JPS6357220A - Manufacture of polyester bottle for hot filling - Google Patents

Manufacture of polyester bottle for hot filling

Info

Publication number
JPS6357220A
JPS6357220A JP61201827A JP20182786A JPS6357220A JP S6357220 A JPS6357220 A JP S6357220A JP 61201827 A JP61201827 A JP 61201827A JP 20182786 A JP20182786 A JP 20182786A JP S6357220 A JPS6357220 A JP S6357220A
Authority
JP
Japan
Prior art keywords
bottle
temperature
mold
heat
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61201827A
Other languages
Japanese (ja)
Other versions
JPH0446738B2 (en
Inventor
Shigezo Nohara
野原 繁三
Takeshi Sugimoto
毅 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP61201827A priority Critical patent/JPS6357220A/en
Publication of JPS6357220A publication Critical patent/JPS6357220A/en
Publication of JPH0446738B2 publication Critical patent/JPH0446738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0861Other specified values, e.g. values or ranges
    • B29C2949/0862Crystallinity

Abstract

PURPOSE:To prevent an asymmetric transformation to be generated after hot filling, by a method wherein polyester of a belly part of a bottle formed through stretching blow molding is annealed after the same has been crystallized through orientation. CONSTITUTION:A mono- or multi-layer bottle formed through stretching blow molding bidirectionally by making use of thermoplastic polyester as main raw materials is heat-treated in a state of restraint of an outside wall surface of the bottle with a split mold and at least polyester of a belly part is crystallized through orientation so that crystallinity of the same turns 25% or more. Then after the bottle has been taken out by quenching the same, the is annealed in a heating atmosphere where a temperature is the hot filling temperature or more and 120 deg.C or less. With this constitution, an asymmetric transformation of even the bottle, to which thermofixing has been performed through quick heating or quick cooling, can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱間充填用ポリエステルボトルの製法に関す
るもので、より詳細には、配向熱固定処理とアニーリン
グ処理との組合せにより、熱間充填時におけるボトルの
不斉変形を防止する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a polyester bottle for hot filling, and more specifically, the present invention relates to a method for manufacturing a polyester bottle for hot filling. The present invention relates to a method for preventing asymmetric deformation of a bottle at times.

(従来の技術) ポリエチレンテレフタレート(PET)の如き熱可塑性
ポリエステルの二軸延伸ブロー成形容器は、優れた透明
性や表面光沢を有すると共に、びんに必要な耐衝撃性、
剛性、ガスバリヤ−性をも有しており、各種液体のびん
詰容器として利用されている。
(Prior Art) Biaxially stretched blow-molded containers made of thermoplastic polyester such as polyethylene terephthalate (PET) have excellent transparency and surface gloss, as well as the impact resistance and
It also has rigidity and gas barrier properties, and is used as bottling containers for various liquids.

しかしながら、ポリエステル容器は、耐熱性に劣るとい
う欠点があり、内容物を熱間充填する用途に対しては、
熱変形や容積の収縮変形を生じるため二軸延伸ブロー容
器を成形後に熱固定(ヒート・セット)すべく多くの提
案が既に行われている。
However, polyester containers have the disadvantage of poor heat resistance, and are not suitable for hot filling applications.
Many proposals have already been made to heat-set biaxially stretched blown containers after molding to avoid thermal deformation and volume shrinkage deformation.

熱固定の方法には、特公昭60−56606号公報にみ
られる通り、延伸ブロー成形により得られる成形品を成
形ブロー型から取出した後、熱固定用の金型内に保持し
て熱固定を行う方法や、特公昭59−6216号公報に
みられる通り、ブロー成形型中で延伸ブロー成形と同時
に熱固定を行う方法が知られている。また、特開昭57
−53326号公報には、−次金型中で延伸ブロー成形
と同時に熱処理を行い、成形品を取出してこれを冷却す
ることなく、二次処理金型中でブロー成形する方法が記
載されている。
As shown in Japanese Patent Publication No. 60-56606, the heat setting method involves taking out the molded product obtained by stretch blow molding from the blow mold, and then holding it in a heat setting mold to heat set it. There are known methods of carrying out heat setting at the same time as stretch blow molding in a blow mold, as shown in Japanese Patent Publication No. 59-6216. In addition, JP-A-57
Publication No. 53326 describes a method in which heat treatment is performed simultaneously with stretch blow molding in a secondary mold, and blow molding is performed in a secondary treatment mold without taking out the molded product and cooling it. .

