JPS6230019A - Biaxially oriented blow molding process - Google Patents

Biaxially oriented blow molding process

Info

Publication number
JPS6230019A
JPS6230019A JP60170116A JP17011685A JPS6230019A JP S6230019 A JPS6230019 A JP S6230019A JP 60170116 A JP60170116 A JP 60170116A JP 17011685 A JP17011685 A JP 17011685A JP S6230019 A JPS6230019 A JP S6230019A
Authority
JP
Japan
Prior art keywords
temperature
mold
blow
heated
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60170116A
Other languages
Japanese (ja)
Other versions
JPH0622860B2 (en
Inventor
Hiroaki Sugiura
杉浦 弘章
Fuminori Tanaka
田中 文典
Daisuke Uesugi
大輔 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP17011685A priority Critical patent/JPH0622860B2/en
Publication of JPS6230019A publication Critical patent/JPS6230019A/en
Publication of JPH0622860B2 publication Critical patent/JPH0622860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/18Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using several blowing steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6472Heating or cooling preforms, parisons or blown articles in several stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding

Abstract

PURPOSE:To mold a bottle having an extremely high heat resistance against heat contraction by producing primary intermediate molding product out of the preform formed as desired by means of the biaxially oriented blow molding under the specified temperature, heat treating under specified temperature into the secondary intermediate molding product by means of heat transformation, and blow molding the said secondary intermediate molding product into a bottle. CONSTITUTION:The process of molding the preform 1 into the primary molding product 4 by means of the biaxially oriented blow molding is carried out under a temperature heated up to 90 deg.C-130 deg.C in which elongation effect including temperature value 120 deg.C just before heat crystalization of PET can be achieved. The process of molding the secondary intermediate molding product 5 into the bottle 6 is carried out by blow molding the secondary intermediate molding product 5, heated up to 170 deg.C-255 deg.C and heat contracted into the bottle 6, with the secondary blow mold heated up to 120 deg.C-150 deg.C, higher by several degrees than the maximum atmospheric temperature in which the bottle 6 to be molded is actually used. The bottle 6, heat set with the secondary blow mold heated up to high temperature, is free from inner residual stress and of high heat resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリエチレンテレフタレート樹脂製の2軸延
伸ブロー成形方法に関するもので、さらに詳言すれば、
高い透明性を維持したまま熱収縮に対する耐熱性が高い
ポリエチレンテレフタレート樹脂製2軸延伸ブロー成形
壜体の成形方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for biaxial stretch blow molding of polyethylene terephthalate resin.
The present invention relates to a method for forming a biaxially stretched blow-molded bottle made of polyethylene terephthalate resin that has high heat shrinkage resistance while maintaining high transparency.

〔従来の技術〕[Conventional technology]

ポリエチレンテレフタレート樹脂(以下、単にPETと
記す)は1安定した物性、無公害性、(f:れた透明性
、そして高い機械的強度等により2軸延伸ブロ一成形壜
体として各方面で多量に使用されており、特に食品用の
壜体として極めて有用なものとなっている。
Polyethylene terephthalate resin (hereinafter simply referred to as PET) is used in large quantities in various fields as a biaxially stretched blow-molded bottle due to its stable physical properties, non-polluting properties, excellent transparency, and high mechanical strength. It is widely used, and is particularly useful as food bottles.

このようにPET製壜体壜体優れた多数の特性を効果的
に発揮するものなのであるが、熱処理を施していないP
ET製の2軸延伸ブロ一成形壜体は、熱に対して弱く、
70℃以上の高温下では著しく変形する。
In this way, PET bottles effectively exhibit a number of excellent properties, but PET bottles without heat treatment
The biaxially stretched blow molded bottle made by ET is weak against heat.
It deforms significantly at high temperatures of 70°C or higher.

このため、120℃の条件下で30分間放置して熱処理
するレトルト食品とか、その地熱処理される食品の収納
容器として利用することができず、熱収縮に対する耐熱
性の高いPETA壜体の壜体が強く望まれているのが現
状である。
For this reason, it cannot be used as a storage container for retort foods that are heat-treated by leaving them for 30 minutes at 120°C, or for foods that are geothermally treated. Currently, there is a strong desire for this.

このPET製壜体壜体収縮に対する耐熱性を与える方法
としては、従来から、(1)ブロー成形時のブロー金型
を、PET9壜体の壜体を上げるために、目標耐熱温度
より高温度に加熱しブロー成形する方法、(2)一次ブ
ロー成形品である中間成形品を作り、これを再加熱(1
10℃程度)してから再度ブロー成形し、完成品を作る
方法等がある。
Conventionally, methods for providing heat resistance against shrinkage of PET bottles include (1) raising the temperature of the blow mold during blow molding to a temperature higher than the target heat-resistant temperature in order to raise the size of the PET9 bottle; (2) A method of heating and blow molding, (2) making an intermediate molded product which is a primary blow molding product, and reheating it (1)
There is a method to make a finished product by blow molding again after cooling the molded product (about 10°C).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの方法のうち、(1)の方法は、金型温度が上昇
するほど、賦形性が悪くなり、85℃充填程度の熱収縮
に対する耐熱性が限度であるので、現在はるかに高い温
度で熱処理される食品に対しては全く利用することば不
可能であった。
Among these methods, method (1) deteriorates as the mold temperature rises, and its heat resistance against heat shrinkage is limited to about 85℃ filling. It has not been possible to use it at all for foods that are heat-treated.

また、上記したPETl壜体に壜体縮に対する耐熱性を
与える方法の(2)は、(1)に示した方法以上の熱収
縮に対する耐熱性を望めないので問題外であった。
In addition, method (2) of the method for imparting heat resistance to bottle shrinkage to the PETl bottle described above was out of the question since it could not provide better heat resistance to heat shrinkage than the method shown in method (1).

本発明は、上記した従来例における問題点および不満点
を解消すると共に、従来からの要望を満たすべく創案さ
れたもので、予め所望形状に成形されたプリフォームを
2軸延伸ブロー成形して一次中間成形品に成形し、この
一次中間成形品を加熱処理して熱収縮変形させて二次中
間成形品に成形し、この二次中間成形品を完成品である
壜体にブロー成形することによって、極めて高い熱収縮
に対する耐熱性を発揮する壜体を得ることを目的とした
ものである。
The present invention was devised to solve the problems and dissatisfied points in the conventional examples described above, and to satisfy the conventional demands. By molding into an intermediate molded product, heat treating this primary intermediate molded product to cause heat shrinkage and deformation to form a secondary intermediate molded product, and blow molding this secondary intermediate molded product into a finished product, a bottle. The purpose of this invention is to obtain a bottle that exhibits extremely high heat shrinkage resistance.

