理炉4を設け
、この炉4内に熱処理すべきm−V族化合物半導体基板
、例えばイオン注入されたガリウム枇素半導体基板5を
配置する。
In the present invention, as shown in FIG. 1, an electric furnace 2 is disposed outside a furnace core tube 1 made of, for example, quartz, and an inner tube 3 made of quartz is further disposed inside the tube 1. A furnace 4 is provided, and an m-V group compound semiconductor substrate to be heat-treated, for example, an ion-implanted gallium diode semiconductor substrate 5 is placed in the furnace 4.

半導体基板5は例えば第2図に示すようにそのイオン注
入された面5aを石英板6に接するように下向きにして
戦層する。一方、熱処理炉4には水素ガス、窒素ガス又
はアルゴンガス等よりなるキャリア・ガスを供給するキ
ャリア・ガス供給手段16と、熱処理すべきm‐V族化
合物半導体基板のV族元素の水素化物、即ち本例では枇
素の水素化物であるァルシン($日3)(例えば水素で
2%に希釈したもの:気体)を供給するアルシン供給ボ
ンベ7を導管8及び9を通して夫々連通する。各キャリ
ア供給手段16及びアルシン供給ボンベ7には、夫々ス
トップバルブ10及び流量計11を設け、これらによっ
て炉4内への供給量が調節されるようになす。そして炉
4内にアルシン12とキャリアガス13の混合気体を供
給し、半導体基板5をこの混合気流中に在らし〆め、且
つ熱処理炉4内での枇素の分圧が基板5の熱分解による
枇素の分解圧以上となる様に選定し、すなわち枇素の分
圧が上記条件を満足するような量のアルシン12を供給
して熱処理を行う。なお、15は炉心管1の一部に鉄着
した○リングである。斯くすれば、炉4内のアルシンの
分圧が例えば3.3×10‐3気圧に保持されていると
きには95ぴ0まで基板5のイオン注入されている面5
aの表面状態を全く劣化させずに熱処理する事が可能と
なる。
For example, as shown in FIG. 2, the semiconductor substrate 5 is placed with its ion-implanted surface 5a facing downward so as to be in contact with a quartz plate 6. On the other hand, the heat treatment furnace 4 includes a carrier gas supply means 16 for supplying a carrier gas such as hydrogen gas, nitrogen gas, or argon gas; That is, in this example, an arsine supply cylinder 7 for supplying arcine ($3), which is a hydride of phosphorus (for example, gas diluted to 2% with hydrogen), is communicated through conduits 8 and 9, respectively. Each carrier supply means 16 and arsine supply cylinder 7 are provided with a stop valve 10 and a flow meter 11, respectively, so that the amount of supply into the furnace 4 can be adjusted by these. Then, a mixed gas of arsine 12 and carrier gas 13 is supplied into the furnace 4, and the semiconductor substrate 5 is placed in this mixed gas flow. The heat treatment is performed by supplying an amount of arsine 12 such that the partial pressure of arsine satisfies the above conditions. Note that 15 is a circle iron-bonded to a part of the core tube 1. In this way, when the partial pressure of arsine in the furnace 4 is maintained at, for example, 3.3 x 10-3 atmospheres, the ion-implanted surface 5 of the substrate 5 can be reduced to 95 mm.
It becomes possible to heat-treat without deteriorating the surface condition of a at all.

ここで基板4からの枇素の分解圧はイオン注入等で損傷
を受けた場合の方が損傷を受けない場合し・よりも高い
といわれている。
It is said that the decomposition pressure of phosphorus from the substrate 4 is higher when the substrate 4 is damaged by ion implantation or the like than when it is not damaged.

従って炉4内の枇素の分圧は熱処理すべき基板5に応じ
てそのアルシン12の供給量を制御して、上記条件に合
うように適切に節することを可とする。
Therefore, the partial pressure of arsine in the furnace 4 can be appropriately adjusted to meet the above conditions by controlling the supply amount of arsine 12 according to the substrate 5 to be heat treated.