(発明が解決しようとする問題点) これらの熱固定処理では、ポリエステル材料中の配向結
晶化の進行と内部歪の除去とが行われるが、熱固定後の
ボトルを形くずれなしに割金型から取出すこと、即ち常
に−様な寸法、容積及び形状を有する状態で取出すこと
が必須不可欠であり、そのためには熱固定後のポリエス
テルボトルが、ポリエステルの二次転移温度(Tg)以
下の温度(取出温度と呼ぶ)であることが一般に必要と
なる。従って、熱固定二軸延伸ボトルを何等かの手段で
上記温度に冷却して取出すわけであるが、この冷却によ
り取出したボトルには熱歪が凍結される傾向がある。特
にボトルの形状の複雑な部分や肉厚分布が異なるところ
では特に高い歪を発生し易い。更に、ボトルの生産性向
上のため、熱固定サイクルを短縮するためには熱固定ボ
トルの急冷が必要となることから、熱歪の発生傾向も大
となる。
(Problems to be Solved by the Invention) These heat-setting treatments advance oriented crystallization in the polyester material and remove internal strain, but the bottle after heat-setting can be molded into a split mold without losing its shape. In other words, it is essential to always take out the polyester bottle with the same size, volume, and shape.For this purpose, the polyester bottle after heat-setting must be kept at a temperature below the secondary transition temperature (Tg) of polyester. (referred to as the take-out temperature). Therefore, the heat-set biaxially stretched bottle is cooled to the above-mentioned temperature by some means and taken out, but the bottle taken out by this cooling tends to have thermal distortion. In particular, high distortion is likely to occur in areas where the shape of the bottle is complex or where the wall thickness distribution is different. Furthermore, in order to improve bottle productivity and shorten the heat setting cycle, it is necessary to rapidly cool the heat set bottle, which increases the tendency for thermal distortion to occur.

この歪をもった熱固定ポリエステルボトルに、85℃或
いはそれより高温で飲料を充填し、密封、冷却を行った
場合には、ボトルの不斉変形が生じるのである。これは
、ホットΦパック後の密封、冷却条件では、ボトル内外
に圧力差のある状態となっており、歪の緩和、即ち収縮
が局部的に集中して生じるか、或いはこの収縮変形が引
金となって不斉変形を生じるためと考えられる。
When this warped heat-set polyester bottle is filled with a beverage at 85° C. or higher, sealed, and cooled, asymmetric deformation of the bottle occurs. This is because under the sealing and cooling conditions after the hot Φ pack, there is a pressure difference between the inside and outside of the bottle, and either the relaxation of strain, that is, contraction occurs locally concentrated, or this contraction deformation is triggered. This is thought to be due to the occurrence of asymmetric deformation.

従って、本発明は、ポリエステルを主体として構成され
た熱固定二軸延伸ボトルの熱間充填後に生ずる不斉変形
を有効に防止する方法を提供することを課題する。
Therefore, an object of the present invention is to provide a method for effectively preventing asymmetric deformation that occurs after hot filling of a heat-set biaxially stretched bottle mainly composed of polyester.

(問題点を解決するための手段) 本発明によれば、上記課題を達するため、熱可塑性ポリ
エステルを主体として構成され且つ、二軸方向に延伸ブ
ロー成形することにより形成された単層又は多層のボト
ルを、ボトル外壁面が割型により拘束された条件下に熱
処理して、少なくとも胴部のポリニスチルの結晶化度が
25%以上となるように配向結晶化させ、次いで取り出
し温度にボトルを急冷し、熱処理ボトルを、非拘束条件
下に熱間充填温度以上で120°C以下の温度の加熱雰
囲気中でアニーリングする。
(Means for Solving the Problems) According to the present invention, in order to achieve the above-mentioned problems, a single-layer or multi-layer film mainly composed of thermoplastic polyester and formed by stretch blow molding in biaxial directions. The bottle is heat-treated under conditions in which the outer wall surface of the bottle is restrained by a split mold to achieve oriented crystallization such that the crystallinity of polynystyl in the body is at least 25%, and then the bottle is rapidly cooled to a temperature for taking it out. , the heat-treated bottle is annealed under unconstrained conditions in a heated atmosphere at a temperature above the hot-fill temperature and below 120°C.

(作  用) 本発明は、ワンモールド法やツーモールド法等のそれ自
体公知の任意の方法で熱固定された二軸延伸ブローポリ
エステルボトルに適用できる。このボトルの熱固定の程
度は、ボトル胴部を構成するポリエステルの結晶化度が
25%以上となるように配向結晶化されていれば十分で
ある。
(Function) The present invention can be applied to biaxially stretched blown polyester bottles heat-set by any method known per se, such as the one-mold method or the two-mold method. The degree of heat fixation of this bottle is sufficient as long as the polyester constituting the bottle body is oriented and crystallized so that the degree of crystallinity is 25% or more.

この熱固定ボトルは、ワンモールド法により熱固定され
るにせよ、またツーモールド法で熱固定されるにせよ、
ボトルが変形しないで取り出せる状態の温度にあること
が必要である。この冷却は、型内におけるボトルの占有
時間を可及的に短かくして生産性を向上させるため、3
0秒以下、特に3〜15秒の短時間内に行われる。この
ため、熱固定ボトルでは、配向結晶化と内部歪の除去と
が行われているとしても、形くずれしない取り出しのた
めの急冷によりボトルの形状の複雑な部分や肉厚が異な
る部分に熱歪が凍結されている。
Whether this heat-setting bottle is heat-set using the one-mold method or the two-mold method,
It is necessary that the temperature is such that the bottle can be taken out without being deformed. This cooling reduces the time the bottle occupies in the mold as much as possible and improves productivity.
It is carried out within a short time of 0 seconds or less, especially 3 to 15 seconds. For this reason, in heat-set bottles, even if oriented crystallization and removal of internal strain are performed, rapid cooling to take out the bottle without losing its shape causes heat distortion in areas with complex shapes and areas with different wall thicknesses. is frozen.