〔問題点を解決するための手段および作用〕以下1本発
明を5本発明の一実施例を示す図面を参照しながら説明
する。
[Means and operations for solving the problems] The present invention will be explained below with reference to the drawings showing one embodiment of the present invention.

本発明は、PET製壜体壜体軸延伸ブロー成形方法であ
って、予め所望形状に成形されたプリフォーム1の2軸
延伸ブロー成形される本体部2をP E TO熱結晶化
寸前の温度値120℃を含む延伸効果の現出できるブロ
ー成形可能な温度範囲である90℃〜130℃に加熱し
た状態で一次ブロー金型により一次中間成形品4に一次
2軸延伸ブロー成形し、この2軸延伸ブロー成形された
一次中間成形品4を、一次ブロー金型の型温よりも高い
温度である170 ℃〜255℃に加熱すると共に、二
次ブロー金型の型温を、成形された壜体6の使用雰囲気
最高温度よりも数度高い温度である120℃〜150 
℃に加熱した状態で壜体6にブロー成形するのである。
The present invention is a method for axial stretch blow molding of a PET bottle, in which a main body portion 2 to be biaxially stretch blow molded of a preform 1 previously formed into a desired shape is heated to a temperature just before PET thermal crystallization. The primary intermediate molded product 4 is heated to 90°C to 130°C, which is the temperature range that allows blow molding to produce a stretching effect, including 120°C, using a primary blow mold, and this 2 The primary intermediate molded product 4 subjected to axial stretch blow molding is heated to a temperature of 170° C. to 255° C., which is higher than the mold temperature of the primary blow mold, and the mold temperature of the secondary blow mold is adjusted to a temperature higher than that of the molded bottle. 120°C to 150°C, which is several degrees higher than the maximum temperature of the atmosphere in which the body 6 is used.
The bottle 6 is blow-molded while heated to .degree.

この本発明による2軸延伸ブロー成形方法を。This biaxial stretch blow molding method according to the present invention.

より具体的に説明するならば1本発明によるブロー成形
方法は、プリフォーム1を予め所望形状に射出成形等を
使用して成形する第1の工程と、延伸変形することなく
前記第1の工程成形時の形状のまま最終成形品、すなわ
ち壜体6の一部を構成する口部を、熱変形しないように
熱結晶させる第2の工程と、そして本発明方法の要旨で
あるブロー成形操作の第3の工程とから構成されている
To explain more specifically, the blow molding method according to the present invention includes a first step of molding a preform 1 into a desired shape using injection molding or the like, and a first step of forming the preform 1 into a desired shape without stretching or deforming it. A second step is to thermally crystallize the final molded product, that is, the mouth portion forming a part of the bottle 6, in its shape at the time of molding so as not to be thermally deformed, and a blow molding operation which is the gist of the method of the present invention. It consists of a third step.

第1の工程、すなわちプリフォーム1の成形操作は、多
くの場合1通常の射出成形によって達成されるのである
が、成形されるプリフォーJ−1はその形状が特定され
ることはなく、第1図に実線図示した如<、JII+形
状となっていても良いし、有底の細長筒形状をしていて
も良い。
The first step, that is, the molding operation of the preform 1, is often achieved by ordinary injection molding, but the shape of the preform J-1 to be molded is not specified; As shown in the solid line in the figure, it may have a JII+ shape, or it may have an elongated cylindrical shape with a bottom.

このプリフォーム1は、金型への組付き部分となる口部
3と、延伸成形される壜体6の底部を含めた胴部となる
本体部2とから構成されていて。
This preform 1 is composed of a mouth part 3 which is a part to be assembled into a mold, and a main body part 2 which is a body part including a bottom part of a bottle 6 to be stretch-molded.

この本体部2が高い一次ブロー金型の型温にもかかわら
ず、白化することなく一次中間成形品4に   ゛成形
されるための適当な延伸量は、多(の実験の結果による
と、はぼ面積倍率で5〜13倍程度であり、延伸面積倍
率が5倍以下であると一次中間成形品4を加熱して二次
中間成形品5への強制的な加熱収縮成形時の加熱によっ
て白化する恐れがあり8反対に延伸面積倍率が13以上
であるとボイドが発生して延伸成形はできるが白濁して
賦形性が悪くなる。
According to the results of experiments, the appropriate amount of stretching for the main body part 2 to be formed into the primary intermediate molded product 4 without whitening despite the high mold temperature of the primary blow mold is If the stretching area magnification is 5 to 13 times or less, the primary intermediate molded product 4 will be heated and the secondary intermediate molded product 5 will become white due to heating during forced heat shrinkage molding. On the other hand, if the stretching area magnification is 13 or more, voids will occur and stretch molding can be performed, but the film will become cloudy and the formability will deteriorate.

プリフォーム1の本体部2は、一次中間成形品4の加熱
時に熱結晶化、すなわち白化しないように一次中間成形
品4を1前記した如く、延伸面積倍率を5〜13倍程度
とし、もって配向結晶で密度が約]、、350 1:g
/cnOu上とすることができるように皿形状となって
いるのである。
The main body portion 2 of the preform 1 is stretched at a stretching area magnification of about 5 to 13 times, as described above, to prevent thermal crystallization, that is, whitening, when the primary intermediate molded product 4 is heated, thereby making the primary intermediate molded product 4 oriented. Crystal with a density of approximately], 350 1:g
/cnOu.

また、この本体部2の口部3との接続部分である周端部
および中央部は1本体部2の他の部分よりも延伸作用を
受は難り、白化し易い部分であるので、これらの部分は
、他の部分よりも、その肉厚を比較的薄くして、延伸し
易いように構成しておくのが良い。
In addition, the peripheral end portion and the central portion of the main body portion 2, which are the connecting portions with the mouth portion 3, are more difficult to receive stretching action than other portions of the main body portion 2, and are easily whitened. It is preferable that the portion is relatively thinner than the other portions so that it can be easily stretched.