また、供鰭溝する気体の流速を遅くすればアルシン12
の分圧が増すので、その分アルシンを減らすことが出来
るも、あまり流速を落すと低温部で枇素が折出されるの
で、適当な流速をもって供鞍給するようになす。第5図
は、ガリウム枇素半導体基板にシリコン(Si)を注入
エネルギー13雌eV、室温で注入した試料を、第1図
の熱処理炉4(この場合炉4内にキャリアガス(日2)
1夕/min、アルシン200cc/minを流す。
In addition, if the flow rate of gas in the fin groove is slowed down, arsine 12
As the partial pressure increases, it is possible to reduce arsine by that amount, but if the flow rate is reduced too much, arsine will be precipitated in the low-temperature region, so it is necessary to supply the arsine at an appropriate flow rate. FIG. 5 shows a sample in which silicon (Si) is implanted into a gallium oxide semiconductor substrate at an energy of 13 eV at room temperature.
Flow 200cc/min of Arsine for 1 night/min.

これは炉4内のアルシンの分圧・が3.3×10‐3気
圧に相当する。)を用いて900℃で18分間熱処理し
た後の面キャリア濃度と易敷度を示す特性図である。図
中、曲線1は面キャリア濃度、曲線n‘ま易敷度である
This corresponds to a partial pressure of arsine in the furnace 4 of 3.3×10 −3 atmospheres. ) is a characteristic diagram showing the planar carrier concentration and ease of laying after heat treatment at 900° C. for 18 minutes. In the figure, curve 1 is the surface carrier concentration, and curve n' is the ease of spreading.

また、第6図は、ガリウム枇素半導体基板に硫黄Sを注
入エネルギー15皿eV、室温で注入した試料を、同様
に第1図の熱処理炉4(この場合キャリアガス(技)1
そ/min、アルシン80cc/minを流す)を用い
て900午0で15分間熱処理した後の面キャリア濃度
と易動度を示す特性図である。図中、曲線mは面キャリ
ア濃度、曲線Wは易動度である。易動度は結晶性の回復
度に比例する。この第5図及び第6図から明らかなよう
に、本発明の熱処理法は従来の保護膜を用いる方法と同
等、もしくはそれ以上の特性が得られる。又、半導体基
板5の炉4内への配置の仕方として、例えば第3図に示
すように石英板6上に新たなガリウム枇素基板14を鏡
面14a側を上向きにして載せ、さらにこの基板14上
に試料となるイオン注入されたガリウム枇素基板5をそ
の注入された面5aを下向きに載せて配置した場合には
、さらに易動度を上昇させることが可能である。この場
合、基板14の鏡面14a側が試料である基板5のイオ
ン注入された面5aと同じ条件であれば、両基板5及び
14の枇素の蒸気圧が同じとなるので基板5からの硯素
の蒸発が有効に抑えられる。そして、一例を挙げると、
ガリウム枇素半導体基板に1×1び3ions/地のS
rイオンを注入し、第1図の熱処理炉4を用いて900
ooで15分間熱処理した試料において、石英板6上に
直接載せた第2図の場合には面キャリア濃度ns=4.
1×1び2肌‐2、易動度r=2800の/V・sec
であったものが、ガリウム硯素基板14を介して配した
第3図の場合にはns=4.1×1び2瓜‐2、山=3
100の/V・secとすることが出来た。第4図は半
導体基板5の炉4内への配置の仕方の他の例である。
In addition, FIG. 6 shows a sample in which sulfur S is implanted into a gallium oxide semiconductor substrate at an energy of 15 eV at room temperature.
FIG. 2 is a characteristic diagram showing the planar carrier concentration and mobility after heat treatment at 900 pm for 15 minutes using arsine flow rate of 80 cc/min and arsine flow rate of 80 cc/min. In the figure, the curve m is the surface carrier concentration, and the curve W is the mobility. Mobility is proportional to crystallinity recovery. As is clear from FIGS. 5 and 6, the heat treatment method of the present invention provides characteristics equivalent to or better than the conventional method using a protective film. Further, as a method of placing the semiconductor substrate 5 in the furnace 4, for example, as shown in FIG. If the ion-implanted gallium diode substrate 5 serving as a sample is placed on top with the implanted surface 5a facing downward, it is possible to further increase the mobility. In this case, if the mirror surface 14a side of the substrate 14 is under the same conditions as the ion-implanted surface 5a of the substrate 5, which is the sample, the vapor pressures of borium on both substrates 5 and 14 will be the same, so the ion implantation from the substrate 5 will be evaporation is effectively suppressed. And, to give an example,
1×1 and 3 ions/S on a gallium oxide semiconductor substrate
R ions were implanted and the heat treatment furnace 4 of FIG.
In the case of the sample heat-treated at oo for 15 minutes and placed directly on the quartz plate 6 shown in FIG. 2, the planar carrier concentration ns=4.
1×1 and 2 skin-2, mobility r=2800/V・sec
However, in the case of FIG. 3, in which the gallium silica substrate 14 is arranged, ns=4.1×1 and 2-2, and the peak=3.
It was possible to achieve a voltage of 100/V·sec. FIG. 4 shows another example of how to place the semiconductor substrate 5 in the furnace 4.

これは石英板6に凹部6Aを形成し、この凹部6A内に
夫々同一条件でイオン注入された複数の基板5を、互に
そのイオン注入された面5aを向合せにする如くして複
数組積み重ねて配置する。複数の基板5は夫々垂直にし
て、又は傾斜させて積重ねてもよい。このような配置と
なせば互の基板5が夫々同じ条件の面が接しているので
第3図の場合と同じように基板5からの枇素の蒸発が抑
えられ、複数個同時に良好な熱処理が可能となる。第7
図は、ガリウム枇素半導体基板に1×1び3ions/
仇のSi十イオンを注入し(注入条件は130KeV、
室温)した試料を本発明の熱処理法(800こ0、15
分間)にて熱処理した後のイオン注入層の均一性を示す
ものであり、キャリア濃度の深さ方向の分布特性図であ
る。
In this method, a recess 6A is formed in the quartz plate 6, and a plurality of substrates 5 each having ions implanted under the same conditions are placed in the recess 6A, with the ion-implanted surfaces 5a facing each other. Arrange in a stack. The plurality of substrates 5 may be stacked vertically or at an angle. With this arrangement, since the surfaces of the substrates 5 under the same conditions are in contact with each other, evaporation of phosphorus from the substrates 5 can be suppressed as in the case of FIG. 3, and a good heat treatment can be performed on multiple substrates at the same time. It becomes possible. 7th
The figure shows 1×1 and 3 ions per gallium semiconductor substrate.
The enemy Si ions were implanted (implantation conditions were 130KeV,
room temperature) samples were subjected to the heat treatment method of the present invention (800 x 0, 15
It is a distribution characteristic diagram of the carrier concentration in the depth direction, showing the uniformity of the ion-implanted layer after being heat-treated for 30 minutes.

曲線Vでは3つの試料の特性曲線が重なっており、試料
間の不均一性はほとんど認められない。尚、上例ではガ
リウム枇素半導体基板に対する熱処理について述べたが
、その他、ガリウム燐(Gap)半導体基板、或はイン
ジウム機(lnP)半導体基板等のm−V族化合物半導
体の熱処理にも適用できる。
In curve V, the characteristic curves of the three samples overlap, and almost no non-uniformity among the samples is observed. Although the above example describes heat treatment for a gallium oxide semiconductor substrate, it can also be applied to heat treatment for m-V group compound semiconductors such as gallium phosphide (Gap) semiconductor substrates or indium organic (lnP) semiconductor substrates. .

そして、例えばガリウム鱗或はィンジウム機の半導体基
板の場合には、V族元素の水素化物としてはホスフィン
(P比)を用いることが出釆る。上述せる本発明によれ
ば、イオン注入されたm−V族化合物半導体の熱処理時
に於て保護膜を用いることがないので、熱処理工程の簡
略化が可能となる。
For example, in the case of a semiconductor substrate made of gallium scale or indium, phosphine (P ratio) can be used as the hydride of the group V element. According to the present invention described above, since a protective film is not used during heat treatment of an ion-implanted m-V group compound semiconductor, the heat treatment process can be simplified.

しかも、保護膜に起因する再現性、均一性の欠如を改善
することが出来る。また、V族の水素化物の熱処理を用
いてV族元素の分圧を得るようにすることにより、その
分圧の制御が容易且つ確実となる。さらに保護膜堆積用
の装置も不用となり熱理用の装置が極めて単純化される
等の実用上の利益がある。
Moreover, the lack of reproducibility and uniformity caused by the protective film can be improved. Further, by obtaining the partial pressure of the V group element using heat treatment of the V group hydride, the partial pressure can be easily and reliably controlled. Furthermore, there are practical advantages such as the need for a device for depositing a protective film and the thermal treatment device being extremely simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる熱処理炉の配贋図、第2図乃至
第4図は夫々熱処理すべき半導体基板の配置の仕方の例
を示す図、第5図はガリウム枇素にシリコンイオンを注
入した試料を本発明による熱処理法で熱処理したとの面
キャリア濃度と易敷度の性図、第6図はガリウム枇素に
硫黄イオンを注入した謎を本発明による熱処理法で熱処
理したときの面キャリア濃度と易動度の特性図、第7図
は本発明の熱処理法を用いた場合のキャリア濃度分布図
である。 4は関管式の熱処理炉、5は熱処理されるm−V族化合
物半導体、6は石英板、16はキャリア・ガス供給手段
、7はV族の水素化物のボンベである。 第2図 第3図 第4図 第1図 第5図 第6図 第7図
Figure 1 is a layout diagram of the heat treatment furnace used in the present invention, Figures 2 to 4 are diagrams showing examples of how to arrange semiconductor substrates to be heat treated, and Figure 5 is a diagram showing silicon ions in gallium oxide. Figure 6 shows the relationship between surface carrier concentration and ease of laying when the implanted sample is heat treated using the heat treatment method according to the present invention. A characteristic diagram of plane carrier concentration and mobility, FIG. 7 is a carrier concentration distribution diagram when the heat treatment method of the present invention is used. Reference numeral 4 designates a heat treatment furnace of a tube type, 5 a m-V group compound semiconductor to be heat treated, 6 a quartz plate, 16 a carrier gas supply means, and 7 a cylinder of V group hydride. Figure 2 Figure 3 Figure 4 Figure 1 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 III−V族化合物半導体基板の表面にイオン注入を
行う工程と、該基板をV族の水素化物とキヤリア・ガス
との雰囲気中で熱処理を行う工程を有するIII−V族化
合物半導体の熱処理法。
1. A method for heat treatment of a III-V compound semiconductor, comprising a step of implanting ions into the surface of a group III-V compound semiconductor substrate, and a step of heat-treating the substrate in an atmosphere of a group V hydride and a carrier gas. .
JP1160578A 1978-02-03 1978-02-03 Heat treatment method for Group 3-5 compound semiconductors Expired JPS6040694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160578A JPS6040694B2 (en) 1978-02-03 1978-02-03 Heat treatment method for Group 3-5 compound semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160578A JPS6040694B2 (en) 1978-02-03 1978-02-03 Heat treatment method for Group 3-5 compound semiconductors

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP16921786A Division JPS6211226A (en) 1986-07-18 1986-07-18 Heat treatment method for iii-v compound semiconductor
JP16921686A Division JPS6211225A (en) 1986-07-18 1986-07-18 Heat treatment method for iii-v compound semiconductor

Publications (2)