本発明では、急冷され取り出された熱処理ボトルを、非
拘束条件下に且つ熱間充填温度以上で120℃以下の温
度雰囲気中でアニーリングを行うことにより、熱歪の緩
和、即ち収縮を自由に行わせることが可能となるもので
あり、これにより内容物を熱間充填すべきボトルを熱歪
のない状態として、熱間充填、密封、冷却後のボトルに
おける不斉変形を防止することが可能となる。
In the present invention, the heat-treated bottle that has been rapidly cooled and taken out is annealed under unconstrained conditions in an atmosphere at a temperature higher than the hot filling temperature and lower than 120°C, thereby allowing relaxation of thermal strain, that is, free contraction. This makes it possible to make the bottles that are to be hot filled with contents free from thermal distortion and prevent asymmetric deformation in the bottles after hot filling, sealing, and cooling. Become.

(発明の作用効果) 本発明によれば、工業的に生産された熱固定二軸延伸ポ
リエステルボトルを実際の熱間充填、密封、冷却のプロ
セスに賦した場合に不可避的に発生する不斉変形を有効
に防止することが可能となる。また、これにより更に次
の具体的利点が得られる。
(Operations and Effects of the Invention) According to the present invention, asymmetric deformation that inevitably occurs when an industrially produced heat-set biaxially stretched polyester bottle is subjected to an actual hot filling, sealing, and cooling process. can be effectively prevented. In addition, this further provides the following specific advantages.

(イ)成る温度の充填条件で、従来の熱固定二軸延伸ポ
リエステルボトルでは、例えば良品80%、一部変形品
10%、大きい変形量10%となるビン詰製品を生じて
いたのが、本発明の処理を行うと、熱間充填後に全部の
ビン詰製品が合格する耐熱ボトルを得ることができる等
、熱間充填製品の歩留り率が向上するという利点がある
Under the filling conditions of (a), conventional heat-set biaxially stretched polyester bottles produced bottled products with, for example, 80% non-defective products, 10% partially deformed products, and 10% large deformations. The treatment of the present invention has the advantage of improving the yield rate of hot-filled products, such as by making it possible to obtain heat-resistant bottles that pass all bottled products after hot-filling.

(rl)従来の熱固定二軸延伸ポリエステルボトルでは
、例えば85℃の温度の充填では良いが87℃の充填で
はもはや一部変形が生じていたのが、本発明の処理を行
うことにより、92℃の温度の充填でも全く変形を生じ
ない耐熱ボトルとなる等、可能な熱間充填温度を向上さ
せることが可能となる。内容物及び容器の殺菌を完全な
ものとするためには、充填温度の上昇が望まれるが、こ
の目的にも合致させることが可能となる。
(rl) Conventional heat-set biaxially stretched polyester bottles can be filled at a temperature of 85°C, but some deformation occurs when filled at a temperature of 87°C. It becomes possible to improve the possible hot filling temperature, such as creating a heat-resistant bottle that does not deform at all even when filled at a temperature of .degree. In order to completely sterilize the contents and container, it is desirable to increase the filling temperature, and it is possible to meet this purpose.

(ハ)熱固定工程における加熱及び冷却を急速に行うポ
リエステルボトルは、熱歪をもっているので熱間充填時
に変形を生じ易いことは前述した通りであるが、本処理
法を適用することにより、急速加熱及び急速冷却により
熱固定を行ったボトルでも、不斉変形が防止され、その
結果として間接的に熱固定ボトルの生産性を向上させる
ことが可能となる。
(c) As mentioned above, polyester bottles that undergo rapid heating and cooling in the heat setting process have thermal distortion and are therefore prone to deformation during hot filling. Even in bottles heat-set by heating and rapid cooling, asymmetric deformation is prevented, and as a result, it is possible to indirectly improve the productivity of heat-set bottles.

(好適実施態様の説明) 本発明において、熱可塑性ポリエステルとしては、エチ
レンテレフタレート単位を主体とする熱可塑性ポリエス
テル、例えばPETやグリコール成分としてヘキサヒド
ロキシリレングリコール等の他のグリコール類の少量を
含有せしめ或いは二塩基酸成分としてイソフタル酸やヘ
キサヒドロテレフタル酸等の他の二塩基酸成分の少量を
含有せしめた所謂改質PET等が使用される。これらの
ポリエステルは、単独でも或いはナイロン類、ポリカー
ボネート或いはボリアリレート等の他の樹脂とのブレン
ド物の形でも使用し得る。用いるポリエステルは、当然
のことながら、フィルムを形成するに足る分子量を有す
るべきである。
(Description of Preferred Embodiments) In the present invention, the thermoplastic polyester is a thermoplastic polyester mainly containing ethylene terephthalate units, such as PET, or containing a small amount of other glycols such as hexahydroxylylene glycol as a glycol component; So-called modified PET, which contains a small amount of other dibasic acid components such as isophthalic acid and hexahydroterephthalic acid, is used as the dibasic acid component. These polyesters can be used alone or in the form of blends with other resins such as nylons, polycarbonates or polyarylates. The polyester used should, of course, have a sufficient molecular weight to form a film.