このように、所望の形状に成形されたプリフォーム1は
、一次中間成形品4への2軸延伸ブロ一成形操作に先立
って、その口部3の熱結晶化操作による口部3の白化処
理を行う。
In this way, the preform 1 molded into the desired shape is subjected to whitening treatment of the mouth part 3 by a thermal crystallization operation, prior to the biaxial stretching blow molding operation to the primary intermediate molded product 4. I do.

この口部3の白化は、この口部3を充分に加熱した状態
から徐冷すれば良い。
The whitening of the mouth part 3 can be achieved by slowly cooling the mouth part 3 from a sufficiently heated state.

ただ、この1コ部3の白化処理に際して注意すべきこと
は、この白化処理によって口部3が不都合な形態に変形
しないようにすることである。
However, when performing the whitening treatment on the single portion 3, care must be taken to ensure that the mouth portion 3 is not deformed into an undesirable shape due to the whitening treatment.

特に、変形によって口部3の真円程度が劣化するのは、
成形品である壜体6の容器としての機能を大幅に低下さ
せることになるので、極めて厳重に防止する必要がある
In particular, the deterioration of the roundness of the mouth portion 3 due to deformation is due to
Since the function of the bottle 6, which is a molded product, as a container will be significantly reduced, it is necessary to prevent it extremely strictly.

このようにして、プリフォーム1の口部3の白化が達成
されたならば、このプリフォーム1を第3の工程である
ブロー成形行程によって壜体6に成形するのであるが、
このブロー成形工程は、プリフォーム1を一次中間成形
品4に2軸延伸ブロー成形する工程と、この一次中間成
形品4を加熱して熱収縮させて二次中間成形品5に成形
する工程と、最後にこの二次中間成形品5を壜体6にブ
ロー成形する工程とから成っている。
Once the mouth 3 of the preform 1 has been whitened in this manner, the preform 1 is molded into a bottle 6 in the third step of blow molding.
This blow molding process includes a step of biaxial stretch blow molding the preform 1 into a primary intermediate molded product 4, and a step of heating and heat-shrinking the primary intermediate molded product 4 to form a secondary intermediate molded product 5. , and finally blow-molding the secondary intermediate molded product 5 into a bottle 6.

プリフォーム1を一次中間成形品4に2軸延伸ブロー成
形する一次2軸延伸ブロー成形工程は。
The primary biaxial stretch blow molding step is to biaxially stretch blow mold the preform 1 into the primary intermediate molded product 4.

このプリフォーム1を、正確にはプリフォーム1の本体
部2を、成形合成樹脂+A料であるPETの熱結晶化寸
前の温度値120℃を含む延伸効果の現出できるブロー
成形可能な温度範囲である90℃〜130 ℃に加熱熱
した状態で達成される。
This preform 1, more precisely, the main body part 2 of the preform 1, can be blow-molded within a temperature range that can produce a stretching effect, including a temperature value of 120°C, which is just before the thermal crystallization of the molded synthetic resin + PET, which is the A material. This is achieved by heating the temperature to 90°C to 130°C.

この一次2軸延伸ブロー成形工程における。前記した二
次ブロー成形時の加熱によって熱結晶化しない状態で延
伸成形ができるようにする具体的な手段としては、前記
した如く、一次中間成形品4の底部を含む胴部、すなわ
ち本体部2を延伸ブロー成形した部分が配向結晶してい
ることは云うまでもないが、その密度が1.350  
(g /cffl)以上となるように、プリフォーム1
から一次中間成形品4への延伸倍率を2面積倍率で5〜
13倍に設定するのが良い。
In this primary biaxial stretch blow molding step. As described above, as a specific means for performing stretch molding without thermal crystallization due to heating during secondary blow molding, the body portion including the bottom portion of the primary intermediate molded product 4, that is, the main body portion 2 Needless to say, the stretch-blow-molded part has oriented crystals, and its density is 1.350.
(g/cffl) or more, preform 1
The stretching ratio from the to the primary intermediate molded product 4 is 5 to 2 area ratio.
It is best to set it to 13 times.

次に、一次中間成形品4を加熱して熱吸収させて二次中
間成形品5に成形する工程は、2軸延伸ブロー成形品内
に生じる内部残留応力を強制的に消滅させるためのもの
で、一次ブロー金型を使用して2軸延伸ブロー成形され
た一次中間成形品4の各延伸成形部分内に発生している
内部残留応力に従って、この一次中間成形品4の各延伸
成形部分を自由に変形させ、もって前記した内部残留応
力を強制的に消滅させるのである。
Next, the step of heating the primary intermediate molded product 4 to absorb heat and forming it into the secondary intermediate molded product 5 is for forcibly eliminating internal residual stress generated within the biaxially stretched blow molded product. , each stretch-molded part of the primary intermediate molded product 4 is freed according to the internal residual stress generated in each stretch-molded part of the primary intermediate molded product 4 biaxially stretch-blow-molded using the primary blow mold. In this way, the internal residual stress described above is forcibly eliminated.

この一次中間成形品4の各延伸成形部分内に発生してい
る内部残留応力に従った変形は、当然のことながら収縮
変形となるが、この収縮変形により成形された二次中間
成形品5の延伸成形部分。
Deformation according to the internal residual stress occurring in each stretch-molded part of this primary intermediate molded product 4 naturally results in shrinkage deformation, but the secondary intermediate molded product 5 formed by this shrinkage deformation Stretch molding part.

すなわち底部を含んだ胴部である本体部2は、第2図に
示すように、成形目的物である培体6の延伸成形部分で
ある底部を含んだ胴部とほぼ同じかわずかに小さい大き
さとなるように、プリフォーム1から一中間成形品4へ
の延伸成形の倍率、および一次中間成形品4の寸法が設
定されている。
That is, as shown in FIG. 2, the main body part 2, which is the body part including the bottom part, has a size that is approximately the same or slightly smaller than the body part including the bottom part, which is the stretch-molded part of the medium 6, which is the object to be molded. The magnification of the stretch molding from the preform 1 to the primary intermediate molded product 4 and the dimensions of the primary intermediate molded product 4 are set so that

そして、二次中間成形品5を培体6にブロー成形する工
程は、前記した工程で、一次ブロー金型の型温よりも高
い温度である170℃〜255℃に加熱されて熱収縮し
た二次中間成形品5を、成形目的物である培体6が使用
される使用雰囲気最高温度よりも数度高い温度である1
20℃〜150℃に加熱された二次ブロー金型によって
培体6にブロー成形するのである。
The step of blow molding the secondary intermediate molded product 5 onto the culture medium 6 is the step described above, and the second intermediate molded product 5 is heated to a temperature of 170° C. to 255° C., which is higher than the mold temperature of the primary blow mold, and is then heat-shrinked. Next, the intermediate molded product 5 is heated to a temperature several degrees higher than the maximum temperature of the atmosphere in which the culture medium 6, which is the molding object, is used.
The medium 6 is blow-molded using a secondary blow mold heated to 20°C to 150°C.

