JP2534482B2 - Method for producing polyethylene terephthalate resin bottle - Google Patents

Method for producing polyethylene terephthalate resin bottle

Info

Publication number
JP2534482B2
JP2534482B2 JP61267761A JP26776186A JP2534482B2 JP 2534482 B2 JP2534482 B2 JP 2534482B2 JP 61267761 A JP61267761 A JP 61267761A JP 26776186 A JP26776186 A JP 26776186A JP 2534482 B2 JP2534482 B2 JP 2534482B2
Authority
JP
Japan
Prior art keywords
bottle
primary
temperature
final product
polyethylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61267761A
Other languages
Japanese (ja)
Other versions
JPS63122516A (en
Inventor
克正 冨沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAICAN CO.,LTD.
Original Assignee
HOKKAICAN CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAICAN CO.,LTD. filed Critical HOKKAICAN CO.,LTD.
Priority to JP61267761A priority Critical patent/JP2534482B2/en
Publication of JPS63122516A publication Critical patent/JPS63122516A/en
Application granted granted Critical
Publication of JP2534482B2 publication Critical patent/JP2534482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6472Heating or cooling preforms, parisons or blown articles in several stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6418Heating of preforms
    • B29C49/642Heating of preforms and shrinking of the preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0861Other specified values, e.g. values or ranges
    • B29C2949/0862Crystallinity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6604Thermal conditioning of the blown article
    • B29C49/6605Heating the article, e.g. for hot fill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温時の耐圧性に優れたポリエチレンテレフ
タレート樹脂製ボトルの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a polyethylene terephthalate resin bottle having excellent pressure resistance at high temperatures.

(従来の技術) ポリエチレンテレフタレート樹脂(以下PETと称す)
材から成るボトルはその優れた諸物性により広く食品用
容器として、特に近年は果汁飲料等のホツトパック飲料
用容器として用いられており、その優れた物性はPETが
2軸延伸により配向結晶化する事で得られる。配向結晶
化の付与は延伸吹込成形(ブロー成形)によって行う
が、通常ブロー成形においては、製品の口部はブロー成
形時に把持部となるため全く延伸されておらず、また底
部中央部付近も延伸ロッドが接触するため、全く延伸さ
れない。
(Prior Art) Polyethylene terephthalate resin (hereinafter referred to as PET)
Due to their excellent physical properties, bottles made of wood are widely used as food containers, especially in recent years as containers for hot-pack beverages such as fruit juice drinks, and their excellent physical properties are that PET is oriented and crystallized by biaxial stretching. Can be obtained at. Orientation crystallization is given by stretch blow molding (blow molding), but in blow molding, the mouth of the product is not stretched at all because it serves as a grip during blow molding, and the center of the bottom is also stretched. There is no stretching due to the contact of the rods.

そのため、これらの未延伸部は非晶状態のまま製品に
残る。また非晶状態のPETはガラス転移温度(約70℃)
以上で軟化するので、通常加熱充填温度が80℃ないし90
℃で行うホットパックではPETボトルは充分な強度に欠
ける。そこで、PETボトルの耐熱性を向上させる方法と
して特公昭49−3073号には、PETボトルを熱処理して結
晶化度を高めることが開示されている。また特開昭51−
53566号にはボトルを加温された金型内に保持して行な
う具体的製造方法が開示されている。これらに開示され
た技術は、いずれもボトルは一ケずつ金型内に保持され
熱処理時に変形しないように、内部を圧縮空気等で加圧
しボトルを金型内壁に押しつけた状態で、金型を加温す
る等の手段により熱処理する方法であるが、この方法で
はボトル取り出しのためボトル内の圧力を解放すると、
ボトルが熱処理温度に依然としてある場合は熱変形を起
すという問題があり、これを防止するために圧力解放以
前にボトルを冷却するか又は再度別の金型に移しかえて
再賦形する必要がある。そのため実際に上記した金型内
熱処理を行なおうとすると製造時間が長くなり生産性が
悪く、生産性を高めるためにはサイクルに見合うだけの
多数の加熱処理用金型を必要とするため大変なコスト高
となり、実用的でないという欠点を有していた。
Therefore, these unstretched parts remain in the product in an amorphous state. Amorphous PET has a glass transition temperature (about 70 ° C)
Since it softens by the above, the heating and filling temperature is usually 80 ℃ to 90 ℃.
PET bottles lack sufficient strength when hot packed at ℃. Therefore, as a method for improving the heat resistance of PET bottles, Japanese Patent Publication No. 49-3073 discloses heat treatment of PET bottles to increase the crystallinity. In addition, JP-A-51-
No. 53566 discloses a specific manufacturing method in which a bottle is held in a heated mold. In all of the techniques disclosed in these, the bottle is held in the mold one by one so that it does not deform during heat treatment, the inside is pressurized with compressed air etc. and the bottle is pressed against the inner wall of the mold. It is a method of heat treatment by means such as heating, but in this method when the pressure in the bottle is released to take out the bottle,
If the bottle is still at the heat treatment temperature, there is a problem of causing thermal deformation, and to prevent this, it is necessary to cool the bottle before pressure release or transfer it again to another mold and reshape it. . Therefore, if the above-mentioned heat treatment in the mold is actually attempted, the manufacturing time becomes long and the productivity is poor, and in order to improve the productivity, a large number of heat treatment molds commensurate with the cycle are required, which is very difficult. It has the drawback of high cost and impracticality.