延伸ブロー成形に使用する有底プリフォームは、それ自
体公知の任意の手法、例えば射出成形法、パイプ押出成
形法等で製造される。前者の方法では、溶融ポリエステ
ルを射出し、最終容器に対応する口頚部を備えた有底プ
リフォームを非晶質の状態で製造する。後者の方法はエ
チレン−ビニルアルコール共重合体等のガスバリヤ−性
中間樹脂層を備えた有底プリフォームの製造に有利な方
法であり、押出された非晶質パイプを切断し、一端部に
圧縮成形で口頚部を形成させると共に、他端部を閉じて
有底プリフォームとする。高温下での蓋との保合、密封
状態を良好に維持するために、容器口頚部となる部分の
みを予じめ熱結晶化させておくことができる。勿論、こ
の熱結晶化は以後の任意の段階で行うことあもできる。
The bottomed preform used in stretch blow molding is manufactured by any method known per se, such as injection molding method, pipe extrusion molding method, etc. In the former method, molten polyester is injected to produce a bottomed preform in an amorphous state with a mouth and neck corresponding to the final container. The latter method is advantageous for manufacturing bottomed preforms with a gas barrier intermediate resin layer such as ethylene-vinyl alcohol copolymer, and involves cutting the extruded amorphous pipe and compressing it at one end. The mouth and neck are formed by molding, and the other end is closed to form a bottomed preform. In order to maintain good retention and sealing with the lid at high temperatures, only the portion that will become the mouth and neck of the container can be thermally crystallized in advance. Of course, this thermal crystallization can also be carried out at any subsequent step.

このプリフォームの二軸延伸ブロー成形は、割金型(キ
ャビティ型)及びコア金型を使用して、それ自体公知の
条件で行われ、例えば延伸温度、一般に90乃至130
℃、特に100乃至120℃の温度に予備加熱されたプ
リフォームに対して、延伸棒によりプリフォームを軸方
向に引張延伸すると共に、流体吹込みにより周方向に膨
張延伸される。軸方向の延伸倍率は1.5乃至3.5倍
、特に2乃至3倍とし、周方向の延伸倍率は胴部で2乃
至5倍、特に3乃至4.5倍とするのがよい。
Biaxial stretch blow molding of this preform is performed using a split mold (cavity mold) and a core mold under conditions known per se, for example, the stretching temperature is generally 90 to 130
C., particularly at a temperature of 100 to 120.degree. C., the preform is stretched in the axial direction by a stretching rod, and expanded and stretched in the circumferential direction by blowing fluid. The stretching ratio in the axial direction is preferably 1.5 to 3.5 times, especially 2 to 3 times, and the stretching ratio in the circumferential direction is preferably 2 to 5 times, especially 3 to 4.5 times in the body.

ワンモールド法による熱固定の場合、割型内での熱処理
を、40℃乃至130℃特に9o乃至120℃の温度に
保持された金型と、120’O以上で210℃以下の温
度に加熱されたブロー用圧縮空気とを使用し、延伸ブロ
ーに引続き同−割型内で行うのが好ましい。この場合、
延伸ブローにより形成されたボトルは、その外面を上記
温度に保持された金型により拘束され、上記高温ガスと
の接触により熱固定が進行する。高温のブロー用圧縮空
気を印加する時間は一般に1乃至10秒、特に3乃至4
秒のオーダーである。次いで高温のブロー用圧縮空気を
冷却用気体と切換え、熱固定ボトルの急冷を行う。この
場合、金型が卜述した比較的低い温度にあり、しかも内
部に冷却用気体が吹込まれるため、急速に、ボトルの取
り出し温度迄の冷却が行われる。この冷却時間は一般に
1乃至10秒、特に3乃至4秒のオーダーである。
In the case of heat setting by the one-mold method, the heat treatment in the split mold is performed with the mold held at a temperature of 40°C to 130°C, especially 9°C to 120°C, and the mold heated to a temperature of 120°C or more and 210°C or less. It is preferable to use compressed air for blowing, and perform the stretching in the same split mold following the stretch blowing. in this case,
The outer surface of the bottle formed by stretch blowing is restrained by a mold maintained at the above temperature, and heat setting progresses through contact with the high temperature gas. The time for applying high temperature compressed air for blowing is generally 1 to 10 seconds, especially 3 to 4 seconds.
It is on the order of seconds. Next, the high-temperature blowing compressed air is switched to cooling gas to rapidly cool the heat-fixing bottle. In this case, since the mold is at the relatively low temperature mentioned above and the cooling gas is blown into the mold, the mold is rapidly cooled to the temperature at which the bottle is taken out. This cooling time is generally of the order of 1 to 10 seconds, especially 3 to 4 seconds.