この二次中間成形品5の培体6へのブロー成形工程にお
いて、前記した如く、二次中間成形品5のブロー成形部
分である底部を含んだ胴部である本体部2ば、培体6の
対応する底部を含んだ胴部とほぼ等しいかもしくはわず
かに小さいだけであるので、二次中間成形品5から培体
6への延伸成形時における延伸量は極めて少なく、それ
ゆえこの二次中間成形品5から培体6への延伸成形によ
って、成形された培体6の延伸成形部分内には。
In the step of blow molding the medium 6 of the secondary intermediate molded product 5, as described above, the main body portion 2, which is the body portion including the bottom portion which is the blow molded portion of the secondary intermediate molded product 5, and the medium 6 The length of the secondary intermediate molded product 5 is approximately equal to or only slightly smaller than the body including the corresponding bottom, so the amount of stretching during stretching from the secondary intermediate molded product 5 to the culture medium 6 is extremely small. By stretching the molded article 5 into the culture medium 6, the formed culture medium 6 is in the stretch-formed portion.

はとんど延伸成形による内部残留応力を発生ずることが
ない。
Almost no internal residual stress is generated due to stretch forming.

また、培体6は、その使用雰囲気最高温度よりも高い温
度となった二次ブロー金型によってブロー成形されるの
で、この二次ブロー金型によりヒートセットされること
になり、もって内部残留応力のないそして熱収縮に対す
る耐熱性の高い培体6を得ることができることになるの
である。
In addition, since the culture medium 6 is blow-molded by a secondary blow mold whose temperature is higher than the maximum temperature of the atmosphere in which it is used, it is heat set by this secondary blow mold, resulting in internal residual stress. Therefore, it is possible to obtain a culture medium 6 that is free from heat shrinkage and has high heat resistance.

このように2本発明による2軸延伸ブロー成形方法は、
熱収縮に対する耐熱性の極めて優れた培体6を成形する
ことができるのであるが、一次中間成形品4から加熱収
縮成形される二次中間成形品5の収縮程度をより正確に
制御し、もって内部残留応力のより少ないそして寸法精
度の高いかつ適正肉厚分布の培体6を得るには、一次ブ
ロー金型の型温を成形される一次中間成形品4の熱収縮
量をコントロールできるように110℃〜230 ℃に
設定するのが良い。
In this way, the biaxial stretch blow molding method according to the present invention is
Although it is possible to mold the culture medium 6 which has extremely excellent heat shrinkage resistance, it is possible to more accurately control the degree of shrinkage of the secondary intermediate molded product 5 that is heat-shrink molded from the primary intermediate molded product 4. In order to obtain a medium 6 with less internal residual stress, high dimensional accuracy, and appropriate wall thickness distribution, the mold temperature of the primary blow mold can be controlled to control the amount of heat shrinkage of the primary intermediate molded product 4 to be molded. It is preferable to set the temperature between 110°C and 230°C.

この一次ブロー金型の型温は、延伸成形される一次中間
成形品4の延伸面積倍率に従って設定されるべきもので
あり、延伸面積倍率の増大に従ってその温度値を大きく
設定するのが良い。
The mold temperature of this primary blow mold should be set according to the stretching area magnification of the primary intermediate molded product 4 to be stretch-molded, and it is preferable to set the temperature value higher as the stretching area magnification increases.

〔実施例〕〔Example〕

この本発明による成形方法の具体例の一つを以下に記す
One specific example of the molding method according to the present invention will be described below.

プリフォーム1の加熱温度115℃、一次ブロー金型の
型温180℃,ブロー圧25kg/c己、そしてブロ一
時間1,4秒で、プリフォーム1から一次中間成形品4
への一次2軸延伸ブロー成形を行い9次いで一次中間成
形品4に対する加熱温度225℃1二次ブロー金型の型
温140℃、ブロー圧30 kg / an!そしてブ
ロ一時間4.4秒で、−灰中間成形品4から二次中間成
形品5への熱収縮変形を行うと同時に、この二次中間成
形品5を槽体6に成形した。
The heating temperature of the preform 1 is 115°C, the mold temperature of the primary blow mold is 180°C, the blowing pressure is 25 kg/cm, and the blowing time is 1.4 seconds to form the primary intermediate molded product 4 from the preform 1.
Primary biaxial stretch blow molding was carried out to 9. Next, the heating temperature for the primary intermediate molded product 4 was 225°C. 1. The mold temperature of the secondary blow mold was 140°C, and the blow pressure was 30 kg/an! Then, in a blowing time of 4.4 seconds, the -ash intermediate molded product 4 was heat-shrinked and deformed into a secondary intermediate molded product 5, and at the same time, this secondary intermediate molded product 5 was molded into a tank body 6.

このようにして成形された槽体6を、収納槽内の120
 ℃に加熱したグリセリン内に、キャップなしの状態で
、30分間浸漬位置させて加熱し、この槽体6を前記グ
リセリン内から取出して、水冷して加熱前との変化を求
めたところ、この槽体6の容積変化率は、 0.33%
となり、このことから充分に熱収縮に対する耐熱性の高
いPETボトルを成形することのできるごとが明らかと
なった。
The tank body 6 formed in this way is placed in the storage tank at 120
The tank body 6 was heated by immersing it in glycerin heated to ℃ for 30 minutes without a cap, and the tank body 6 was taken out from the glycerin and cooled with water to determine the change from before heating. The volume change rate of body 6 is 0.33%
From this, it has become clear that it is possible to mold a PET bottle that is sufficiently resistant to heat shrinkage.

この上記した槽体を、80℃の内容液を充虜してキャッ
ピングし、レトルト殺菌処理した場合、レトルト殺菌処
理温度120℃、F値6〜10で変化がなく容量変化率
は0.5%以下であった。
When the above-mentioned tank is filled with the content liquid at 80°C and capped, and subjected to retort sterilization treatment, there is no change at the retort sterilization temperature of 120°C and F value of 6 to 10, and the capacity change rate is 0.5%. It was below.