この改良策として、プリフォームをブロー成形して得
られる1次ボトルを熱風オーブン内で熱処理し結晶化を
進め、次いで最終形状のボトルとする方法が提案されて
いる。かかる方法においてオーブン処理の目的は1次ボ
トルを自由収縮させ残留応力を解放させることと結晶化
度を増大させることにある。1次ボトルはプリフォーム
段階ですでに白化結晶化された口頚部以外は延伸配向さ
れるべきものであるが、ボトル底部中央部近傍はブロー
成形の際に延伸ロッドによって押えられるため、ほとん
ど延伸されておらず肉厚の非晶部が残存している。この
ような1次ボトルを熱風オーブン内で熱処理すると、ま
ず肉薄に延伸された部分つまりボトル底部中央部近傍の
肉厚の非晶部以外のボトル胴部、肩部等は直ちに収縮す
るとともに、結晶化度が増大しオーブン処理の目的は比
較的短時間で達成されるのであるが、ボトル底部中央部
近傍の肉厚の非晶部は肉が厚いためなかなか結晶化せ
ず、結局トータルのオーブン諸理時間はこの肉厚の非晶
部の白化結晶化時間に合わせて長くしなくてはならない
ので非常に効率が悪いという問題点を有していた。
As an improvement measure, a method has been proposed in which a primary bottle obtained by blow-molding a preform is heat-treated in a hot air oven to promote crystallization, and then a bottle having a final shape is obtained. The purpose of the oven treatment in such a method is to free shrink the primary bottle to release residual stress and to increase the crystallinity. The primary bottle should be stretched and oriented except for the neck and neck which has already been whitened and crystallized in the preforming stage, but the vicinity of the center of the bottom of the bottle is almost stretched because it is pressed by the stretching rod during blow molding. The thick amorphous part remains. When such a primary bottle is heat-treated in a hot air oven, first, a thin body portion, that is, a bottle body portion other than a thick amorphous portion near the central portion of the bottom of the bottle, a shoulder portion, and the like immediately contract, and a crystal is formed. Although the degree of crystallization increases and the purpose of oven treatment is achieved in a relatively short time, the thick amorphous portion near the center of the bottom of the bottle does not crystallize easily due to the thick meat, and the total oven The processing time has to be lengthened in accordance with the whitening crystallization time of this thick amorphous portion, so that there is a problem in that the efficiency is very poor.

(発明が解決しようとする問題点) 本発明はかかる従来の問題を解消し、特にボトルの底
部の肉厚部を確実に結晶化させた優れた耐熱性と強度を
有するポリエチレンテレフタレート樹脂製ボトルの製造
方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention solves the above-described conventional problems, and in particular, a polyethylene terephthalate resin bottle having excellent heat resistance and strength in which the thick portion at the bottom of the bottle is reliably crystallized. It is intended to provide a manufacturing method.

(問題点を解決するための手段) 本発明は、前記問題点を解消するためになされたもの
であって、ポリエチレンテレフタレート樹脂製のプリフ
ォームを延伸温度に加熱し、次いで1次ブロー成形を行
って形状が最終製品よりも大きい形状の1次ボトルを形
成し、続いて1次ボトルの底部の未延伸或いは低延伸の
肉厚部を温度150℃以上に予備加熱し、更に該1次ボト
ル全体を温度150℃以上の雰囲気中で熱処理して結晶化
度を増大させるとともに、自由収縮させて形状が最終製
品よりも小さい形状の2次ボトルを形成し、次いで最終
製品の形状をした金型内で2次ブロー成形を行って最終
製品形状のボトルに形成することを特徴とする。
(Means for Solving Problems) The present invention has been made to solve the above problems, in which a polyethylene terephthalate resin preform is heated to a stretching temperature, and then primary blow molding is performed. To form a primary bottle with a larger shape than the final product, and then preheat the unstretched or low-stretched thick part at the bottom of the primary bottle to a temperature of 150 ° C or higher, and then the entire primary bottle. Is heat-treated in an atmosphere at a temperature of 150 ° C or higher to increase the crystallinity and shrink freely to form a secondary bottle whose shape is smaller than that of the final product. The second blow molding is performed to form a bottle having a final product shape.

以下本発明について更に詳しく説明する。 The present invention will be described in more detail below.

1次ボトルの成形を、最終製品ボトルよりも大きく成
形する目的はボトル全体をなるべく厚さむらのないよう
に均一に延伸することであり、かくすることによりボト
ルの口部や底部にどうしても残る肉厚の未延伸非晶部分
の量をできるだけ少なくした肉薄の均一延伸ボトルを得
ることができる。
The purpose of molding the primary bottle to be larger than the final product bottle is to stretch the entire bottle uniformly so that the thickness of the entire bottle is as uniform as possible, and by doing so, the meat that remains at the mouth and bottom of the bottle is inevitable. It is possible to obtain a thin uniformly stretched bottle in which the amount of the thick unstretched amorphous portion is reduced as much as possible.