割型内での熱処理を、95°C以上で230’O以下、
好適には120乃至210℃の温度に加熱された金型内
面に延伸ブローボトルを接触させて行なうこともできる
。この熱固定処理では、ブロー金型の温度が上記温度に
維持されており、ブローされたボトルが金型内面と接触
することにより、熱固定が進行する。この場合、肩部対
応型表面及び底部対応型表面は、肩部及び底部の分子配
向の程度が胴部のそれに比して小さいことから、胴部対
応型表面の温度よりも低く且つ白化温度よりも低い温度
でしかも可及的に高い温度に維持するのがよい。具体的
な加熱温度は肩部対応型表面で70乃至140°C1特
に100乃至130℃の範囲がよく、また底部対応型表
面で70乃至1400C1特に80乃至120°Cの範
囲がよい。
Heat treatment in the split mold at 95°C or higher and 230'O or lower,
It can also be carried out by bringing a stretched blow bottle into contact with the inner surface of the mold, preferably heated to a temperature of 120 to 210°C. In this heat setting process, the temperature of the blow mold is maintained at the above temperature, and heat setting progresses as the blown bottle comes into contact with the inner surface of the mold. In this case, the temperature of the shoulder-compatible surface and the bottom-compatible surface is lower than that of the torso-compatible surface and below the whitening temperature because the degree of molecular orientation at the shoulder and bottom is smaller than that at the torso. It is also good to maintain the temperature at a low temperature and as high as possible. The specific heating temperature is preferably in the range of 70 to 140° C., particularly 100 to 130° C., for the shoulder-compatible surface, and preferably in the range of 70 to 1400° C., especially 80 to 120° C., for the bottom-compatible surface.

この態様では、型全面が加熱されていることから、金型
内での熱固定に必要な時間は比較的短時間であってよく
、この時間は型表面温度によっても相違するが一般に1
乃至30秒間、特に3乃至15秒間程度の時間で十分で
ある。
In this embodiment, since the entire surface of the mold is heated, the time required for heat setting within the mold may be relatively short, and although this time varies depending on the mold surface temperature, it is generally 1.
A time of about 30 seconds, especially 3 to 15 seconds is sufficient.

熱固定終了後、ワンモールド法の場合は、金型の加熱を
中止し、金型内に冷媒を通し、或いは更に冷却用気体を
吹込んでボトルを取り出し温度に急冷する。
After heat setting is completed, in the case of the one-mold method, heating of the mold is stopped, a refrigerant is passed through the mold, or cooling gas is further blown into the mold, and the bottle is taken out and rapidly cooled to the temperature.

また、処理速度を向上させるためにツーモールド法を採
用する場合には、金型を開いて、熱固定されたボトルを
取出し、このボトルを冷却すると共に、その収縮を許容
させる。この工程は延伸及び熱固定後に、成形品中に残
留する応力を除去して、その形態及び寸法を安定化させ
るものであるが、この工程で熱固定後のボトルを冷却す
ることにより、型から取出されたボトルの過度の変形を
防止すると共に、該ボトルを二次金型(冷却金型)内で
の成形に適した温度に速やかにもたらすものである。取
出し後のボトルをこの段階で冷却する程度は、ボトル胴
部の温度が胴部対応型表面の温度よりも3乃至40°C
低い温度、特に5乃至30℃低い温度となるように冷却
するのがよい。
Furthermore, when a two-mold method is employed to improve processing speed, the mold is opened, the heat-set bottle is taken out, and the bottle is cooled and allowed to shrink. This process removes the stress remaining in the molded product after stretching and heat setting, and stabilizes its form and dimensions. This prevents the removed bottle from being excessively deformed and quickly brings the bottle to a temperature suitable for molding in a secondary mold (cooling mold). The degree to which the bottle is cooled at this stage after being taken out is such that the temperature of the bottle body is 3 to 40°C lower than the temperature of the body-compatible surface.
It is preferable to cool to a low temperature, especially to a temperature 5 to 30°C lower.

この冷却は、ブロー成形金型から二次金型へのボトルの
移送中に、室温の空気雰囲気に曝露し放冷によって行う
か、或いは取出したボトルに対して冷風を積極的に吹伺
けるかして行うことができる。
This cooling can be done by exposing the bottle to an air atmosphere at room temperature while transferring it from the blow molding mold to the secondary mold, or by actively blowing cold air onto the bottle after it has been taken out. You can do it by doing this.