また、槽体6を成形するためのPET材料中には、全く
添加剤が混入されておらず、極めて優れた透明性を発揮
するものとなり、またその密度も1.3853〜1.3
918 (g / cn?)となり、従来の熱処理を施
さないこの種の槽体の結晶化度が約16%であり、従来
の熱固定処理を施した槽体の結晶化度が約33%である
のに対し、前記した本発明により成形された槽体6の結
晶化度は約49%を得ることができた。
In addition, the PET material for forming the tank body 6 does not contain any additives, exhibits extremely excellent transparency, and has a density of 1.3853 to 1.3.
918 (g/cn?), and the crystallinity of this type of tank without conventional heat treatment is about 16%, and the crystallinity of the tank with conventional heat setting is about 33%. On the other hand, the crystallinity of the tank body 6 molded according to the present invention described above was about 49%.

このように、充分に高い密度を得ることができかつ高い
成形性を得られるので、減圧強度等の機械的強度も大幅
に向上させることができた。
In this way, it was possible to obtain a sufficiently high density and high moldability, and therefore mechanical strength such as vacuum strength was also significantly improved.

さらに、壜体6内の内部残留応力を測定してみたところ
9加熱塩度が110℃を越えたところで初めて内部残留
応力が発現し始め、加熱温度の上昇に従って徐々にその
値は上昇したが、150℃まで加熱してみたところ、こ
の発現した内部残留応力の最大値は0.22 [g/v
りと極めて小さな値であった。
Furthermore, when we measured the internal residual stress inside the bottle 6, we found that internal residual stress began to appear for the first time when the heating salinity exceeded 110°C, and its value gradually increased as the heating temperature increased. When heated to 150°C, the maximum value of the internal residual stress developed was 0.22 [g/v
It was an extremely small value.

なお、上記した各実施例における槽体6を観察したとこ
ろ、壜体6底部の中心部付近にわずかに白濁が認められ
たが、これは他の部分に比べて前記した壜体6底部中心
部に対する延伸が必ずしも充分に与えることができない
ためと思われる。
When the tank body 6 in each of the above-mentioned Examples was observed, a slight cloudiness was observed near the center of the bottom of the bottle 6, but this was more pronounced in the center of the bottom of the bottle 6 than in other parts. This seems to be because the stretching cannot always be applied sufficiently.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな如く1本発明によるPET製壜
体壜体形方法は、内部残留応力のない極めて熱収縮に対
する耐熱性の高い槽体を成形することができ、また壜体
各部の密度を充分に大きくすることができるので、減圧
強度等の機械的強度の大きい槽体に成形することができ
、さらに従来からの加熱手段とブロー成形手段とを適当
に組合わせて実施することができるので1その実施が容
易であると共に、高い透明性を維持することができる等
多くの優れた効果を発揮するものである。
As is clear from the above description, the method for forming a PET bottle according to the present invention can form a tank that has no internal residual stress and has extremely high heat shrinkage resistance, and also has sufficient density in each part of the bottle. Since it can be made large, it can be molded into a tank with high mechanical strength such as vacuum strength, and furthermore, it can be carried out by appropriately combining conventional heating means and blow molding means. It is easy to implement and exhibits many excellent effects such as being able to maintain high transparency.

【図面の簡単な説明】[Brief explanation of drawings]

図面は1本発明方法の説明に供するもので、第1図は一
次ブロー成形操作状態を示す縦断面図であり、第2図は
二次ブロー成形操作状態を示す縦断面図である。 符号の説明 1;プリフォーム、2:本体部、3;口部。 4;一次中間成形品、5;二次中間成形品。 6;槽体。
The drawings are for explaining the method of the present invention, and FIG. 1 is a longitudinal sectional view showing the primary blow molding operation state, and FIG. 2 is a longitudinal sectional view showing the secondary blow molding operation state. Explanation of symbols 1: Preform, 2: Main body, 3: Mouth. 4: Primary intermediate molded product, 5: Secondary intermediate molded product. 6; Tank body.

Claims (8)