上記したような均一延伸ボトルは、1次ボトルの成形
を最終製品ボトルよりも大きく成形する本製造方法によ
って容器に得られるものである。均一延伸ボトルを得る
ためには延伸倍率を高くすることが重要であるが、プリ
フォームから直接最終製品ボトルとする通常の成形方法
ではプリフォームの寸法を小さくして延伸倍率を高める
ことが行なわれている。しかし、そのようにプリフォー
ムの寸法を小さくすることはプリフォームの重量が一定
ということから必然的にプリフォームの肉厚を厚くする
ことになり、プリフォームの肉厚には限界があるので、
本製造方法によった場合のような均一延伸ボトルを得る
ことは困難である。
The uniformly stretched bottle as described above is obtained as a container by the present manufacturing method in which the primary bottle is molded to be larger than the final product bottle. In order to obtain a uniformly stretched bottle, it is important to increase the draw ratio, but in the usual molding method in which the preform is directly made into the final product bottle, the size of the preform is reduced to increase the draw ratio. ing. However, reducing the dimensions of the preform inevitably increases the wall thickness of the preform because the weight of the preform is constant, and there is a limit to the wall thickness of the preform.
It is difficult to obtain a uniformly stretched bottle as in the case of the present production method.

1次ボトルの成形は延伸温度に加熱したプリフォーム
を金型内にてブローしても良く、金型を使用せずにブロ
ーする、いわゆるフリーブローした時に生ずるボトルの
ような単純なものを1次ボトルとしても良い。後者の場
合には金型コストが半減できるとともにプリフォームは
金型の制約なく自由に延伸されるため金型を用いたとき
よりも均一延伸が比較的容易にかけられるため、ボトル
の底部にどうしても残る肉厚の未延伸非晶部分の量をで
きるだけ少なくした肉薄の均一延伸ボトルを得易いとい
う長所を有している。しかしフリーブローでボトルを形
成する場合は、成形時にボトルが金型で冷却されないた
め、金型を用いて成形する場合と比べてブロー時間を長
くとる必要があり成形サイクルがややダウンする欠点が
ある。またフリーブローでボトルを形成する場合は、ボ
トル形状はプリフォームの形状、プリフォームの加熱温
度、その温度分布、ブロー成形圧力等の条件の変動によ
って変化するので、それらの条件選定によっては1次ボ
トルが大きすぎて、熱処理工程でも収縮しきれず最終成
形金型に入らないボトルとなったり、逆に小さすぎて最
終成形時に破裂してしまう等の問題を引き起す場合もあ
る。特に最終形状が凹凸の多い複雑な形状の場合は、1
次ボトルの段階でかなり厳密な形状管理をしておく必要
があり、金型を使用したほうが好ましいことがある。
For the molding of the primary bottle, a preform heated to the stretching temperature may be blown in the mold, or a simple one such as a bottle produced when so-called free-blowing is performed without using the mold. It can be used as the next bottle. In the latter case, the die cost can be halved and the preform can be stretched freely without restriction of the die, so uniform stretching can be performed relatively easily than when using a die, so it will inevitably remain at the bottom of the bottle. It has an advantage that it is easy to obtain a thin uniformly stretched bottle in which the amount of the unstretched amorphous portion having a large wall thickness is reduced as much as possible. However, in the case of forming a bottle by free blow, the bottle is not cooled by the mold during molding, so it is necessary to take a longer blow time than in the case of molding using a mold, and the molding cycle is somewhat down. . When forming a bottle by free-blowing, the shape of the bottle changes depending on changes in conditions such as the preform shape, the preform heating temperature, its temperature distribution, and blow molding pressure. In some cases, the bottle is too large to shrink in the heat treatment step and cannot fit in the final molding die, or conversely, it is too small to burst during final molding. 1 if the final shape is a complicated shape with many irregularities
It is necessary to perform strict shape control at the stage of the next bottle, and it may be preferable to use a mold.

次に本発明においては、1次ボトルに熱処理を施す
が、熱処理の目的は、1次ボトルの結晶化度を増大せし
めることと、その際に発生する結晶化による自律的収縮
変形によって形成された2次ボトルを最終ボトル成形金
型に収容可能で、かつ後に続く最終ブロー成形で更に延
伸配向がかけられるような大きさまでに縮小することに
ある。1次ボトルに存在していた未延伸非晶部は、この
熱処理工程で結晶化が進み白化し、延伸配向によって結
晶化していた部分の結晶化度はさらに増大する。熱処理
後の2次ボトルは、形状が最終容器よりも小さく、また
耐熱性を保持する必要からボトル全体の結晶化度を上昇
させたものとすることが重要である。すなわち引続く2
次ブロー成形による最終製品への成形時には結晶化度の
上昇がほとんど期待出来ないためである。この結晶化度
の目安はボトルのどの部分をとってみても少なくとも30
%以上、好ましくは40%以上とすることが必要である。
結晶化度30%以下の部分を有するボトルでは高温時の耐
圧性が不十分であり殺菌時の内圧上昇による膨張変形が
大きい。本発明においては、1次ボトルの底部の未延伸
或いは低延伸の肉厚部を輻射加熱等の方法によって、あ
らかじめ温度150℃以上に予備加熱した後ボトル全体を
熱風オーブンの如き温度150℃以上の雰囲気に入れると
いう2段階の加熱処理を行なうが、かくすることにより
従来の金型内にボトルを保持する熱処理の如く、ボトル
内部を加圧状態に保持したり、金型を加温したりする等
の複雑な装置は一切必要なく、サイクルを犠牲にするこ
となく熱処理が可能であり更にオーブン中で熱処理する
だけという方法に比べ、加熱処理時間を短縮することが
でき、加熱設備コスト、スペース、生産性等の点でより
優れたものとなる。
Next, in the present invention, the primary bottle is subjected to heat treatment. The purpose of the heat treatment is to increase the crystallinity of the primary bottle and to form by self-contracting deformation due to crystallization that occurs at that time. The secondary bottle can be accommodated in a final bottle molding die and reduced to a size such that it can be stretch-oriented in the subsequent final blow molding. The unstretched amorphous portion existing in the primary bottle undergoes crystallization in this heat treatment step and is whitened, and the crystallinity of the portion crystallized by the stretched orientation is further increased. It is important that the shape of the secondary bottle after heat treatment is smaller than that of the final container and that the crystallinity of the entire bottle is increased because it is necessary to maintain heat resistance. Ie 2
This is because an increase in crystallinity can hardly be expected when forming the final product by the subsequent blow molding. This crystallinity index is at least 30 for any part of the bottle.
% Or more, preferably 40% or more.
A bottle having a portion with a crystallinity of 30% or less has insufficient pressure resistance at high temperature, and is greatly expanded and deformed due to an increase in internal pressure during sterilization. In the present invention, the unstretched or low-stretched thick part of the bottom of the primary bottle is preheated to a temperature of 150 ° C or higher by a method such as radiant heating, and then the entire bottle is heated to a temperature of 150 ° C or higher such as in a hot air oven. A two-step heat treatment of putting in an atmosphere is carried out. By doing so, the inside of the bottle is kept under pressure or the mold is heated like the conventional heat treatment for holding the bottle in the mold. There is no need for complicated equipment such as, heat treatment can be performed without sacrificing the cycle, and heat treatment time can be shortened compared to the method of only heat treatment in an oven, heating equipment cost, space, It becomes more excellent in terms of productivity and the like.

