JPS6039541B2 - Method for manufacturing polypropylene containers - Google Patents

Method for manufacturing polypropylene containers

Info

Publication number
JPS6039541B2
JPS6039541B2 JP3412880A JP3412880A JPS6039541B2 JP S6039541 B2 JPS6039541 B2 JP S6039541B2 JP 3412880 A JP3412880 A JP 3412880A JP 3412880 A JP3412880 A JP 3412880A JP S6039541 B2 JPS6039541 B2 JP S6039541B2
Authority
JP
Japan
Prior art keywords
heat
temperature
polypropylene
manufacturing
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3412880A
Other languages
Japanese (ja)
Other versions
JPS56130314A (en
Inventor
敏夫 鈴木
恭輔 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP3412880A priority Critical patent/JPS6039541B2/en
Publication of JPS56130314A publication Critical patent/JPS56130314A/en
Publication of JPS6039541B2 publication Critical patent/JPS6039541B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はポリプロピレン固相圧空成形容器の耐熱性を高
める方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for increasing the heat resistance of polypropylene solid state air-formed containers.

近年ポリプロピレン樹脂(以下PPと略す)シートをも
の結晶融点以下の固相状態で熟成形する技術が開発され
、中でもプラグを補助に用し、る圧空成形方法は、透明
性、光沢にすぐれ、軽量で腰が強い容器が得られるため
注目を集めている。
In recent years, a technology has been developed to ripen polypropylene resin (hereinafter abbreviated as PP) sheets in a solid state below the crystalline melting point. Among them, the pressure forming method using plugs as an aid has excellent transparency, gloss, and light weight. It is attracting attention because it produces a sturdy container.

特に食品包装容器として衛生上の鶴見点からポリ塩化ビ
ニルに代るものとして期待され、今後PP固相圧空成形
品の需要はかなり増大するものと思われる。しかしなが
ら、PP固相圧空成形品は比較的低温で成形するため耐
熱性が劣る欠点がある。
In particular, it is expected to replace polyvinyl chloride for food packaging containers from Tsurumi's hygiene standpoint, and the demand for PP solid phase air-formed products is expected to increase considerably in the future. However, PP solid phase air pressure molded products have the disadvantage of poor heat resistance because they are molded at relatively low temperatures.

これは固相状態での成形のため、ポリプロピレンの結晶
が延伸配向し、熱をかけることにより配向がとかれ、元
の状態に回復するためである。これは同じPPシートを
溶融成形した容器と固相圧空成形した容器を比べれば明
らかである。結晶化度が高い固相圧空成形品は、本来結
晶化度が低い溶融成形品より耐熱性が高いはずであるが
、実際は逆であり、PP間相圧空成形品の耐熱温度は高
々100℃前後である。これは、食品容器としては重大
な欠点であり、食品のレトルト処理、蒸気殺菌等が不可
能であり、PP団相圧空成形品の使用は大幅な制限を受
ける。
This is because the polypropylene crystals are stretched and oriented due to solid-state molding, and the orientation is removed by applying heat and restored to the original state. This becomes clear when comparing a container made by melt-molding the same PP sheet and a container made by solid phase pressure forming. Solid-state air-formed products with a high degree of crystallinity are supposed to have higher heat resistance than melt-formed products with a lower degree of crystallinity, but in reality, the opposite is true, and the heat resistance temperature of PP-phase air-formed products is around 100°C at most. It is. This is a serious drawback as a food container, and food cannot be subjected to retort processing, steam sterilization, etc., and the use of PP aggregate phase air-molded products is severely restricted.