【特許請求の範囲】[Claims] (1)ポリエチレンテレフタレート樹脂製壜体の2軸延
伸ブロー成形方法であって、予め所望形状に成形された
プリフォームを、熱結晶化寸前の温度値120℃を含む
延伸効果の現出できるブロー成形可能な温度範囲である
90℃〜130℃に加熱した状態で一次ブロー金型によ
り一次中間成形品に一次2軸延伸ブロー成形し、該2軸
延伸ブロー成形された一次中間成形品を、一次ブロー金
型の型温よりも高い温度である170℃〜255℃に加
熱すると共に、二次ブロー金型の型温を、成形された壜
体の使用雰囲気最高温度よりも数度高い温度である12
0℃〜150℃に加熱した状態で壜体にブロー成形する
2軸延伸ブロー成形方法。
(1) A biaxial stretch blow molding method for polyethylene terephthalate resin bottles, in which a preform previously formed into a desired shape is blow molded to produce a stretching effect at a temperature of 120°C, which is on the verge of thermal crystallization. The primary intermediate molded product is subjected to primary biaxial stretch blow molding using a primary blow mold while heated to a possible temperature range of 90°C to 130°C, and the biaxially stretch blow molded primary intermediate molded product is It is heated to a temperature of 170°C to 255°C, which is higher than the mold temperature of the mold, and the mold temperature of the secondary blow mold is set to a temperature several degrees higher than the maximum temperature of the atmosphere in which the molded bottle is used.
A biaxial stretch blow molding method in which a bottle is blow molded while being heated to 0°C to 150°C.
(2)ポリエチレンテレフタレート樹脂製壜体の2軸延
伸ブロー成形方法であって、予め所望形状に成形された
プリフォームを、熱結晶化寸前の温度値120℃を含む
延伸効果の現出できるブロー成形可能な温度範囲である
90℃〜130℃に加熱した状態で、前記プリフォーム
の延伸成形される部分の延伸面積倍率を5〜13倍に設
定した一次ブロー金型により一次中間成形品に一次2軸
延伸ブロー成形し、該2軸延伸ブロー成形された一次中
間成形品を、一次ブロー金型の型温よりも高い温度であ
る170℃〜255℃に加熱すると共に、二次ブロー金
型の型温を成形された壜体の使用雰囲気最高温度よりも
数度高い温度である120℃〜150℃に加熱した状態
で壜体にブロー成形する2軸延伸ブロー成形方法。
(2) A biaxial stretch blow molding method for polyethylene terephthalate resin bottles, in which a preform previously formed into a desired shape is blow molded to produce a stretching effect at a temperature of 120°C, which is on the verge of thermal crystallization. While heated to a possible temperature range of 90°C to 130°C, a primary blow mold with a stretching area magnification of 5 to 13 times the stretching area of the stretch-molded part of the preform is used to form a primary intermediate molded product. Axial stretch blow molding is performed, and the biaxial stretch blow molded primary intermediate molded product is heated to a temperature of 170°C to 255°C, which is higher than the mold temperature of the primary blow mold, and the mold of the secondary blow mold is heated. A biaxial stretch blow molding method in which the bottle is heated to 120°C to 150°C, which is several degrees higher than the maximum temperature of the atmosphere in which the bottle is used.
(3)ポリエチレンテレフタレート樹脂製壜体の2軸延
伸ブロー成形方法であって、予め所望形状に成形された
プリフォームを、熱結晶化寸前の温度値120℃を含む
延伸効果の現出できるブロー成形可能な温度範囲である
90℃〜130℃に加熱した状態で一次ブロー金型によ
り一次中間成形品に一次2軸延伸ブロー成形し、該2軸
延伸ブロー成形された一次中間成形品を、一次ブロー金
型の型温よりも高い温度である170℃〜255℃に加
熱すると共に、二次ブロー金型の型温を、成形された壜
体の使用雰囲気最高温度よりも数度高い温度である12
0℃〜150℃に加熱した状態で壜体にブロー成形し、
さらに前記一次中間成形品の延伸成形された各部の寸法
を該一次中間成形品が170℃〜255℃に再加熱され
て二次中間成形品に収縮した際に、前記壜体の対応する
各部の寸法と等しいかもしくはわずかに小さくなる値に
設定した2軸延伸ブロー成形方法。
(3) A biaxial stretch blow molding method for a polyethylene terephthalate resin bottle, in which a preform previously formed into a desired shape is blow molded to produce a stretching effect at a temperature of 120°C, which is on the verge of thermal crystallization. The primary intermediate molded product is subjected to primary biaxial stretch blow molding using a primary blow mold while heated to a possible temperature range of 90°C to 130°C, and the biaxially stretch blow molded primary intermediate molded product is It is heated to a temperature of 170°C to 255°C, which is higher than the mold temperature of the mold, and the mold temperature of the secondary blow mold is set to a temperature several degrees higher than the maximum temperature of the atmosphere in which the molded bottle is used.
Blow molded into a bottle while heated to 0°C to 150°C,
Furthermore, the dimensions of each stretch-molded part of the primary intermediate molded product are calculated based on the dimensions of the corresponding parts of the bottle when the primary intermediate molded product is reheated to 170°C to 255°C and shrinks into a secondary intermediate molded product. A biaxial stretch blow molding method that is set to a value that is equal to or slightly smaller than the dimensions.
(4)ポリエチレンテレフタレート樹脂製壜体の2軸延
伸ブロー成形方法であって、予め所望形状に成形された
プリフォームを、熱結晶化寸前の温度値120℃を含む
延伸効果の現出できるブロー成形可能な温度範囲である
90℃〜130℃に加熱した状態で、前記プリフォーム
の延伸成形される部分の延伸面積倍率を5〜13倍に設
定した一次ブロー金型により一次中間成形品に一次2軸
延伸ブロー成形し、該2軸延伸ブロー成形された一次中
間成形品を、一次ブロー金型の型温よりも高い温度であ
る170℃〜255℃に加熱すると共に、二次ブロー金
型の型温を、成形された壜体の使用雰囲気最高温度より
も数度高い温度である120℃〜150℃に加熱した状
態で壜体にブロー成形し、さらに前記一次中間成形品の
延伸成形された各部の寸法を、該一次中間成形品が17
0℃〜255℃に再加熱されて二次中間成形品に収縮し
た際に、前記壜体の対応する各部の寸法と等しいかもし
くはわずかに小さくなる値に設定した2軸延伸ブロー成
形方法。
(4) A biaxial stretch blow molding method for polyethylene terephthalate resin bottles, in which a preform previously formed into a desired shape is blow molded to produce a stretching effect at a temperature of 120°C, which is on the verge of thermal crystallization. While heated to a possible temperature range of 90°C to 130°C, a primary blow mold with a stretching area magnification of 5 to 13 times the stretching area of the stretch-molded part of the preform is used to form a primary intermediate molded product. Axial stretch blow molding is performed, and the biaxial stretch blow molded primary intermediate molded product is heated to a temperature of 170°C to 255°C, which is higher than the mold temperature of the primary blow mold, and the mold of the secondary blow mold is heated. The bottle is blow-molded at a temperature of 120°C to 150°C, which is several degrees higher than the maximum temperature of the atmosphere in which the molded bottle is used, and each stretch-molded part of the primary intermediate molded product is The dimensions of the primary intermediate molded product are 17
A biaxial stretch blow molding method in which the size is set to be equal to or slightly smaller than the dimensions of the corresponding parts of the bottle when it is reheated to 0°C to 255°C and shrunk into a secondary intermediate molded product.
(5)ポリエチレンテレフタレート樹脂製壜体の2軸延
伸ブロー成形方法であって、予め所望形状に成形された
プリフォームを、熱結晶化寸前の温度値120℃を含む
延伸効果の現出できるブロー成形可能な温度範囲である
90℃〜130℃に加熱すると共に、一次ブロー金型の
型温を、二次ブロー成形時の加熱により熱結晶化しない
状態で延伸成形ができるように110℃〜230℃に加
熱した状態で一次中間成形品に一次2軸延伸ブロー成形
し、該2軸延伸ブロー成形された一次中間成形品を一次
ブロー金型の型温よりも高い温度である170℃〜25
5℃に加熱すると共に、二次ブロー金型の型温を、成形
された壜体の使用雰囲気最高温度よりも数度高い温度で
ある120℃〜150℃に加熱した状態で壜体にブロー
成形する2軸延伸ブロー成形方法。