PETを加熱する手段としては熱風のほか赤外線に代表
される輻射加熱が一般的であるが、比較的透明な非晶PE
Tを加熱する手段としては、赤外線は内部まで浸透する
ため効率が良く、表面からの熱伝導だけにたよる熱風方
式に比べてきわめて有利であるため本発明の熱処理の底
部の予備加熱には好適である。しかし赤外線は、ヒータ
ーと被加熱体との距離及びヒーターと被加熱体面との角
度により与える熱量が変わる。よって立体形状を有する
ボトル全体を均一に加熱する手段としては不向きであ
る。特に本発明の方式の熱処理は1次ボトルを収縮さ
せ、結晶化度を高めた後の2次ブロー(最終製品用)の
ための加熱をも兼ねるため、熱処理後の1次のボトル全
体は均一に加熱されねばならないので、底部の予備加熱
後の1次ボトル全体の加熱手段としてはオーブン等によ
る熱風方式が特に好適である。
As a means for heating PET, radiant heating represented by infrared rays is generally used in addition to hot air, but relatively transparent amorphous PE.
As a means for heating T, infrared rays are highly efficient because they penetrate to the inside, and it is extremely advantageous as compared with the hot air method relying only on heat conduction from the surface, and is therefore suitable for preheating the bottom of the heat treatment of the present invention. Is. However, the amount of heat given to infrared rays changes depending on the distance between the heater and the object to be heated and the angle between the heater and the surface of the object to be heated. Therefore, it is not suitable as a means for uniformly heating the entire three-dimensional bottle. In particular, the heat treatment of the method of the present invention also serves to heat the secondary bottle (for the final product) after shrinking the primary bottle and increasing the crystallinity, so the entire primary bottle after the heat treatment is uniform. Since it has to be heated to 0.degree. C., a hot air system such as an oven is particularly suitable as a heating means for the entire primary bottle after preheating the bottom portion.

また底部の予備加熱は、温度150℃以上にする必要が
あり、それ以下では未延伸或いは低延伸の肉厚部の結晶
化を短時間に充分に進めることができず、更にその後の
熱風オーブンの雰囲気温度も同様の理由により温度150
℃以上に保持する必要がある。
Further, the preheating of the bottom portion needs to be performed at a temperature of 150 ° C. or higher, and if the temperature is lower than that, crystallization of the unstretched or low-stretched thick portion cannot be sufficiently advanced in a short time, and further hot air oven The ambient temperature is 150 for the same reason.
Must be kept above ℃.

オーブン中での熱処理により得られた上記2次ボトル
は、最終成形金型内に導かれ、目的とする最終製品形状
のボトルへと2次ブロー成形される。この2次ブロー成
形はオーブンの余熱を利用して行なうのが経済的であ
り、上記2次ボトルは、冷却されることなく最終成形金
型内に導かれるのが好ましい。熱処理し収縮した2次ボ
トルは、形状が最終製品の形状よりも小さく、かつボト
ル全体の結晶化度がどの部分をとってみても30%以上を
有する優れた結晶化度分布を有しており、更に最終製品
形状に強制的に延伸されるため、高度の緊張状態がボト
ル壁の延伸されたPET分子に与えられ高温時の高内圧に
抗し得る優れた物性を有する最終ボトルへと賦形され
る。
The above-mentioned secondary bottle obtained by heat treatment in an oven is introduced into a final molding die, and secondarily blow-molded into a bottle having an intended final product shape. It is economical to carry out the secondary blow molding by utilizing the residual heat of the oven, and it is preferable that the secondary bottle is introduced into the final molding die without being cooled. The heat-treated and shrunk secondary bottle has a smaller shape than the shape of the final product, and has an excellent crystallinity distribution with the crystallinity of the entire bottle being 30% or more in any part. Furthermore, since it is forcibly stretched to the final product shape, a high degree of tension is given to the stretched PET molecules on the bottle wall, and it is shaped into a final bottle with excellent physical properties that can withstand high internal pressure at high temperatures. To be done.