次いで、冷却され且つ収縮されたボトルを二次金型中に
保持し、流体吹込み下に最終ボトル形状に成形する。こ
の最終吹込み成形に際しては、最終ボトル形状に保持す
るような成形乃至保形が行われれば十分であり、ボトル
のどの部分についても延伸の程度は可及的に低くするの
がよい。一般に、この成形は、体積膨張率が、冷却、収
縮後のボトルを基準として、30%以下、特に20%以
下となるように行うのが望ましい。即ち、体積膨張率が
上記範囲を越えると、二次成形時における延伸歪で最終
ボトルの熱収縮や熱変形が生じるようになる。この体積
膨張率は、ボトルの耐熱性の点からは可及的に小さいこ
とが望ましいが、これをあまり小さく取り過ぎると、二
・成金型中へのボトルの保持が困難となることから、体
積ms率を30%以下、特に20%以下とすることが望
ましい。
The cooled and deflated bottle is then held in a secondary mold and formed into the final bottle shape under fluid injection. In this final blow molding, it is sufficient to carry out molding or shape retention to maintain the final bottle shape, and it is preferable to keep the degree of stretching as low as possible in any part of the bottle. Generally, this molding is desirably carried out so that the volumetric expansion coefficient is 30% or less, particularly 20% or less, based on the bottle after cooling and shrinking. That is, if the volumetric expansion coefficient exceeds the above range, thermal shrinkage or thermal deformation of the final bottle will occur due to stretching strain during secondary molding. It is desirable that this volume expansion coefficient is as small as possible from the point of view of the heat resistance of the bottle, but if it is set too low, it will be difficult to hold the bottle in the mold, so the volume It is desirable that the ms rate be 30% or less, particularly 20% or less.

二次金型の型内面温度は、当然のことながら、−成金型
の型内面温度よりも低いものであり、−般に10乃至7
0℃の温度が適当である。
The mold inner surface temperature of the secondary mold is, of course, lower than the mold inner surface temperature of the forming mold, and is generally 10 to 7
A temperature of 0°C is suitable.

本発明によれば、このようにして熱固定され且つ冷却さ
れたボトルを、非拘束条件下、即ち内外どの部分でも圧
力差が実質上なく、収縮を自由に許容させ得る条件下で
、しかも熱間充填温度以上で120°C以下の温度の加
熱雰囲気中でアニーリングする。
According to the present invention, the bottle heat-fixed and cooled in this way is heated under unrestrained conditions, that is, under conditions where there is virtually no pressure difference between the inside and outside parts and where contraction is freely allowed. Annealing is performed in a heated atmosphere at a temperature above the filling temperature and below 120°C.

熱固定ポリエステルボトルに対する熱間充填の温度は、
内容物の種類や要求される殺菌の程度によっても相違す
るが一般に、60°C乃至100°Cの温度である。こ
の熱間充填温度との関連で、アニーリング温度も定まり
、その下限は熱間充填温度であるが、アニーリング温度
が熱間充填温度と等しい場合には、アニーリングに多少
長い時間を必要とすることから、熱間充填温度よりも少
なくとも5°C高い温度、好適には少なくとも10°C
高いアニーリング温度を用いるのが有利である。アニー
リングに必要な時間は、要するに熱歪による収縮を実質
上完全に行わせるようなものであればよく、一般に1分
乃至24時間、特に1乃至10分の時間から、実験的に
処理能率を考慮して最適の時間を選定する。
The temperature of hot filling for heat-set polyester bottles is:
Although it varies depending on the type of contents and the degree of sterilization required, the temperature is generally between 60°C and 100°C. In relation to this hot filling temperature, the annealing temperature is also determined, and its lower limit is the hot filling temperature, but if the annealing temperature is equal to the hot filling temperature, the annealing will require a somewhat longer time. , at least 5°C above the hot fill temperature, preferably at least 10°C.
It is advantageous to use high annealing temperatures. The time required for annealing should be such that shrinkage due to thermal strain is substantially completely performed, and generally ranges from 1 minute to 24 hours, particularly from 1 to 10 minutes, depending on the processing efficiency experimentally. and select the optimal time.

アニーリング処理は、熱風循環炉、赤外線加熱炉、熱水
槽、加熱水蒸槽等に、熱固定ボトルを供給することによ
り行われる。雰囲気としては、熱風等の乾燥雰囲気が処
理後のボトルの取扱いの点で有利であるが、水蒸気や熱
水噴霧を含む加熱雰囲気を使用して、収縮に必要な時間
を短縮させる手段を採用することもできる。
The annealing treatment is performed by supplying the heat-fixing bottle to a hot air circulation furnace, an infrared heating furnace, a hot water tank, a heated steam tank, or the like. As for the atmosphere, a dry atmosphere such as hot air is advantageous in terms of handling of the bottles after treatment, but a method of shortening the time required for shrinkage is to use a heated atmosphere containing water vapor or hot water spray. You can also do that.

(実 施 例) 実施例1゜ 固有粘度0.78のポリエチレンテレフタレートを射出
成形し、高さ162mm、胴部径30++nm、胴部平
均肉厚4mm、首部肉厚1.5 mmの有底プリフォー
ムを成形し、口部のみ熱風(240’O)による熱処理
を行い結晶化させた。
(Example) Example 1 A bottomed preform made of polyethylene terephthalate with an intrinsic viscosity of 0.78 and having a height of 162 mm, a body diameter of 30++ nm, an average body thickness of 4 mm, and a neck thickness of 1.5 mm. was molded, and only the mouth part was heat-treated with hot air (240'O) to crystallize it.