(5) A biaxial stretch blow molding method for polyethylene terephthalate resin bottles, in which a preform formed in advance into a desired shape is blow molded to produce a stretching effect including a temperature value of 120°C, which is on the verge of thermal crystallization. In addition to heating to a possible temperature range of 90°C to 130°C, the mold temperature of the primary blow mold is set to 110°C to 230°C so that stretch molding can be performed without thermal crystallization due to heating during secondary blow molding. The primary intermediate molded product is subjected to primary biaxial stretch blow molding in a state heated to
The bottle is heated to 5℃ and the mold temperature of the secondary blow mold is heated to 120℃ to 150℃, which is several degrees higher than the maximum temperature of the atmosphere in which the molded bottle will be used. Biaxial stretch blow molding method.
(6)ポリエチレンテレフタレート樹脂製壜体の2軸延
伸ブロー成形方法であって、予め所望形状に成形された
プリフォームを、熱結晶化寸前の温度値120℃を含む
延伸効果の現出できるブロー成形可能な温度範囲である
90℃〜130℃に加熱すると共に、前記プリフォーム
の延伸成形される部分の延伸面積倍率を5〜13倍に設
定した一次ブロー金型の型温を、二次ブロー成形時の加
熱により熱結晶化しない状態で延伸成形ができるように
110℃〜230℃に加熱した状態で一次中間成形品に
一次2軸延伸ブロー成形し、該2軸延伸ブロー成形され
た一次中間成形品を一次ブロー金型の型温よりも高い温
度である170℃〜255℃に加熱すると共に、二次ブ
ロー金型の型温を、成形された壜体の使用雰囲気最高温
度よりも数度高い温度である120℃〜150℃に加熱
した状態で壜体にブロー成形する2軸延伸ブロー成形方
法。
(6) A biaxial stretch blow molding method for a polyethylene terephthalate resin bottle, in which a preform formed in advance into a desired shape is blow molded to produce a stretching effect including a temperature value of 120°C on the verge of thermal crystallization. The mold temperature of the primary blow mold is heated to a possible temperature range of 90°C to 130°C, and the stretching area magnification of the stretch-molded portion of the preform is set to 5 to 13 times. The primary intermediate molded product is subjected to primary biaxial stretch blow molding in a state heated to 110°C to 230°C so that stretch molding can be performed without thermal crystallization due to heating, and the primary intermediate molded product subjected to the biaxial stretch blow molding is The product is heated to a temperature of 170°C to 255°C, which is higher than the mold temperature of the primary blow mold, and the mold temperature of the secondary blow mold is several degrees higher than the maximum temperature of the atmosphere in which the molded bottle is used. A biaxial stretch blow molding method in which a bottle is blow molded while being heated to a temperature of 120°C to 150°C.
(7)ポリエチレンテレフタレート樹脂製壜体の2軸延
伸ブロー成形方法であって、予め所望形状に成形された
プリフォームを、熱結晶化寸前の温度値120℃を含む
延伸効果の現出できるブロー成形可能な温度範囲である
90℃〜130℃に加熱すると共に、一次ブロー金型の
型温を、二次ブロー成形時の加熱により熱結晶化しない
状態で延伸成形ができるように110℃〜230℃に加
熱した状態で一次中間成形品に一次2軸延伸ブロー成形
し、該2軸延伸ブロー成形された一次中間成形品を一次
ブロー金型の型温よりも高い温度である170℃〜25
5℃に加熱すると共に、二次ブロー金型の型温を成形さ
れた壜体の使用雰囲気最高温度よりも数度高い温度であ
る120℃〜150℃に加熱した状態で壜体にブロー成
形し、さらに前記一次中間成形品の延伸成形された各部
の寸法を、該一次中間成形品が170℃〜255℃に再
加熱されて二次中間成形品に収縮した際に、前記壜体の
対応する各部の寸法と等しいかもしくはわずかに小さく
なる値に設定した2軸延伸ブロー成形方法。
(7) A biaxial stretch blow molding method for polyethylene terephthalate resin bottles, in which a preform previously formed into a desired shape is blow molded to produce a stretching effect including a temperature value of 120°C, which is on the verge of thermal crystallization. In addition to heating to a possible temperature range of 90°C to 130°C, the mold temperature of the primary blow mold is set to 110°C to 230°C so that stretch molding can be performed without thermal crystallization due to heating during secondary blow molding. The primary intermediate molded product is subjected to primary biaxial stretch blow molding in a state heated to
The bottle is heated to 5°C and the mold temperature of the secondary blow mold is heated to 120°C to 150°C, which is several degrees higher than the maximum temperature of the atmosphere in which the molded bottle is used, and blow molded into the bottle. Furthermore, the dimensions of each stretch-molded part of the primary intermediate molded product are determined to be the same as those of the bottle when the primary intermediate molded product is reheated to 170°C to 255°C and shrunk into a secondary intermediate molded product. A biaxial stretch blow molding method in which values are set to be equal to or slightly smaller than the dimensions of each part.
(8)ポリエチレンテレフタレート樹脂製壜体の2軸延
伸ブロー成形方法であって、予め所望形状に成形された
プリフォームを、熱結晶化寸前の温度値120℃を含む
延伸効果の現出できるブロー成形可能な温度範囲である
90℃〜130℃に加熱すると共に、前記プリフォーム
の延伸成形される部分の延伸面積倍率を5〜13倍に設
定した一次ブロー金型の型温を、二次ブロー成形時の加
熱により熱結晶化しない状態で延伸成形ができるように
110℃〜230℃に加熱した状態で一次中間成形品に
一次2軸延伸ブロー成形した後、該2軸延伸ブロー成形
された一次中間成形品を一次ブロー金型の型温よりも高
い温度である170℃〜255℃に加熱すると共に、二
次ブロー金型の型温を、成形された壜体の使用雰囲気最
高温度よりも数度高い温度である120℃〜150℃に
加熱した状態で壜体にブロー成形し、さらに前記一次中
間成形品の延伸成形された各部の寸法を、該一次中間成
形品が170℃〜255℃に再加熱されて二次中間成形
品に収縮した際に、前記壜体の対応する各部の寸法と等
しいかもしくはわずかに小さくなる値に設定した2軸延
伸ブロー成形方法。
(8) A biaxial stretch blow molding method for polyethylene terephthalate resin bottles, in which a preform previously formed into a desired shape is blow molded to produce a stretching effect including a temperature value of 120°C, which is on the verge of thermal crystallization. The mold temperature of the primary blow mold is heated to a possible temperature range of 90°C to 130°C, and the stretching area magnification of the stretch-molded portion of the preform is set to 5 to 13 times. After performing primary biaxial stretch blow molding on the primary intermediate molded product in a state heated to 110°C to 230°C so that stretch molding can be performed without thermal crystallization due to heating, the biaxially stretch blow molded primary intermediate The molded product is heated to a temperature of 170°C to 255°C, which is higher than the mold temperature of the primary blow mold, and the mold temperature of the secondary blow mold is set several degrees higher than the maximum temperature of the atmosphere in which the molded bottle is used. Blow molding is performed into a bottle while heated to a high temperature of 120°C to 150°C, and the dimensions of each stretch-molded part of the primary intermediate molded product are re-heated to 170°C to 255°C. A biaxial stretch blow molding method in which the size is set to be equal to or slightly smaller than the dimensions of the corresponding parts of the bottle when it is heated and shrunk into a secondary intermediate molded product.
JP17011685A 1985-08-01 1985-08-01 Biaxial stretching blow molding method Expired - Lifetime JPH0622860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17011685A JPH0622860B2 (en) 1985-08-01 1985-08-01 Biaxial stretching blow molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17011685A JPH0622860B2 (en) 1985-08-01 1985-08-01 Biaxial stretching blow molding method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2437497A Division JP2963904B2 (en) 1997-01-23 1997-01-23 Biaxial stretch blow molding method