したがって、これまで100q0以上の耐熱性を必要と
する分野ではPPの溶融真空成形品やポリカーボネート
製容器等が使用されてきた。しかし、これらは不透明で
あったり、高価であったりして、PP固相圧空成形品の
如く透明で軽くて高剛性で低廉な容器は見当らなかった
。一方成形品の耐熱性を高める方法としては、古くから
成形型内でアニーリング処理する方法が知られており、
射出成形分野では実用に供されている。本発明は、アニ
ーリング処理技術をPP団相圧空成形品の耐熱性を高め
る技術として通用すべ〈検討を重ねた結果到達したもの
で、透明性を損うことなく耐熱性のすぐれたポリプロピ
レン容器を提供するものである。
Therefore, in fields that require heat resistance of 100q0 or more, PP melt vacuum-formed products, polycarbonate containers, etc. have been used so far. However, these are opaque or expensive, and a transparent, light, highly rigid, and inexpensive container such as a PP solid-state air pressure molded product has not been found. On the other hand, as a method to increase the heat resistance of molded products, annealing treatment within the mold has been known for a long time.
It is put into practical use in the injection molding field. The present invention has been achieved through repeated studies to apply annealing treatment technology as a technology to improve the heat resistance of PP aggregate phase pressure-molded products, and provides a polypropylene container with excellent heat resistance without impairing transparency. It is something to do.

本発明のポリプロピレン容器の製造方法は、熱変形温度
が105qo以上、140o0以下のポリプロピレン製
薄肉中空容器の製造方法であり、結晶融点が155qo
以上のポリプロピレン樹脂を主要な構成要素とする単層
または積層プラスチックシートを15000以上、結晶
融点以下の温度に予熱して、圧空成形法により雌型表面
へ中空容器状に予備成形した後、該予備成形品と同一の
形状を有し、該予備成形品の内法寸法と実質的に等しい
外法寸法を有する雄型に該予備成形品をぴったりと鉄め
込み、次いで雄型に鮫め込んだ状態の該予備成形品を1
00午○ないし150℃の範囲の温度において1の砂間
以上熱処理し、その後冷却することを特徴としている。
The method for manufacturing a polypropylene container of the present invention is a method for manufacturing a thin-walled hollow polypropylene container having a heat distortion temperature of 105 qo or higher and 140 qo or lower, and a crystal melting point of 155 qo.
A single-layer or laminated plastic sheet containing the above polypropylene resin as a main component is preheated to a temperature of 15,000 or more and below the crystal melting point, and is preformed into a hollow container shape on the female mold surface by air pressure forming. The preform is fitted tightly into a male mold having the same shape as the molded product and having external dimensions substantially equal to the internal dimensions of the preform, and then the preform is fitted into the male mold. The preformed product in condition 1
It is characterized by heat treatment at a temperature in the range of 150°C to 150°C, followed by cooling.

本発明において、容器使用時の耐熱性を反映する容器の
熱変形温度は、カップ状中空容器の関口端のフランジ部
全体に上からフランジ部の外周に沿って1地の長さあた
り2雌の均等な圧縮荷重をかけながら、液体雰囲気にあ
る容器の温度を2℃/分の割合で上昇させてゆき、容器
の深さ方向の圧縮変形率が容器の深さの4%の値に達す
る温度で定義する。例えば開口径95側、深さ5仇舷の
カップ状容器の熱変形温度を測定する場合、フランジ部
に沿った周囲寸法が約30肌になるので、フランジ部上
に全体で60雌の均等荷重をかけながら容器を加熱し、
容器の深さ方向の圧縮変形量が2柵に達する時の温度を
もって熱変形温度とする。ポリプロピレン製薄肉容器の
熱変形温度は105℃以上、140qo以下である。熱
変形温度がl0g0禾満では目的とする蒸気殺菌、レト
ルト処理等が不可能である。熱変形温度が140qoを
越える容器を本発明の方法で製造することは困難であり
、かつ本発明の目的とする食品用途にはこれ以上の耐熱
性が不要である。
In the present invention, the heat deformation temperature of the container, which reflects the heat resistance during use of the container, is determined by the heat distortion temperature of the container, which is determined by the heat deformation temperature of the container, which is measured at 2 female per ground length from above along the outer periphery of the flange at the end of the cup-shaped hollow container. The temperature at which the compressive deformation rate in the depth direction of the container reaches a value of 4% of the depth of the container by increasing the temperature of the container in a liquid atmosphere at a rate of 2°C/min while applying a uniform compressive load. Defined by For example, when measuring the heat deformation temperature of a cup-shaped container with an opening diameter of 95 and a depth of 5 m, the circumferential dimension along the flange is approximately 30 mm, so a total of 60 female uniform loads are placed on the flange. Heat the container while pouring
The temperature at which the amount of compressive deformation in the depth direction of the container reaches two bars is defined as the heat deformation temperature. The heat distortion temperature of the thin-walled polypropylene container is 105° C. or higher and 140 qo or lower. When the heat distortion temperature is 10g0, the desired steam sterilization, retort treatment, etc. are impossible. It is difficult to manufacture a container with a heat distortion temperature of more than 140 qo by the method of the present invention, and higher heat resistance is not required for the food use intended by the present invention.

まずPPシートは150℃以上で結晶融点以下の温度に
予熱して圧空成形法により雌型表面へ中空容器状に予備
成形する。
First, the PP sheet is preheated to a temperature of 150° C. or higher and lower than the crystal melting point, and then preformed into a hollow container shape on the surface of a female mold by air pressure forming.

予備成形時のシート子熱温度は容器の透明性、光沢を損
わない範囲で高い方が好ましい。予熱温度が150q0
以下では耐熱性の向上が困難である。予備成形品は、い
わゆる固相圧空成形品であり、その熱変形温度は約10
0q○であり、一般に90℃ないし100℃の熱湯中で
煮沸すると次第に変形してくる。
The sheet temperature during preforming is preferably as high as possible without impairing the transparency and gloss of the container. Preheating temperature is 150q0
It is difficult to improve heat resistance below. The preformed product is a so-called solid phase air-formed product, and its heat distortion temperature is approximately 10
0q○, and generally deforms gradually when boiled in hot water at 90°C to 100°C.

本発明では、雌型表面へ成形して得られた予備成形品を
、次に同一形状、同一寸法の雄型内へぴったりと鉄め込
んだ状態で100q0なし、し150℃に加熱し、1の
砂間以上熱処理して熱変形温度の高い容器を得る。
In the present invention, the preformed product obtained by molding onto the surface of the female mold is then tightly fitted with iron into a male mold of the same shape and size, heated to 150°C with no 100q0, and heated to 150°C. A container with a high heat deformation temperature is obtained by heat treatment at a temperature higher than that of sand.

以下に本発明の原理を述べる。The principle of the present invention will be described below.

固相圧空成形により 結晶融点以下でPPは温間延伸され、結晶相、非晶相と
もに配向する。
PP is warmly stretched at a temperature below the crystal melting point by solid phase pressure forming, and both the crystalline phase and the amorphous phase are oriented.

延伸配向により結晶高次組織の球鼠は変形し、極めて偏
平な回転楕円体に、さらに東状繊維結晶へと変換する。
実際に固相圧空成形したPP容器の側壁部断面を顕微鏡
観察すると偏平な球晶や繊維状結晶が観察できる。配同
したPPを加熱すると、比較的低温では非晶鎖セグメン
トが動き配向が緩和される。さらに結晶転位温度以上で
は、球晶内ラメラの折たたみ結晶の転移が起り、一部は
繊維状結晶となる。ところで一軸延伸試料を結晶融点以
下で緊張熱処理し、結晶相、非晶相の配向係数の変化を
見ると、非晶相の配向係数が大きな変化を示すことが知
られている。したがってPP間相圧空成形品の熱変形の
原因として主要なものは、非晶鎖セグメントの配向緩和
現象と考えることができる。それ故非晶鎖セグメントの
易動度が、大きくなる温度が100℃前後であるので、
耐熱温度が100oC以下の子備成形品をその成形温度
や結晶転位温度よりかなり低い100oo附近の温度で
熱処理しても熱処理温度以上の熱変形温度を達成できる
訳である。PP固相圧空成形品の耐熱性を高めるには、
配向状態にある非晶鎖セグメントを緩和してやれば良い
。本発明は非晶鎖セグメントの易動度が大きくなる10
0ご○ないし15000で熱処理することを特徴とする
Due to the stretching orientation, the crystalline higher-order structure of the spherical mouse is transformed into an extremely oblate spheroid and then into an east-shaped fiber crystal.
When the cross-section of the side wall of a PP container that has actually been solid-phase pressure-formed is observed under a microscope, flat spherulites and fibrous crystals can be observed. When the aligned PP is heated, the amorphous chain segments move and the orientation is relaxed at relatively low temperatures. Furthermore, at temperatures above the crystal dislocation temperature, folded crystals of intraspherulite lamellae undergo a transition, and some become fibrous crystals. By the way, it is known that when a uniaxially stretched sample is subjected to tension heat treatment at a temperature below the crystal melting point and changes in the orientation coefficients of the crystalline phase and the amorphous phase are observed, the orientation coefficient of the amorphous phase shows a large change. Therefore, the main cause of thermal deformation of a PP interphase air-formed product can be considered to be the phenomenon of relaxation of the orientation of amorphous chain segments. Therefore, since the temperature at which the mobility of amorphous chain segments increases is around 100°C,
This means that even if a component molded product with a heat resistance temperature of 100oC or less is heat treated at a temperature around 100oC, which is considerably lower than its molding temperature or crystal dislocation temperature, a heat distortion temperature higher than the heat treatment temperature can be achieved. To increase the heat resistance of PP solid phase air-formed products,
It is sufficient to relax the amorphous chain segments in the oriented state. The present invention increases the mobility of amorphous chain segments10
It is characterized by heat treatment at 0°C to 15,000°C.

本発明におけるポリプ。ピレン樹脂は結晶融点が155
00以上であり、プロピレンホモポリマ一、プロピレン
−Qオレフインコポリマー、またはプロピレンホモポリ
マ一とプロピレン−Q−オレフィンコポリマーの混合物
等である。またこれらポリプロピレンに対して成形加工
時や容器の特性上必要とされる種々の助剤を添加するこ
とは一向にさしつかえない。特に高い耐熱性を必要とす
る場合は、プロピレンホモポリマ−、またはプロピレン
ーQオレフインコポリマー20%以下とプロピレンホモ
ポリマ−80%以上の混合物を使用する、あるいはこれ
らにジベンジリデンソルビトールの様な造核剤を添加し
、結晶化度を上げ、高剛性で透明性の良いシートを使用
するのが好ましい。予備成形の際の庄空成形方法とちて
は種々の方法が知られているが、プラグを補助に用し、
る圧空成形法、またはこれに真空を併用する成形方法が
透明で腰の強い予備成形品を製造する上で好ましい。予
備成形品を熱処理するにあたり、本発明では雄型に鉄め
込んで、100oo以上15000以下の温度で1硯砂
間以上熱処理する。雄型の材質はアルミ、鉄等の金属製
か、ェポキシ樹脂、弗素樹脂等のプラスチック製が好ま
しい。
Polyp in the present invention. Pyrene resin has a crystal melting point of 155
00 or more, and is a propylene homopolymer, a propylene-Q-olefin copolymer, or a mixture of a propylene homopolymer and a propylene-Q-olefin copolymer. Furthermore, there is no problem in adding various auxiliary agents to these polypropylenes as required during molding or for the characteristics of the container. When particularly high heat resistance is required, a propylene homopolymer or a mixture of 20% or less propylene-Q olefin copolymer and 80% or more propylene homopolymer may be used, or a nucleating agent such as dibenzylidene sorbitol may be used. It is preferable to use a sheet with high rigidity and good transparency by adding the following: to increase the degree of crystallinity. Various methods are known for the Shoku-forming method during pre-forming, but using a plug as an aid,
An air pressure molding method, or a molding method that uses a vacuum in combination with this method, is preferable for producing transparent and strong preforms. In heat-treating the preform, according to the present invention, a male die is filled with iron and heat-treated at a temperature of 100 OO to 15,000 for at least one inkstone interval. The male mold is preferably made of metal such as aluminum or iron, or plastic such as epoxy resin or fluororesin.

アルミ等の金属製の場合、内部にヒーターを設置し、雄
型表面の温度を調節するのが好ましい。雄型を加溢しな
い場合は断熱性の良好なプラスチック型の方がより効果
的である。予備成形品の内法寸法と雄型の外法寸法とは
実質的に等しくすることが必要である。
If it is made of metal such as aluminum, it is preferable to install a heater inside to adjust the temperature of the male mold surface. If the male mold is not flooded, a plastic mold with good insulation is more effective. It is necessary that the internal dimensions of the preform and the external dimensions of the male mold be substantially equal.

これによって熱処理に伴って生じることができる。10
ぴ○未満の温度における熱処理では非常に長い処理時間
を要し、しかも耐熱性改善の効果は僅かで、実際的では
ない。
This can occur with heat treatment. 10
Heat treatment at a temperature below 1000 yen requires a very long treatment time, and the effect of improving heat resistance is small, making it impractical.

また、150℃以上の温度では結晶層の部分融解が始ま
り、配向が弛緩し球晶生長が促進される。
Further, at a temperature of 150° C. or higher, partial melting of the crystal layer begins, the orientation is relaxed, and spherulite growth is promoted.

このため固相圧空成形品の特長である透明性及び光沢が
次第に低下してくる。さらに短かし、処理時間で充分耐
熱性を高め、しかも予備成形品の変形を防ぐには、熱処
理温度が110qoないし140℃であることが好まし
い。
For this reason, the transparency and gloss, which are the characteristics of solid phase air pressure molded products, gradually decrease. In order to further shorten the treatment time, sufficiently increase heat resistance, and prevent deformation of the preform, the heat treatment temperature is preferably 110 qo to 140°C.

熱処理には予備成形品が圧縮変形するのを防ぐため予備
成形品にぴったり密着する雄型を使用する。また熱処理
の途中で成形品が雄型からはずれるのを防止し、かつフ
ランジ部の変形を防止するため、別に成形品のフランジ
部を雄型に固定する補助型を使用するのが好ましい。熱
処理は熱媒体を使用するか、または鏡射加熱によって行
うか、または、これらを絹合せて行うのが好ましい。
For heat treatment, a male mold that tightly fits the preform is used to prevent the preform from being compressed and deformed. Further, in order to prevent the molded product from coming off the male mold during heat treatment and to prevent the flange portion from deforming, it is preferable to use a separate auxiliary mold for fixing the flange portion of the molded product to the male mold. The heat treatment is preferably performed using a heat medium, by mirror heating, or by combining these methods.

熱媒体は加熱空気、熱水、水蒸気、エチレングリコール
、グリセリンなどであり、単独で使用あるいは組合せて
使用できる。熱媒体を予備成形品に吹きつけ、あるいは
熱媒体中に雄型に鉄め込んだ予備成形品を浸漬、接触し
て熱処理する。鏡射加熱の熱源として遠赤外線ヒーター
は熱効率が高く短時間で熱処理できるので好ましい。雄
型で保持した予備成形品を、遠赤外線が内部に設置され
た加熱トンネルに通して熱処理できる。以上ポリプロピ
レン単層シートについて述べたが、本発明の方法はポリ
プロピレン樹脂をその主要な構成層とする積層シートに
ついてもすべて適用できる。ポリプロピレン樹脂とエチ
レン・酢ビ共重合体ケン化樹脂との積層シート、ポリプ
ロピレン樹脂とポリアミド樹脂との積層シートなどから
、本発明の方法により、耐熱性が高くて透明なガスバリ
ア性を有する容器を得ることができる。
The heat medium is heated air, hot water, steam, ethylene glycol, glycerin, etc., and can be used alone or in combination. Heat treatment is carried out by blowing a heating medium onto the preform, or by immersing and contacting the preform with a male mold in the heating medium. A far-infrared heater is preferable as a heat source for specular heating because it has high thermal efficiency and can perform heat treatment in a short time. The preform held in the male mold can be heat treated by passing it through a heating tunnel with far infrared radiation installed inside. Although the polypropylene single-layer sheet has been described above, the method of the present invention can also be applied to any laminated sheet whose main constituent layer is a polypropylene resin. By the method of the present invention, a container having high heat resistance and transparent gas barrier properties is obtained from a laminated sheet of polypropylene resin and saponified ethylene/vinyl acetate copolymer resin, a laminated sheet of polypropylene resin and polyamide resin, etc. be able to.

以下実施例で更に詳しく説明する。This will be explained in more detail in Examples below.

実施例において、PPシートは0.8肋厚の押出シート
である。
In the example, the PP sheet is an extruded sheet of 0.8 rib thickness.

予備成形品はシートを約15ぷ0に子熱して、プラグア
シスト圧空成形法で成形した。予備成形品の形状は、関
口径95側、底径85帆、深さ5仇舷のカップ状で面積
延伸倍率は約3.1倍である。容器又は予備成形品の耐
熱性は、熱変形温度と熱保形性とで評価した。
The preformed product was formed by heating the sheet to about 15 psi and using a plug-assisted air pressure forming method. The shape of the preform is a cup with a diameter of 95 mm, a bottom diameter of 85 mm, and a depth of 5 mm, and the area stretching ratio is approximately 3.1 times. The heat resistance of the container or preform was evaluated by heat distortion temperature and heat shape retention.

熱変形温度は容器のフランジ部上に均等に60雌の圧縮
荷重をかけ、シリコンオイル中に容器を浸潰し、2℃/
分で昇温し容器深さ方向圧縮変形量が2肋に達する温度
で評価した。容器の熱保形性は一定温度130℃の陣温
槽に1び分間保った後の外観変化で評価した。結晶化度
はJISK=6760の密度勾配管法により測定した密
度から求めた。結晶融点は差動走査熱量計でシートから
切出した試料について測定した。実施例 1 MI=1のプロピレンホモポリマ一よりなるPPシート
より予備成形品を成形し、つぎにこの予備成形品を同一
形状の雄型に鉄め込み、130qoの熱風を−分間吹き
つけて熱処理して容器を得た。
The heat deformation temperature was determined by applying a compressive load of 60 mm evenly on the flange of the container, immersing the container in silicone oil, and setting it at 2℃/
The temperature was raised in 1 minute and the evaluation was made at a temperature at which the amount of compressive deformation in the depth direction of the container reached 2 ribs. The thermal shape retention of the container was evaluated by the change in appearance after being kept in a heating bath at a constant temperature of 130° C. for 1 minute. The degree of crystallinity was determined from the density measured by the density gradient tube method of JISK=6760. Crystal melting points were measured on samples cut from the sheets using a differential scanning calorimeter. Example 1 A preformed product is formed from a PP sheet made of propylene homopolymer with MI=1, then this preformed product is iron-cast into a male mold of the same shape, and heat treated by blowing hot air of 130 qo for 1 minute. and obtained a container.

予備成形品と容器の耐熱性の比較を第1表に示す。雄型
の材質はヱポキシ樹脂である。第1表 容器は予備成形品を変らぬ透明性と光沢を保ち、腰は一
層強くなった。
Table 1 shows a comparison of the heat resistance of the preform and the container. The material of the male mold is epoxy resin. The containers shown in Table 1 maintained the same transparency and gloss as the preformed products, and were even stronger.

実施例 2 MI=1のホモポリマー8礎部とMI=2のヱチレンポ
リプ。
Example 2 Homopolymer 8 base with MI=1 and ethylene polyp with MI=2.

ピレンランダムコポリマー2礎部とからなるPPシート
より予備成形品を成形し、つぎにこの予備成形品を雄型
に鉄め込み、13000のグリセリン俗に3の砂浸潰し
、次いで100℃の熱風を吹きつけて3の砂間処理した
。この容器と予備成形品の耐熱性の比較を第2表に示す
。第2表 実施例 3 実施例1と同じシートを使用して成形した予備成形品を
雄型に鼓め込み、遠赤外線ヒータを設置した加熱トンネ
ル内で25秒間熱処理した。
A preformed product is formed from a PP sheet consisting of a pyrene random copolymer base and a base part, and then this preformed product is cast into a male mold, soaked in 13,000 ml of glycerin and 3% sand, and then heated with hot air at 100°C. I sprayed it and did the sand treatment in step 3. Table 2 shows a comparison of the heat resistance of this container and the preform. Table 2 Example 3 A preform formed using the same sheet as in Example 1 was pressed into a male mold and heat-treated for 25 seconds in a heating tunnel equipped with a far-infrared heater.

この時予備成形品の表面温度は最高131℃まで上昇し
た。この容器の耐熱性を第3表に示す。第3表
At this time, the surface temperature of the preform rose to a maximum of 131°C. The heat resistance of this container is shown in Table 3. Table 3

Claims (1)

【特許請求の範囲】 1 熱変形温度が105℃以上、140℃以下のポリプ
ロピレン製薄肉中空容器の製造方法において、結晶融点
が155℃以上のポリプロピレン樹脂を主要な構成要素
とする単層または積層プラスチツクシートを150℃以
上、結晶融点以下の温度に予熱して圧空成形法により雌
型表面へ中空容器状に予備成形した後、該予備成形品の
内法寸法と実質的に等しい外法寸法を有する雄型を該予
備成形品にぴつたりと嵌め込み、次いで該雄型に嵌め込
んだ状態の該予備成形品を100℃以上、150℃以下
の範囲の温度において10秒間以上熱処理して後、冷却
することを特徴とするポリプロピレン容器の製造方法。 2 圧空成形法がプラグを補助に用いる圧空成形方法、
またはプラグを補助に用い真空を併用する圧空成形方法
である特許請求の範囲第1項記載のポリプロピレン容器
の製造方法。3 熱処理に熱媒体を使用する特許請求の
範囲第1項または第2項記載のポリプロピレン容器の製
造方法。 4 熱媒体が加熱空気である特許請求の範囲第3項記載
のポリプロピレン容器の製造方法。 5 熱媒体が水および/または水蒸気である特許請求の
範囲第3項記載のポリプロピレン容器の製造方法。 6 熱処理が遠赤外線ヒーターによる輻射加熱処理であ
る特許請求の範囲第1項記載のまたは第2項記載のポリ
プロピレン容器の製造方法。
[Scope of Claims] 1. A method for manufacturing a thin-walled hollow container made of polypropylene with a heat distortion temperature of 105°C or higher and 140°C or lower, which includes a single-layer or laminated plastic whose main component is a polypropylene resin with a crystalline melting point of 155°C or higher. After preheating the sheet to a temperature of 150°C or higher and lower than the crystal melting point and preforming it into a hollow container shape on the female mold surface by air pressure forming, the sheet has an external dimension that is substantially equal to the internal dimension of the preformed product. The male die is tightly fitted into the preform, and then the preform fitted into the male die is heat treated at a temperature in the range of 100°C or higher and 150°C or lower for 10 seconds or more, and then cooled. A method for manufacturing a polypropylene container, characterized by: 2. A pressure forming method in which a plug is assisted by a pressure forming method;
Alternatively, the method for producing a polypropylene container according to claim 1, which is a pressure forming method using a plug as an aid and a vacuum. 3. The method for manufacturing a polypropylene container according to claim 1 or 2, wherein a heat medium is used for the heat treatment. 4. The method for manufacturing a polypropylene container according to claim 3, wherein the heat medium is heated air. 5. The method for manufacturing a polypropylene container according to claim 3, wherein the heat medium is water and/or steam. 6. The method for producing a polypropylene container according to claim 1 or 2, wherein the heat treatment is a radiant heat treatment using a far-infrared heater.
JP3412880A 1980-03-19 1980-03-19 Method for manufacturing polypropylene containers Expired JPS6039541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3412880A JPS6039541B2 (en) 1980-03-19 1980-03-19 Method for manufacturing polypropylene containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3412880A JPS6039541B2 (en) 1980-03-19 1980-03-19 Method for manufacturing polypropylene containers

Publications (2)

Publication Number Publication Date
JPS56130314A JPS56130314A (en) 1981-10-13
JPS6039541B2 true JPS6039541B2 (en) 1985-09-06

Family

ID=12405590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3412880A Expired JPS6039541B2 (en) 1980-03-19 1980-03-19 Method for manufacturing polypropylene containers

Country Status (1)

Country Link
JP (1) JPS6039541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100344961C (en) * 2004-11-26 2007-10-24 中国科学院上海硅酸盐研究所 Measuring system and its measuring method for seebeck coefficient under nonbalance state

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643462B2 (en) * 1986-04-30 1994-06-08 出光石油化学株式会社 Propylene homopolymer and method for producing the same
JPS637928A (en) * 1986-06-30 1988-01-13 Idemitsu Petrochem Co Ltd Thermoformed polypropylene vessel and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100344961C (en) * 2004-11-26 2007-10-24 中国科学院上海硅酸盐研究所 Measuring system and its measuring method for seebeck coefficient under nonbalance state

Also Published As

Publication number Publication date
JPS56130314A (en) 1981-10-13

Similar Documents

Publication Publication Date Title
US4118454A (en) Method for producing transparent plastic molded articles
JPH0456734B2 (en)
WO2006011612A1 (en) Polyester container excellent in resistance to heat and impact, and method for production thereof
JPS6141290B2 (en)
US4960556A (en) Method for crystallizing thermoplastic material
JPS6039541B2 (en) Method for manufacturing polypropylene containers
JP5586527B2 (en) Manufacturing method of heat-resistant transparent container
JP4276823B2 (en) Plastic cup-shaped container having heat resistance and primary molded product thereof
JP2534482B2 (en) Method for producing polyethylene terephthalate resin bottle
JPS6149826A (en) Biaxial orientation blow molding method
JP4019308B2 (en) Biaxial stretch blow molding method
US6406661B1 (en) Heat set blow molding process
JPS5923536B2 (en) Plastic container manufacturing method and manufacturing equipment
CN104552890B (en) Moulding process of plastic cup
JPS58220711A (en) Manufacture of polyester resin bottle
JP2777790B2 (en) Biaxial stretch blow molding method
JPS6230019A (en) Biaxially oriented blow molding process
JPS636347B2 (en)
JP2963904B2 (en) Biaxial stretch blow molding method
JP2600831B2 (en) Method for producing biaxially oriented polyolefin bottle
JPS5837886B2 (en) Manufacturing method for plastic thin-walled molded products
JP2592670B2 (en) Manufacturing method of polyester bottle
US8796413B2 (en) Polymer material and method for producing same
JPS6125818A (en) Molding method of sheet container made of synthetic resin
JPS6274622A (en) Manufacture of polyester bottle