かくするときは、特に1次ボトルの熱処理において、
底部の未延伸或いは低延伸肉厚部を温度150℃以上に予
備加熱した後1次ボトル全体を熱風オーブン中で処理す
る方法を採ったため、短時間の可燃で熱処理を完了させ
ることができ製造のための設備を小さくすることがで
き、スペース、コスト、熱エネルギーの面で更に生産性
の面ですぐれたものとなり、更に本発明によって得られ
タポリエチレンテレフタレート樹脂製ボトルは上述の如
くボトル全体の結晶化度が高く、非晶部分が全く存在し
ない構成なので、従来のポリエチレンテレフタレート樹
脂製ボトルと比べて、高温時特にガラス転移温度以上の
温度での機械的強度がボトル全体にわたって優れてお
り、充填後に加熱殺菌処理することが必要な飲料用容器
として極めて有用なものとなる。
When doing so, especially in the heat treatment of the primary bottle,
The pre-heating of the unstretched or low-stretched thick part at the bottom to a temperature of 150 ° C or higher, and the treatment of the entire primary bottle in a hot-air oven has been adopted, so the heat treatment can be completed in a short period of combustibility. The equipment can be made smaller, and the productivity in terms of space, cost, and heat energy is further improved, and the polyethylene terephthalate resin bottle obtained by the present invention is a crystal of the entire bottle as described above. Since it has a high degree of chemical conversion and has no amorphous part at all, it has excellent mechanical strength over the entire bottle at high temperatures, especially at temperatures above the glass transition temperature, compared to conventional polyethylene terephthalate resin bottles. It is extremely useful as a beverage container that needs to be heat-sterilized.

(実施例) ポリエチレンテレフタレート樹脂(極限粘度0.75)を
使用し、第1図(A)示のように重量55g、全長153mm、
外径26mm、肉厚4.2mmの有底筒状のプリフォーム(1)
を射出成形により作成した。次に第1図(B)示のよう
にこのプリフォーム(1)の口部(1a)に熱処理を施し
白化結晶化せしめた。
(Example) A polyethylene terephthalate resin (intrinsic viscosity 0.75) was used, and as shown in FIG. 1 (A), the weight was 55 g and the total length was 153 mm.
Cylindrical preform with a bottom and an outer diameter of 26 mm and a wall thickness of 4.2 mm (1)
Was prepared by injection molding. Next, as shown in FIG. 1 (B), the mouth portion (1a) of the preform (1) was heat-treated to be whitened and crystallized.

このプリフォーム(1)を赤外線ヒーターにて外面よ
り加熱した後、1次ブロー金型に導き第1図(C)示の
ように最終製品(仮想線)の形状よりも大きな形状(全
長330mm、外径100mm)の1次ボトル(2)を形成した。
1次ブローされる直前のプリフォーム外面温度は95℃、
1次ブロー金型キャビティ面の温度は40℃であった。
After heating this preform (1) from the outer surface with an infrared heater, it is introduced into a primary blow mold and, as shown in FIG. 1 (C), a shape larger than the shape of the final product (imaginary line) (total length 330 mm, A primary bottle (2) with an outer diameter of 100 mm) was formed.
Immediately before the primary blow, the preform outer surface temperature is 95 ℃,
The temperature of the cavity surface of the primary blow mold was 40 ° C.

この1次ボトル(2)の底部(2a)中央部の直径約30
mmの範囲はほとんど未延伸であり肉厚約3.5mmの透明の
非晶肉厚部(2b)として残存していた。続いて第1図
(D)示のように1次ボトル(2)の底部(2a)中央部
の非晶肉厚部(2b)に遮蔽板(3)を備える赤外線熱源
(4)の遠赤外線を集中的に照射して、該非晶肉厚部を
60秒間加熱後、温度200℃の熱風オーブン中に移して熱
処理したところ30秒で底部(2a)の非晶肉厚部の白化結
晶化及び必要な熱処理はほぼ完了した。底部(2a)中央
部の非晶肉厚部(2b)の白化結晶化は、60秒の赤外線加
熱ではまだ終了しておらず徐々に進行している状態にあ
ったが、引続く30秒間の温度200℃の熱風オーブン処理
の間にほぼ終了し、引続き自由収縮させて第1図(E)
示のように最終製品(仮想線)の形状よりも小さな形状
の2次ボトル(5)を形成した。そして形成された2次
ボトル(5)を冷却することなく直ちに最終ブロー金型
に導き2次ブロー成形を行なって第1図(F)示のよう
に全高310mm、外径91mmであって結晶化した底部(6a)
を有する成形ボトル(6)を得た。2次ブロー直前の2
次ボトル(5)の温度はオーブンから金型へ移動する間
に僅かに放熱するため約180℃であった。金型はボトル
の熱で温度が上昇するのを防止するため水冷により40℃
に温調した。
The diameter of the center of the bottom (2a) of this primary bottle (2) is about 30.
The range of mm was almost unstretched and remained as a transparent amorphous thick part (2b) with a wall thickness of about 3.5 mm. Then, as shown in FIG. 1 (D), far infrared rays of an infrared heat source (4) provided with a shield plate (3) in the amorphous thick part (2b) at the bottom (2a) center of the primary bottle (2). Irradiating the
After heating for 60 seconds, it was transferred to a hot air oven at a temperature of 200 ° C. for heat treatment, and in 30 seconds, the whitening crystallization of the amorphous thick part of the bottom portion (2a) and the necessary heat treatment were almost completed. Whitening crystallization of the amorphous thick part (2b) at the center of the bottom (2a) was not completed by infrared heating for 60 seconds and was gradually progressing, but it continued for 30 seconds. It was almost finished during the hot air oven treatment at a temperature of 200 ° C, and it was allowed to continue to shrink freely, as shown in Fig. 1 (E)
A secondary bottle (5) having a shape smaller than that of the final product (phantom line) was formed as shown. Then, the formed secondary bottle (5) is immediately guided to the final blow mold without cooling, and the secondary blow molding is performed, and the total height is 310 mm and the outer diameter is 91 mm as shown in FIG. Bottom (6a)
A molded bottle (6) having 2 just before the secondary blow
The temperature of the next bottle (5) was about 180 ° C. due to slight heat dissipation during transfer from the oven to the mold. The mold is water cooled to 40 ℃ to prevent the temperature from rising due to the heat of the bottle.
I adjusted the temperature.