Publications (2)

Publication Number Publication Date
JPS6230019A true JPS6230019A (en) 1987-02-09
JPH0622860B2 JPH0622860B2 (en) 1994-03-30

Family

ID=15898933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17011685A Expired - Lifetime JPH0622860B2 (en) 1985-08-01 1985-08-01 Biaxial stretching blow molding method

Country Status (1)

Country Link
JP (1) JPH0622860B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167002A (en) * 1987-12-23 1989-06-30 Riyuuhoudou Seiyaku Kk Content filling for plastic container
JP2001150522A (en) * 1999-11-26 2001-06-05 Toyo Seikan Kaisha Ltd Polyester container and method of manufacturing the same
US6627279B2 (en) 1999-02-12 2003-09-30 Toyo Seikan Kaisha, Ltd. Polyester container
USH2088H1 (en) 2001-06-29 2003-11-04 Eastman Chemical Company Method for reducing plate-out in a stretch blow molded container
USH2132H1 (en) 2001-06-29 2005-11-01 Eastman Chemical Company Polyester containers having a reduced coefficient of friction
JP2008273058A (en) * 2007-04-27 2008-11-13 Yoshino Kogyosho Co Ltd Synthetic resin made blow container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105935A (en) * 1980-01-26 1981-08-22 Mitsubishi Plastics Ind Ltd Forming of plastic bottle
JPS5753326A (en) * 1980-09-17 1982-03-30 Dainippon Printing Co Ltd Manufacture of biaxially stretching blow molded vessel of saturated polyester
JPS5881131A (en) * 1981-11-10 1983-05-16 Mitsubishi Plastics Ind Ltd Plastic bottle and manufacture thereof
GB2137921A (en) * 1983-03-10 1984-10-17 Petainer Sa Method and apparatus for forming a container of thermoplastic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105935A (en) * 1980-01-26 1981-08-22 Mitsubishi Plastics Ind Ltd Forming of plastic bottle
JPS5753326A (en) * 1980-09-17 1982-03-30 Dainippon Printing Co Ltd Manufacture of biaxially stretching blow molded vessel of saturated polyester
JPS5881131A (en) * 1981-11-10 1983-05-16 Mitsubishi Plastics Ind Ltd Plastic bottle and manufacture thereof
GB2137921A (en) * 1983-03-10 1984-10-17 Petainer Sa Method and apparatus for forming a container of thermoplastic material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167002A (en) * 1987-12-23 1989-06-30 Riyuuhoudou Seiyaku Kk Content filling for plastic container
US6627279B2 (en) 1999-02-12 2003-09-30 Toyo Seikan Kaisha, Ltd. Polyester container
JP2001150522A (en) * 1999-11-26 2001-06-05 Toyo Seikan Kaisha Ltd Polyester container and method of manufacturing the same
JP4586224B2 (en) * 1999-11-26 2010-11-24 東洋製罐株式会社 Polyester container manufacturing method
USH2088H1 (en) 2001-06-29 2003-11-04 Eastman Chemical Company Method for reducing plate-out in a stretch blow molded container
USH2132H1 (en) 2001-06-29 2005-11-01 Eastman Chemical Company Polyester containers having a reduced coefficient of friction
JP2008273058A (en) * 2007-04-27 2008-11-13 Yoshino Kogyosho Co Ltd Synthetic resin made blow container

Also Published As

Publication number Publication date
JPH0622860B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JPS60171124A (en) Process of biaxially oriented drawing blow molding
US5562960A (en) Double-blown PET bottle shaped container having essentially no residual stress and superior heat resistance
US4589559A (en) Blow-molded bottle-shaped container of biaxially oriented polyethylene terephthalate resin and method of molding the same
US4497855A (en) Collapse resistant polyester container for hot fill applications
US4318882A (en) Method for producing a collapse resistant polyester container for hot fill applications
US4485134A (en) Plastic containers for storage of goods under pressure
US5248533A (en) Biaxially oriented polyethylene terephthalate resin bottle-shaped container
US5145632A (en) Process for the manufacture of pet containers designed to be filled with a hot liquid
JPS6142808Y2 (en)
US5445784A (en) Method of blow-molding biaxially-oriented polyethylene terephthalate resin bottle-shaped container
JPS6230019A (en) Biaxially oriented blow molding process
JP2001526598A (en) Improved multilayer container and preform
JPS6149826A (en) Biaxial orientation blow molding method
JPS5892536A (en) Biaxially stretched plastic bottle
JP2777790B2 (en) Biaxial stretch blow molding method
JPS6230018A (en) Bottle molded by biaxially oriented blow molding
JP2963904B2 (en) Biaxial stretch blow molding method
JPS63122516A (en) Manufacture of bottle made of polyethylene terephthalate resin
JPH0443498B2 (en)
JPS63185620A (en) Production of thermally set polyester stretched molded container
EP0515702B2 (en) Method of blow-moulding a biaxially oriented polyethylene terephthalate resin bottle-shaped container
JP2002067130A (en) Method for manufacturing heat resistant neck bent container
CA1264907A (en) Method of blow-molding a biaxially oriented polyethylene terephthalate resin bottle-shaped container and container produced by such method
JPS58185227A (en) Manufacture of stretched polyester bottle
JPS6357220A (en) Manufacture of polyester bottle for hot filling

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term