Publication Number Publication Date
JPS54104770A JPS54104770A (en) 1979-08-17
JPS6040694B2 true JPS6040694B2 (en) 1985-09-12

Family

ID=11782528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160578A Expired JPS6040694B2 (en) 1978-02-03 1978-02-03 Heat treatment method for Group 3-5 compound semiconductors

Country Status (1)

Country Link
JP (1) JPS6040694B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642334A (en) * 1979-09-13 1981-04-20 Sumitomo Electric Ind Ltd Heat treatment of compound semiconductor
JPS6043658B2 (en) * 1979-09-18 1985-09-30 松下電器産業株式会社 Manufacturing method of semiconductor device
JPS57120330A (en) * 1981-01-19 1982-07-27 Toshiba Corp Manufacture of compound semiconductor device
JPS57130419A (en) * 1981-02-04 1982-08-12 Sharp Corp Heat treatment for semiconductor
JPS57166025A (en) * 1981-04-06 1982-10-13 Matsushita Electric Ind Co Ltd Heat treatment method for compound semiconductor device
US4473939A (en) * 1982-12-27 1984-10-02 Hughes Aircraft Company Process for fabricating GaAs FET with ion implanted channel layer
JPS61199641A (en) * 1985-02-28 1986-09-04 Oki Electric Ind Co Ltd Manufacture of compound semiconductor element
US4592793A (en) * 1985-03-15 1986-06-03 International Business Machines Corporation Process for diffusing impurities into a semiconductor body vapor phase diffusion of III-V semiconductor substrates
JPS6273626A (en) * 1985-09-26 1987-04-04 Matsushita Electric Ind Co Ltd Processing equipment for compound semiconductor
JPH0831461B2 (en) * 1986-03-06 1996-03-27 三菱化学株式会社 Method for manufacturing epitaxial wafer for light emitting diode

Also Published As

Publication number Publication date
JPS54104770A (en) 1979-08-17

Similar Documents

Publication Publication Date Title
US7718519B2 (en) Method for manufacturing silicon carbide semiconductor element
US9536741B2 (en) Method for performing activation of dopants in a GaN-base semiconductor layer by successive implantations and heat treatments
Kasahara et al. Capless anneal of ion‐implanted GaAs in controlled arsenic vapor
CN104508795A (en) Method for depositing a group III nitride semiconductor film
JP2003086816A (en) SiC SUBSTRATE, SiC SEMICONDUCTOR ELEMENT, AND METHOD FOR MANUFACTURING THE SAME
JPS6040694B2 (en) Heat treatment method for Group 3-5 compound semiconductors
JP4961633B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2011187675A (en) Method for manufacturing silicon carbide semiconductor device
JP3956487B2 (en) Method for manufacturing silicon carbide semiconductor device
US9653297B2 (en) Method of manufacturing silicon carbide semiconductor device by forming metal-free protection film
US9691616B2 (en) Method of manufacturing silicon carbide semiconductor device by using protective films to activate dopants in the silicon carbide semiconductor device
JP3944970B2 (en) Method for manufacturing silicon carbide semiconductor device
JPH01270593A (en) Method for forming compound semiconductor layer
JP3344205B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPH04233277A (en) Transistor provided with layer of cubic boron nitride
JP2737781B2 (en) Heat treatment method for compound semiconductor substrate
JPH0786199A (en) Fabrication of silicon carbide semiconductor device
JPS6211226A (en) Heat treatment method for iii-v compound semiconductor
JPH039612B2 (en)
EP0431444A2 (en) Method of producing MIS transistor having gate electrode of matched conductivity type
JPS61174621A (en) Manufacture of semiconductor thin crystal
JPS6211225A (en) Heat treatment method for iii-v compound semiconductor
JPH02291123A (en) Silicon carbide semiconductor device
JP4100669B2 (en) Method for forming silicon carbide thin film
KR100446954B1 (en) Fabrication method of silicon carbide semiconducting devices