なお比較のため前記実施例と同一のプリフォームを、
実施例と同一条件によって1次ボトルを形成し、引続
き、従来の方法に従って200℃の熱風オーブン中で熱処
理したところほぼ120秒で底部中央部の非晶肉厚部が白
化結晶化した全長270mm、外径75mmの収縮ボトルを形成
した。更にこの収縮ボトルを冷却することなく、最終ブ
ロー金型に導き2次ブロー成形を行なって全高310mm、
外径91mmの比較列ボトルを得た。
For comparison, the same preform as in the above example was used.
A primary bottle was formed under the same conditions as in Example, and subsequently heat-treated in a hot air oven at 200 ° C. according to a conventional method, and a total length of 270 mm in which the amorphous thick part in the center of the bottom was whitened and crystallized in about 120 seconds, A shrink bottle with an outer diameter of 75 mm was formed. Furthermore, without cooling this shrink bottle, it is guided to the final blow mold and subjected to secondary blow molding to achieve a total height of 310 mm,
A comparative row bottle with an outer diameter of 91 mm was obtained.

最終ブロー金型の温度は実施例と同様40℃に温調し
た。得られた実施例ボトルおよび比較例ボトルの夫々に
ついて、各部位[第1図(F)]の密度(結晶化度)お
よび熱水浸漬テストを調べた結果は表のとおりである。
The temperature of the final blow mold was adjusted to 40 ° C. as in the example. The results of examining the density (crystallinity) of each site [FIG. 1 (F)] and the hot water immersion test for each of the obtained Example bottles and Comparative Example bottles are as shown in the table.

(試験方法) [密度(結晶化度)測定] 四塩化炭素とn−ヘプタンで作成した密度勾配管でボ
トル切片の密度を25℃にて測定した。結晶化度は下記式
を用いて密度より算出した。
(Test Method) [Measurement of Density (Crystallinity)] The density of a bottle piece was measured at 25 ° C. with a density gradient tube made of carbon tetrachloride and n-heptane. The crystallinity was calculated from the density using the following formula.

χc=(ρs−ρa)/(ρc−ρa)×100 χc:結晶化度(Vol%) ρs:サンプル密度(g/cc) ρc:完全結晶密度1.455g/cc ρa:非晶密度1.33g/cc [熱水浸漬テスト] あらかじめ全満容量V1(ml)を測定してあるボトル
に、ヘッドスペースが全満容量の約2.5%となるように
2.5volに調整したガス水を充填した。
χc = (ρs−ρa) / (ρc−ρa) × 100 χc: Crystallinity (Vol%) ρs: Sample density (g / cc) ρc: Complete crystal density 1.455g / cc ρa: Amorphous density 1.33g / cc [Hot water immersion test] Make sure that the headspace is about 2.5% of the full capacity of the bottle whose total capacity V1 (ml) has been measured in advance.
It was filled with gas water adjusted to 2.5 vol.

このボトルを80℃の温水槽に正立状態でボトル全体が
浸るように浸漬し、20分保持後75℃の温水槽で10分間保
持し、その後室温まで水道水で冷却した。冷却後ボトル
は開栓し全満容量V2(ml)を測定し、熱水浸漬による容
量変化率Rを下記式により求めた。
This bottle was immersed in a hot water tank at 80 ° C. in an upright state so that the entire bottle was immersed, held for 20 minutes, held in a hot water tank at 75 ° C. for 10 minutes, and then cooled to room temperature with tap water. After cooling, the bottle was opened and the total full capacity V2 (ml) was measured, and the capacity change rate R due to hot water immersion was determined by the following formula.

R=(V2−V1)/V1×100 R=容量変化率 V1=浸漬テスト前の容量ml V2=浸漬テスト後の容量ml 尚本熱水浸漬テストは75℃×10分に相当する殺菌条件
を模したものである。
R = (V2-V1) / V1 × 100 R = Capacity change rate V1 = Capacity before immersion test ml V2 = Capacity after immersion test ml This hot water immersion test uses sterilization conditions equivalent to 75 ° C × 10 minutes. It is a model.