このプリフォームを延伸温度95℃〜100℃に加熱し
、加熱されたプリフォームをキャビティ表面温度100
℃、115℃、120℃及び130℃に加熱された、内
容積1,500ccのキャビティを有するブロー金型内
で二軸延伸ブローしてボトルを成形すると共に、該ブロ
ー金型内に4秒間保持して熱固定(ヒートセット)を行
った後6秒間70’C以下の温度で冷却してボトルをブ
ロー金型から取出し、内容積1.500ccのボトルを
得た。
This preform is heated to a stretching temperature of 95°C to 100°C, and the heated preform is heated to a cavity surface temperature of 100°C.
℃, 115 ℃, 120 ℃ and 130 ℃, the bottle is molded by biaxial stretch blowing in a blow mold having a cavity with an internal volume of 1,500 cc, and the bottle is held in the blow mold for 4 seconds. After performing heat setting, the bottle was cooled at a temperature of 70'C or less for 6 seconds, and the bottle was taken out from the blow mold to obtain a bottle with an internal volume of 1.500 cc.

ボトルの形状はウェスト部を有し、上部が円筒状で、下
部が縦に長い6ケの平坦面を有するものである。成形後
のボトルを70℃ 5分、90℃5分、115℃ 3分
及び130°03分の熱処理条件でアニーリングを施し
、これらのボトルに熱水をホットパックして密封し、そ
の外観の変形状態の評価結果を表1に示す。
The shape of the bottle has a waist, a cylindrical upper part, and six vertically long flat surfaces at the lower part. The bottles after molding were annealed under heat treatment conditions of 70°C for 5 minutes, 90°C for 5 minutes, 115°C for 3 minutes, and 130°C for 3 minutes, and these bottles were hot-packed with hot water and sealed to change their appearance. Table 1 shows the condition evaluation results.

実施例2゜ 実施例1で使用したプリフォームを延伸温度95℃〜1
00℃に加熱し、加熱されたプリフォームをキャビティ
表面温度が160’Oに加熱された、内容積1.Ei5
0ccのキャビティを有するブロー金型(−成金型)内
で二軸延伸ブローして中間成形品を成形すると共に、該
−成金型内に4秒間保持して熱固定(ヒートセット)を
行った後中間成形品をブロー金型から取出し、この中間
成形品を自然放冷により約30℃冷却させ、約20%収
縮させてキャビティ表面が60℃に保持され一次金型よ
り内容積の小さい二次金型内で最終形状の容器にブロー
成形して実施例1と同形状の内容積1,500ccのボ
トルを得た。
Example 2゜The preform used in Example 1 was stretched at a temperature of 95°C to 1
Heating the heated preform to 00°C and heating the heated preform to a cavity surface temperature of 160'O, the inner volume 1. Ei5
After molding the intermediate molded product by biaxial stretching blowing in a blow mold (-molding mold) having a cavity of 0 cc, and performing heat setting by holding it in the mold for 4 seconds. The intermediate molded product is taken out from the blow mold, and the intermediate molded product is allowed to cool to about 30°C by natural cooling, and then shrinks by about 20% to form a secondary mold whose cavity surface is maintained at 60°C and whose inner volume is smaller than that of the primary mold. A bottle having the same shape as Example 1 and an internal volume of 1,500 cc was obtained by blow molding into a container in the final shape in a mold.

成形後のボトルを90℃ 3分、95°03分の熱処理
条件でアニーリングを施し、実施例1と同様の評価を行
ない、その結果を表2に示す。
The molded bottles were annealed under heat treatment conditions of 90°C for 3 minutes and 95°C for 3 minutes, and evaluated in the same manner as in Example 1. The results are shown in Table 2.

実施例3゜ 実施例1で使用したプリフォームを延伸温度95℃〜1
00℃に加熱し、加熱されたプリフォームをキャビティ
表面温度70℃及び100℃に加熱された、内容積1.
500ccのキャビティを有するブロー金型内で180
℃に加熱されたホットエアを吹き込んで二軸延伸ブロー
してボトルを成形すると共に、該金型内に4秒間保持し
て熱固定(ヒートセット)を行った後ホットエアの吹き
込みを停止し、25℃のエアを約5秒間吹き込んで冷却
してボトルをブロー金型から取り出し実施例1と同形状
の内容積1.500ccのボトルを得た。
Example 3゜The preform used in Example 1 was stretched at a temperature of 95°C to 1
Heating the preform to 00°C and heating the heated preform to a cavity surface temperature of 70°C and 100°C, the inner volume 1.
180 in a blow mold with a 500cc cavity
Blow hot air heated to ℃ to form a bottle by biaxial stretching blowing, hold it in the mold for 4 seconds to perform heat setting, then stop blowing hot air, The bottle was cooled by blowing air into it for about 5 seconds, and the bottle was taken out from the blow mold to obtain a bottle having the same shape as in Example 1 and having an internal volume of 1.500 cc.

成形後のボトルを90℃ 3分の熱処理条件でアニーリ
ングを施し、実施例1と同様の評価を行ない、その結果
を表3に示す。
The molded bottles were annealed under heat treatment conditions of 90° C. for 3 minutes and evaluated in the same manner as in Example 1. The results are shown in Table 3.

Claims (3)

【特許請求の範囲】[Claims] (1)熱可塑性ポリエステルを主体として構成され且つ
、二軸方向に延伸ブロー成形することにより形成された
単層又は多層のボトルを、ボトル外壁面が割型により拘
束された条件下に熱処理して、少なくとも胴部のポリエ
ステルの結晶化度が25%以上となるように配向結晶化
させ、次いで取り出し温度にボトルを急冷する工程と、 熱処理ボトルを、非拘束条件下に熱間充填温度以上で1
20℃以下の温度の加熱雰囲気中でアニーリングする工
程とから成ることを特徴とする熱間充填用ポリエステル
ボトルの製法。
(1) A single-layer or multi-layer bottle mainly composed of thermoplastic polyester and formed by biaxial stretch blow molding is heat-treated under conditions where the outer wall of the bottle is restrained by a split mold. , a step of oriented crystallization so that the crystallinity of the polyester in the body is at least 25%, and then rapidly cooling the bottle to a take-out temperature;
A method for producing a polyester bottle for hot filling, comprising the step of annealing in a heated atmosphere at a temperature of 20° C. or less.
(2)割型内での熱処理を、95℃以上で210℃以下
の温度に加熱された金型内面に延伸ブローボトルを接触
させて行なう特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the heat treatment in the split mold is carried out by bringing a stretched blow bottle into contact with the inner surface of the mold heated to a temperature of 95° C. or higher and 210° C. or lower.
(3)割型内での熱処理を、40℃乃至100℃の温度
に保持された金型と、120℃以上で210℃以下の温
度に加熱されたブロー用圧縮空気とを使用し、延伸ブロ
ーに引続き同一割型内で行なう特許請求の範囲第1項記
載の方法。
(3) Heat treatment in the split mold is performed using a mold maintained at a temperature of 40°C to 100°C and compressed air for blowing heated to a temperature of 120°C or higher and 210°C or lower. The method according to claim 1, wherein the method is carried out in the same split mold.
JP61201827A 1986-08-29 1986-08-29 Manufacture of polyester bottle for hot filling Granted JPS6357220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201827A JPS6357220A (en) 1986-08-29 1986-08-29 Manufacture of polyester bottle for hot filling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201827A JPS6357220A (en) 1986-08-29 1986-08-29 Manufacture of polyester bottle for hot filling

Publications (2)

Publication Number Publication Date
JPS6357220A true JPS6357220A (en) 1988-03-11
JPH0446738B2 JPH0446738B2 (en) 1992-07-30

Family

ID=16447552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201827A Granted JPS6357220A (en) 1986-08-29 1986-08-29 Manufacture of polyester bottle for hot filling

Country Status (1)

Country Link
JP (1) JPS6357220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094511A (en) * 2001-09-25 2003-04-03 Frontier:Kk Method for molding biaxially stretched blow molded wide-mouthed container having heat resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094511A (en) * 2001-09-25 2003-04-03 Frontier:Kk Method for molding biaxially stretched blow molded wide-mouthed container having heat resistance

Also Published As

Publication number Publication date
JPH0446738B2 (en) 1992-07-30

Similar Documents

Publication Publication Date Title
JP3612775B2 (en) Heat-resistant pressure-resistant self-supporting container and manufacturing method thereof
JP3047732B2 (en) Manufacturing method of biaxially stretched blow container
EP0155763B1 (en) Method of blow-moulding a biaxially oriented polyethylene terephthalate resin bottle-shaped container
US5562960A (en) Double-blown PET bottle shaped container having essentially no residual stress and superior heat resistance
JPS625781B2 (en)
US5145632A (en) Process for the manufacture of pet containers designed to be filled with a hot liquid
US5445784A (en) Method of blow-molding biaxially-oriented polyethylene terephthalate resin bottle-shaped container
JP2534482B2 (en) Method for producing polyethylene terephthalate resin bottle
JPH01157828A (en) Heat-setting polyester orientation molding container
JPH0443498B2 (en)
JPS63185620A (en) Production of thermally set polyester stretched molded container
JPS6357220A (en) Manufacture of polyester bottle for hot filling
JPH0622860B2 (en) Biaxial stretching blow molding method
JP3794305B2 (en) Manufacturing method of heat-resistant bottle
WO2004096525A1 (en) Method of manufacturing heat-resisting polyester bottles and the products therefrom
JP3986667B2 (en) Polyethylene terephthalate resin bottle manufacturing method
JP2004331104A (en) Heat-resistant wide-mouthed synthetic resin container, and manufacturing method and manufacturing apparatus for the same
JP2757732B2 (en) Polyester container having a body part partially different in crystallinity and method for producing the same
JP2003103607A (en) Bottom structure of heat-resistant bottle
JPS63202425A (en) Manufacture of biaxially stretched polyester bottle
JP2002067129A (en) Biaxially stretched polyester bottle and its manufacturing method
JPH09216275A (en) Biaxial stretching blow molding method
JPS6387219A (en) Manufacture of biaxially oriented polyester vessel
EP0515702B1 (en) Method of blow-moulding a biaxially oriented polyethylene terephthalate resin bottle-shaped container
JPH01133716A (en) Manufacture of biaxial-oriented and heat-set vessel