表に示すように本発明の実施例は、ボトルの密度(結
晶化度)はボトルの口部から底部に至るまで1.37g/cc以
上を維持しており、特にボトル胴部では1.38g/ccをも上
回っていた。また熱水浸漬テストの結果ボトルには見苦
しい膨張変形、破損等は生じず、容量変化率も3.3%と
少なく、優れた高温時の耐圧性能を有していた。
As shown in the table, in the examples of the present invention, the density (crystallinity) of the bottle is maintained at 1.37 g / cc or more from the mouth to the bottom of the bottle, and particularly 1.38 g / cc in the bottle body. Also exceeded. As a result of the hot water immersion test, unsightly expansion deformation, breakage, etc. did not occur in the bottle, the capacity change rate was as small as 3.3%, and the bottle had excellent pressure resistance performance at high temperature.

これに対して、比較例は、ボトルの密度(結晶化度)
はボトル口部から底部に至るまで1.37g/cc未満であり、
ボトル口部や底部では、ほとんど非晶状態に近いもので
あった。また熱水浸漬テストの結果、ボトルは口部や底
部で見苦しい膨張変形を生じ、容量変化率も18%大き
く、全く実用に耐えないボトルであった。
On the other hand, in Comparative Example, bottle density (crystallinity)
Is less than 1.37 g / cc from the mouth to the bottom of the bottle,
The mouth and bottom of the bottle were almost in an amorphous state. Further, as a result of the hot water immersion test, the bottle had unsightly expansion deformation at the mouth and bottom, and the capacity change rate was 18% large, and it was a bottle that could not be put to practical use at all.

従って、本発明の実施例は従来の熱風オーブン中での
み熱処理する方法に比べ大幅な加熱時間短縮が出来るこ
とが確認された。
Therefore, it was confirmed that the embodiment of the present invention can significantly shorten the heating time as compared with the conventional method of performing heat treatment only in the hot air oven.

(発明の効果) このように本発明によるときは、ポリエチレンテレフ
タレート樹脂製のプリフォームを延伸温度に加熱し、次
いで1次ブロー成形を行って形状が最終製品よりも大き
い形状の1次ボトルを形成し、続いて1次ボトルの底部
の未延伸或いは低延伸の肉厚部を温度150℃以上に予備
加熱し、更に該1次ボトル全体を温度150℃以上の雰囲
気中で熱処理して結晶化度を増大させるとともに、自由
収縮させて形状が最終製品よりも小さい形状の2次ボト
ルを形成し、次いで最終製品の形状をした金型内で2次
ブロー成形を行って最終製品形状のボトルに形成する。
従って、ポリエチレンテレフタレート樹脂製のプリフォ
ームから形状が最終製品よりも大きい形状の1次ボトル
を形成するようにしたから、1次ボトル全体の結晶化を
均一化することが出来、また1次ボトルの熱処理をその
底部の肉厚部への予備加熱と、ボトル全体の加熱との二
段階に分けて行なうようにしたので、熱処理時間の短縮
を計ることが出来、かつ非晶状態の肉厚部の結晶化を促
進し、更にボトル全体の結晶化度を増大せしめて、その
後に続いて行なう2次ブロー成形で再び延伸配向がかけ
られる大きさまでに縮小することが出来るから、優れた
耐熱性と強度とを有するポリエチレンテレフタレート樹
脂製ボトルを能率よく製造することが出来る等の効果が
ある。
(Effects of the Invention) As described above, according to the present invention, a polyethylene terephthalate resin preform is heated to a stretching temperature, and then primary blow molding is performed to form a primary bottle having a shape larger than the final product. Then, the unstretched or low-stretched thick part of the bottom of the primary bottle is preheated to a temperature of 150 ° C or higher, and the entire primary bottle is heat treated in an atmosphere of a temperature of 150 ° C or higher to crystallize. And then shrink freely to form a secondary bottle with a smaller shape than the final product, and then perform secondary blow molding in a mold that has the shape of the final product to form a bottle with the final product shape. To do.
Therefore, since the primary bottle having a shape larger than that of the final product is formed from the polyethylene terephthalate resin preform, the crystallization of the entire primary bottle can be made uniform, and Since the heat treatment is performed in two stages, preheating to the thick portion at the bottom and heating of the entire bottle, the heat treatment time can be shortened and the thick portion in the amorphous state can be shortened. It has excellent heat resistance and strength because it promotes crystallization and further increases the crystallinity of the entire bottle, and can be reduced to a size where stretch orientation can be applied again in the subsequent secondary blow molding. There is an effect such that a polyethylene terephthalate resin bottle having the above can be efficiently produced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の製造方法の1例を示す説明用線図であ
る。 (1)……プリフォーム、(2)……1次ボトル (2a)……1次ボトルの底部、(2b)……肉厚部 (5)……2次ボトル、(6)……ボトル
FIG. 1 is an explanatory diagram showing an example of the manufacturing method of the present invention. (1) …… Preform, (2) …… Primary bottle (2a) …… Bottom of primary bottle, (2b) …… Thick portion (5) …… Secondary bottle, (6) …… Bottle

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリエチレンテレフタレート樹脂製のプリ
フォームを延伸温度に加熱し、次いで1次ブロー成形を
行って形状が最終製品よりも大きい形状の1次ボトルを
形成し、続いて1次ボトルの底部の未延伸或いは低延伸
の肉厚部を温度150℃以上に予備加熱し、更に該1次ボ
トル全体を温度150℃以上の雰囲気中で熱処理して結晶
化度を増大させるとともに、自由収縮させて形状が最終
製品よりも小さい形状の2次ボトルを形成し、次いで最
終製品の形状をした金型内で2次ブロー成形を行って最
終製品形状のボトルに形成することを特徴とするポリエ
チレンテレフタレート樹脂製ボトルの製造方法。
1. A polyethylene terephthalate resin preform is heated to a stretching temperature, and then primary blow molding is performed to form a primary bottle having a shape larger than that of a final product, and subsequently, a bottom portion of the primary bottle. The unstretched or low-stretched thick part of No. 1 is preheated to a temperature of 150 ° C or higher, and the entire primary bottle is heat-treated in an atmosphere of a temperature of 150 ° C or higher to increase the crystallinity and shrink freely. A polyethylene terephthalate resin characterized by forming a secondary bottle having a shape smaller than that of the final product, and then performing secondary blow molding in a mold having the shape of the final product to form a bottle having the final product shape. Bottle manufacturing method.
【請求項2】前記1次ボトルの1次ブロー成形が金型を
用いないフリーブロー成形であることを特徴とする特許
請求の範囲第1項記載のポリエチレンテレフタレート樹
脂製ボトルの製造方法。
2. The method for producing a polyethylene terephthalate resin bottle according to claim 1, wherein the primary blow molding of the primary bottle is free blow molding without using a mold.
JP61267761A 1986-11-12 1986-11-12 Method for producing polyethylene terephthalate resin bottle Expired - Fee Related JP2534482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61267761A JP2534482B2 (en) 1986-11-12 1986-11-12 Method for producing polyethylene terephthalate resin bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61267761A JP2534482B2 (en) 1986-11-12 1986-11-12 Method for producing polyethylene terephthalate resin bottle

Publications (2)

Publication Number Publication Date
JPS63122516A JPS63122516A (en) 1988-05-26
JP2534482B2 true JP2534482B2 (en) 1996-09-18

Family

ID=17449221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61267761A Expired - Fee Related JP2534482B2 (en) 1986-11-12 1986-11-12 Method for producing polyethylene terephthalate resin bottle

Country Status (1)

Country Link
JP (1) JP2534482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012925A1 (en) * 2002-07-31 2004-02-12 Frontier Inc. Plastic cup-like container with heat resistance and primary-formed product of the container

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69313862T3 (en) 1992-07-07 2001-04-26 Continental Pet Technologies METHOD FOR MOLDING A CONTAINER WITH A SIDEWALL OF HIGH CRYSTALITY AND A BOTTOM OF LOW CRYSTALITY
US5281387A (en) * 1992-07-07 1994-01-25 Continental Pet Technologies, Inc. Method of forming a container having a low crystallinity
JPH0740955A (en) * 1993-07-28 1995-02-10 Toyo Seikan Kaisha Ltd Manufacture of biaxially oriented plastic bottle with excellent heat resistance and device therefor
US5474735A (en) * 1993-09-24 1995-12-12 Continental Pet Technologies, Inc. Pulse blow method for forming container with enhanced thermal stability
JP2755284B2 (en) * 1994-05-13 1998-05-20 東洋製罐株式会社 One-piece pressure-resistant or heat-resistant polyester bottle and method for producing the same
JP3612775B2 (en) * 1995-03-28 2005-01-19 東洋製罐株式会社 Heat-resistant pressure-resistant self-supporting container and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584611B2 (en) * 1976-04-14 1983-01-27 三井化学株式会社 plastic containers
JPS56105935A (en) * 1980-01-26 1981-08-22 Mitsubishi Plastics Ind Ltd Forming of plastic bottle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012925A1 (en) * 2002-07-31 2004-02-12 Frontier Inc. Plastic cup-like container with heat resistance and primary-formed product of the container
KR100967492B1 (en) * 2002-07-31 2010-07-07 프론티어 인코포레이티드 Plastic cup-like container with heat resistance and primary-formed product of the container

Also Published As

Publication number Publication date
JPS63122516A (en) 1988-05-26

Similar Documents

Publication Publication Date Title
JP3760045B2 (en) Molding method of heat-resistant container
EP3124203B1 (en) Process for making pet containers with enhanced thermal properties
JPH0439416B2 (en)
US5145632A (en) Process for the manufacture of pet containers designed to be filled with a hot liquid
JPH0456734B2 (en)
JPH06293085A (en) Production of thermoplastic container
US6875396B1 (en) Hot fill container
JP2534482B2 (en) Method for producing polyethylene terephthalate resin bottle
JPH03205124A (en) Manufacture of biaxially oriented blow molded container
JP3986667B2 (en) Polyethylene terephthalate resin bottle manufacturing method
JP4222462B2 (en) Preform for heat-resistant PET bottle
JPS60112419A (en) Formation of heat resisting bottle
TW200302157A (en) Biaxial orientation blow molding process
JPH01127313A (en) Manufacturing device for thermofixing plastic hollow vessel
JPH01157828A (en) Heat-setting polyester orientation molding container
JPH0622860B2 (en) Biaxial stretching blow molding method
JPH054895B2 (en)
CN2354736Y (en) Drawing and blowing mould for hot filling polyester bottle
JP2002067130A (en) Method for manufacturing heat resistant neck bent container
KR100480947B1 (en) Method for biaxial stretch blowmolding of heat resistant pet bottle
EP3291962A1 (en) Injection-stretch-blow-molding (isbm) manufacturing method of a hotfill plastic container and hotfilling process thereof
JPS6357220A (en) Manufacture of polyester bottle for hot filling
JPS58114922A (en) Manufacture of preform for heat-resistant polyester bolt
JPS6160437A (en) Heat-resistant plastic bottle
JPH09314650A (en) Biaxially stretching blow molding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees