JP2931428B2 - Injection stretch blow molding method - Google Patents
Injection stretch blow molding methodInfo
- Publication number
- JP2931428B2 JP2931428B2 JP3068036A JP6803691A JP2931428B2 JP 2931428 B2 JP2931428 B2 JP 2931428B2 JP 3068036 A JP3068036 A JP 3068036A JP 6803691 A JP6803691 A JP 6803691A JP 2931428 B2 JP2931428 B2 JP 2931428B2
- Authority
- JP
- Japan
- Prior art keywords
- preform
- temperature
- blow molding
- injection
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/64—Heating or cooling preforms, parisons or blown articles
- B29C49/6409—Thermal conditioning of preforms
- B29C49/6436—Thermal conditioning of preforms characterised by temperature differential
- B29C49/6454—Thermal conditioning of preforms characterised by temperature differential through the preform thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/0715—Preforms or parisons characterised by their configuration the preform having one end closed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/02—Combined blow-moulding and manufacture of the preform or the parison
- B29C49/06—Injection blow-moulding
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】この発明は、合成樹脂によるプリ
フォームの射出成形から薄肉中空成形品への延伸吹込成
形を連続して行う成形方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding method for continuously performing a stretch blow molding of a preform made of a synthetic resin into a thin hollow molded article.
【0002】[0002]
【従来の技術】一般的に射出延伸吹込成形と称されてい
る成形方法は、射出成形したプリフォームをリップ型に
より口部を保持して吹込金型に移送し、口部下側から胴
部全体を延伸棒により縦方向に延伸すると共に、空気圧
により横方向に膨張させて、所要の薄肉中空成形品に成
形する方法で、その成形方法には工程が「プリフォーム
の射出成形−温度調節−延伸吹込成形−成形品取出」の
四工程の成形方式と、成形工程が「プリフォームの射出
成形−延伸吹込成形−成形品取出」の三工程で済む方式
とがある。2. Description of the Related Art In a molding method generally referred to as injection stretch blow molding, an injection-molded preform is transferred to a blow mold while holding a mouth portion by a lip mold, and the entire body portion is formed from the lower side of the mouth portion. Is stretched in the longitudinal direction by a stretching rod and expanded in the transverse direction by air pressure to form a desired thin hollow molded article. The molding method includes the steps of “preform injection molding-temperature control-stretching”. There are a four-step molding method of "blow molding-molded product removal" and a method of requiring only three steps of "preform injection molding-stretch blow molding-molded product removal".
【0003】特開昭63−296921号公報に記載さ
れた成形方式は、3ステーション方式と称されている三
工程によるものであるが、高温離型したプリフォームの
内外の温度を、プリフォーム自体の内部熱により均一化
して温度差をなくしてから、延伸吹込成形を行うという
もので、温調装置は要しないが、工程的には内外温度の
均一化のための温度調整を要するもので、4ステーショ
ン方式と称されている上記四工程に近いものである。The molding method described in Japanese Patent Application Laid-Open No. 63-296921 is based on a three-step method called a three-station method. After eliminating the temperature difference by homogenizing with the internal heat of, the stretch blow molding is performed, no temperature control device is required, but in the process it is necessary to adjust the temperature to equalize the inside and outside temperature, This is similar to the above-described four steps called a four-station system.
【0004】またプリフォームを高温で離型するという
技術思想は、特開昭57−77538号に記載された4
ステーション方式の成形方法に既に開示されている。こ
の成形方法は、射出成形したポリエチレンテレフタレー
トによるプリフォームを、高温で形状が保たれる温度範
囲にて離型し、そのプリフォームの同一平断面における
内外面と内部中心部との温度差を均一化して後、プリフ
ォーム温度を外部エネルギーにより95℃以上の高温に
調整して吹込成形を行うというものである。The technical idea of releasing a preform at a high temperature is disclosed in Japanese Patent Application Laid-Open No. 57-77538.
It has already been disclosed in the station-type molding method. In this molding method, a polyethylene terephthalate injection-molded preform is released in a temperature range where the shape is maintained at a high temperature, and the temperature difference between the inner and outer surfaces and the inner central portion in the same plane cross section of the preform is made uniform. After that, the preform temperature is adjusted to a high temperature of 95 ° C. or more by external energy to perform blow molding.
【0005】[0005]
【発明が解決しようとする課題】成形工程が三工程で済
む3ステーション方式では、四工程を要する4ステーシ
ョン方式において、不可欠とされていた延伸吹込成形直
前のプリフォームの温度調整が不要となる。それ故に、
4ステーション方式で使用していたプリフォームの温度
調節装置や、その付帯機器等を省略することができ、ま
たプリフォームの移送部材を兼ねるネック型の数も1つ
減少するなど構造上の利点だけではなく、成形サイクル
タイムも短縮化され、機械コストも低減するなどの経済
的な有利さもある。In the three-station system which requires only three molding steps, the four-station system which requires four steps does not require the temperature adjustment of the preform immediately before stretch blow molding, which is indispensable. Therefore,
Only the structural advantages such as the preform temperature controller used in the four-station system and its accompanying equipment can be omitted, and the number of neck molds that also serve as preform transfer members is reduced by one. Rather, there are also economic advantages such as shorter molding cycle times and lower machine costs.
【0006】しかしながら、3ステーション方式、すな
わち三工程により成形される成形品は、広口容器に限定
されがちであった。それはプリフォームの口径が大径
で、射出金型やコアなどからの抜き勾配の設計に技術的
な困難さがなく、高温離型が容易に行い得るからであ
る。[0006] However, molded articles molded by the three-station system, that is, by three steps, are often limited to wide-mouth containers. This is because the diameter of the preform is large, there is no technical difficulty in designing the draft from the injection mold or the core, and high-temperature release can be easily performed.
【0007】広口容器の場合に比べて、プリフォームの
口径が著しく小径で、延伸部分が長く、延伸倍率も大き
く要求されるびん等の細口容器の成形では、プリフォー
ムの温度管理の難しさや抜き勾配の制限などから、吹込
成形直前に温度管理が可能な上記4ステーション方式に
よる成形方法が採用されている。[0007] Compared to the case of a wide-mouthed container, in forming a narrow-mouthed container such as a bottle in which the preform has an extremely small diameter, a long stretched portion, and a large stretch ratio, it is difficult to control the temperature of the preform and to remove the preform. Due to the limitation of the gradient and the like, a molding method using the above-described four-station method capable of controlling the temperature immediately before blow molding is employed.
【0008】上記3ステーション方式すなわち三工程で
のプリフォームの温度管理の難しさは、内部熱により表
面層が加熱されてプリフォームの温度が均一になって
も、それを正確に検知する手段がないことにある。その
ために、離型後の経過時間からおおよその見当を付け、
その時点での試し打ちを繰返し行って延伸吹込時期を定
めている。この試し打ちには経験と時間を要し、材料樹
脂がポリプロピレンの場合には、製造ロッドごとに成形
条件が若干異なることが多いので、その都度、条件設定
を行わねばならず、必然的に製品ロスも多くなる。The difficulty in controlling the temperature of the preform in the three-station system, that is, in three steps, is that even if the surface layer is heated by the internal heat and the temperature of the preform becomes uniform, a means for accurately detecting the temperature of the preform is required. There is no. For that purpose, we make rough estimates from the elapsed time after demolding,
The test blow at that time is repeated to determine the stretch blowing time. This trial requires a lot of experience and time, and when the material resin is polypropylene, the molding conditions often differ slightly for each manufacturing rod, so the conditions must be set each time, and the product Losses also increase.
【0009】この発明は、上記三工程による成形方法の
高温離型の成形上の課題を解決するために考えられたも
のであって、その目的は、プリフォームを高温で離型す
るものでありながら、プリフォームの形状、抜き勾配、
肉厚分布等に制限を受けず、広口の容器の場合と同様
に、びんなどの細口で薄肉の合成樹脂製容器をも成形す
ることができる新たな射出延伸吹込成形を提供すること
にある。The present invention has been conceived in order to solve the problem of molding at a high temperature of the above-described three-step molding method, and an object thereof is to release a preform at a high temperature. While the shape of the preform, draft angle,
It is an object of the present invention to provide a new injection-stretch blow-molding method capable of molding a thin-walled thin synthetic resin container such as a bottle similarly to the case of a wide-mouthed container without being limited by a wall thickness distribution or the like.
【0010】溶融樹脂を金型に射出充填して、図1に示
す断面構造のプリフォーム11を射出成形し、このプリ
フォームを射出金型からできるだけ高温のうちに離型し
て、縦方向に延伸し横方向に膨張させて肉薄のボトル等
の容器14に成形するのであるが、プリフォーム11を
室温中にそのまま放置しておくと、そのの表面温度が図
2に示すように変化して行く。この表面温度の経時変化
はピーク温度に達する迄の時間にある程度の差はあって
も、容器の成形に用いられる熱可塑性樹脂の殆どが同様
な経過を示す。この初期の表面温度の上昇原因は、高温
離型されたプリフォームでは、金型のキャビティ面やコ
アと接しているプリフォーム表面が、金型の冷却により
固化してスキン層を形成するが、内部冷却は未完で高温
の半溶融状態にあり、これが離型により冷却を断たれた
のちのスキン層を内部から加熱することによる。A molten resin is injection-filled into a mold, and a preform 11 having a sectional structure shown in FIG. 1 is injection-molded. The preform 11 is stretched and expanded in the horizontal direction to form a thin container 14 such as a bottle. When the preform 11 is left at room temperature, the surface temperature of the preform 11 changes as shown in FIG. go. This change in the surface temperature with time shows a similar progress for most of the thermoplastic resins used for molding the container, although there is a certain difference in the time until the peak temperature is reached. The cause of the initial surface temperature rise is that, in a preform that has been released from the mold at a high temperature, the cavity surface of the mold and the surface of the preform in contact with the core are solidified by cooling the mold to form a skin layer. The internal cooling is incomplete and in a semi-molten state at a high temperature, which is caused by heating the skin layer from the inside after the cooling is stopped by releasing.
【0011】勿論かかる状態では、離型時に完全に冷却
固化された口部を除き、プリフォームの温度は均一であ
るわけはなく、またプリフォーム内外部に温度差がある
状態で延伸吹込成形を行うと、結晶化やクレージングに
よる白濁が生ずるとのことから、上記従来法では延伸吹
込前にプリフォーム温度の均一化を図っている。Of course, in such a state, the temperature of the preform is not uniform except for the mouth portion which is completely cooled and solidified at the time of release from the mold, and stretch blow molding is performed in a state where there is a temperature difference between the inside and outside of the preform. When this is performed, clouding occurs due to crystallization or crazing. Therefore, in the above-described conventional method, the preform temperature is made uniform before stretching and blowing.
【0012】本発明者の研究によると、延伸吹込成形に
おける成形品の白濁化は、内外部の温度差によるより
も、延伸吹込成形の温度によるところが多い。これまで
の実験では、ポリエチレンテレフタレートにあっては、
プリフォームの表面温度が80℃以下であると白濁が発
生し易くなる。また離型直後のプリフォームの表面温度
が60℃以上で、極めて短時間の経過の後に延伸吹込成
形を行った場合には、クレージングの発生が殆どないこ
とを見い出した。しかし、このような場合でも、冷却時
間が長く離型直後の温度が60℃以下になると、延伸吹
込成形温度がピーク前の80℃以上であっても、そこに
延伸吹込成形された成形品に白濁が生じ易いことも明ら
かとなった。According to the study of the present inventor, the opacity of a molded article in stretch blow molding depends more on the temperature of stretch blow molding than on the temperature difference between the inside and the outside. In previous experiments, polyethylene terephthalate
When the surface temperature of the preform is 80 ° C. or lower, cloudiness tends to occur. In addition, it was found that when the surface temperature of the preform immediately after release was 60 ° C. or higher and stretch blow molding was performed after a very short time, almost no crazing occurred. However, even in such a case, if the cooling time is long and the temperature immediately after the mold release is 60 ° C. or less, even if the stretch blow molding temperature is 80 ° C. or more before the peak, the molded product stretch stretch blow molded there is not formed. It also became clear that cloudiness was likely to occur.
【0013】またポリエチレンテレフタレートでは、冷
却時間を短く設定し、離型直後の表面温度を70℃以上
に設定すると、ピーク温度は95℃以上となることが多
く、このような設定条件での成形では、偏肉が発生し易
く、剛性も失われる。したがって、射出金型でのプリフ
ォームの冷却時間は、或る一定の時間内に限定される
が、その冷却は同一樹脂でも肉厚により異なり、またそ
こに使用する冷却水の温度によっても異なるが、同一肉
厚での許容範囲はポリエチレンテレフタレートで1秒前
後であり、その許容範囲内であれば、透明で形状の整っ
た細口で胴部が薄肉の容器を成形することが可能な表面
温度のプリフォームを得ることができる。In polyethylene terephthalate, if the cooling time is set short and the surface temperature immediately after mold release is set to 70 ° C. or higher, the peak temperature often rises to 95 ° C. or higher. In addition, uneven thickness easily occurs and rigidity is lost. Therefore, the cooling time of the preform in the injection mold is limited to a certain time, but the cooling varies depending on the thickness even of the same resin, and also varies depending on the temperature of the cooling water used therein. The allowable range for the same thickness is about 1 second for polyethylene terephthalate, and if it is within the allowable range, the surface temperature at which a thin-walled container can be molded with a transparent and well-formed narrow mouth can be formed. Preform can be obtained.
【0014】同様にポリプロピレンによるプリフォーム
についも、表面温度は図2と同様に、室温中で離型時の
温度から急上昇してピークに達し、その後はピーク温度
を長く保ってから緩くりと降下した。その表面温度の経
時変化からは、内部温度によるプリフォーム全体の温度
均一化の時期は不明であるが、高温の広口プリフォーム
による従来の延伸吹込成形では、離型してから17秒程
で延伸吹込成形を行っているので、それを目安に図2の
斜線の辺りで延伸吹込成形を試みたところ、広口容器の
プリフォームについては、17秒前後で胴部が透明な薄
肉の広口容器の成形が可能であった。しかし延伸倍率が
広口容器の場合よりも大きい細口容器のプリフォームで
は、抜き勾配を大きくして離型したものであっても、偏
肉の発生や底部の形成不良が生じ易く、良好な状態の成
形品にはならなかった。Similarly, for the preform made of polypropylene, the surface temperature suddenly rises from the temperature at the time of demolding at room temperature to reach a peak at room temperature as in FIG. did. From the change over time of the surface temperature, it is not clear when the temperature of the entire preform is equalized by the internal temperature. However, in the conventional stretch blow molding using a high-temperature wide-mouth preform, the stretch is performed in about 17 seconds after the mold is released. Since blow molding was performed, stretch blow molding was attempted around the hatched area in FIG. 2 using this as a guide. As for the preform of a wide-mouthed container, the molding of a thin-walled wide-mouthed container having a transparent body in about 17 seconds was performed. Was possible. However, in the preform of the narrow-mouthed container in which the stretching ratio is larger than that in the case of the wide-mouthed container, even if the mold is released by increasing the draft angle, the occurrence of uneven thickness and poor formation of the bottom portion are apt to occur, and a good state is obtained. It did not become a molded product.
【0015】またポリプロピレンの場合でも、離型直後
の表面温度が90℃以上で、延伸吹込成形が110℃以
上であると、細口容器の成形が可能となり、その場合の
同一肉厚での冷却時間の許容範囲は3秒前後であった。Also in the case of polypropylene, if the surface temperature immediately after the mold release is 90 ° C. or higher and the stretch blow molding is 110 ° C. or higher, it is possible to form a narrow-mouthed container. Was about 3 seconds.
【0016】このような延伸吹込成形の試みから、離型
後にプリフォームの温度を均一にする目的で、一定時間
を経過させてから伸吹込成形を行った場合には、プリフ
ォームが徐冷を受けることになるので、結晶化による白
化が生じ易くなり、また当然に細口容器の成形は困難と
なる、ということが明らかとなった。したがって、高温
離型したプリフォームの延伸吹込成形の難易性は、温度
むらのみにあるだけではなく、経時変化する高温のプリ
フォームの組成と、延伸吹込タイミングなども大きく影
響するということである。[0016] From the attempt of the stretch blow molding, when the stretch blow molding is performed after a certain period of time for the purpose of equalizing the temperature of the preform after releasing, the preform is gradually cooled. As a result, it became clear that whitening due to crystallization easily occurs, and it is naturally difficult to form a narrow-mouthed container. Therefore, the difficulty of stretch blow molding of a preform released from a high temperature is not only due to temperature unevenness, but also has a great influence on the composition of a high temperature preform that changes with time, stretch blow timing, and the like.
【0017】離型後の高温のプリフォーム11は、まず
射出金型から離型された直後では、冷却された型面との
接により表面温度が低いことから、図1に示すように、
表面側は硬度のあるスキン層12となっている。しかし
スキン層12の生成状態は冷却温度と時間とによって異
なる。また高温離型では中央部まで冷却が行き届かぬた
め、内部樹脂13は高温で或る程度の流動性を有する
が、表面の硬いスキン層12によりドローダウンが阻止
され、離型後でもプリフォーム11の形態が維持されて
いる。As shown in FIG. 1, the preform 11 having a high temperature after the mold release has a low surface temperature immediately after being released from the injection mold due to the contact with the cooled mold surface.
The surface side is a hard skin layer 12. However, the formation state of the skin layer 12 differs depending on the cooling temperature and time. Also, in the case of high-temperature release, cooling is not sufficiently performed to the central part, so that the internal resin 13 has a certain degree of fluidity at high temperature. Eleven configurations are maintained.
【0018】そして、時間の経過とともに内部熱は表面
から放熱され、同時に表面を形成するスキン層12は内
部熱により加熱されるために、表面温度が急速に上昇
し、スキン層12も軟化して行く一方、内部温度は低下
するので、流動部分は中心部へと縮小して行く。また表
面温度がピークに達した後のスキン層12は表皮を形成
する程度の薄いものとなり、内部は半硬化状となりつつ
あって、ピーク後に表面温度は時間の経過ともに緩慢に
降下し、プリフォーム全体では温度が均等化して行くと
同時に、結晶化が進行する。Then, the internal heat is radiated from the surface over time, and at the same time, the skin layer 12 forming the surface is heated by the internal heat, so that the surface temperature rises rapidly and the skin layer 12 softens. On the other hand, as the internal temperature decreases, the flowing portion decreases toward the center. Further, after the surface temperature reaches the peak, the skin layer 12 becomes thin enough to form an epidermis, the inside thereof is becoming semi-cured, and after the peak, the surface temperature decreases slowly with the passage of time, and the preform At the same time, crystallization proceeds while the temperature is equalized.
【0019】このような高温のプリフォーム11では表
面温度がピークに達するまでは、表面が固まってスキン
層12を形成しても、またピーク温度近くではスキン層
12も軟化して延伸可能な状態にある。また内部から受
ける加熱によるスキン層12の軟化は、内部熱の高い厚
肉部分が先行する。表面温度がピークに達してある程度
の時間が経過するまでは、厚肉部分と薄肉部分とに温度
差があり、ピーク前は特にその差が歴然としている。In such a high-temperature preform 11, the surface is solidified to form the skin layer 12 until the surface temperature reaches the peak, and the skin layer 12 is softened and stretchable near the peak temperature. It is in. Further, the softening of the skin layer 12 due to the heat received from the inside is preceded by a thick portion having a high internal heat. Until a certain time elapses after the surface temperature reaches the peak, there is a temperature difference between the thick portion and the thin portion, and the difference is particularly obvious before the peak.
【0020】このような状態において延伸吹込成形を行
うと、熱量の多い厚肉部分側、即ち表面温度が高い方の
スキン層が、軟化状態にある内部樹脂を包んだ状態にて
先に伸びて行く。しかし、その伸びにより当然ながら表
面積も増すから、放熱面積が大となって温度が低下し、
薄肉側との温度差が無くなり、さらには薄肉側の温度が
相対的に高くなって、次には薄肉側の伸びが先行するよ
うになる。このような相互延伸は極めて短時間に繰返し
行われ、その間に熱量の高かった内部温度までが低下し
て延伸に適した温度となり、それまでスキン層12に連
れられて延びていた内部樹脂13が、途中からスキン層
12と同様に薄く伸びるようになって、そこに肉厚分布
が均一な成形品が成形されるのである。When stretch blow molding is performed in such a state, the thicker portion having a large amount of heat, that is, the skin layer having a higher surface temperature is stretched first while wrapping the internal resin in a softened state. go. However, since the surface area naturally increases due to the extension, the heat radiation area increases and the temperature decreases,
The temperature difference with the thinner side disappears, and the temperature on the thinner side relatively increases, and then the thinner side elongates first. Such mutual stretching is repeatedly performed in a very short time, during which the internal temperature at which the calorie is high is lowered to a temperature suitable for stretching, and the internal resin 13 which has been extended along with the skin layer 12 until then is reduced. As in the case of the skin layer 12, the molded product extends thinly in the middle, and a molded product having a uniform thickness distribution is formed there.
【0021】したがって、プリフォーム11の射出成形
にあたっては、まず成形品となる容器14の形状から、
プリフォーム11の各部の伸び量を予め考慮し、その各
部の肉厚分布を意図的に加減する一方、射出金型の温度
は一定に維持し、キャビティに射出充填して成形された
プリフォーム11の冷却は、何れの部分においても高低
なく行うことが望まれる。また急冷によりスキン層12
を形成した高温のプリフォーム11では、表面温度がピ
ークに達する前の時点での成形が、最も良好な結果が得
られた。ピークに達したと思われる時点では、偏肉が生
じ易くなり、あまり良好な結果は得られない。Therefore, in the injection molding of the preform 11, first, the shape of the container 14 as a molded product is
In consideration of the amount of elongation of each part of the preform 11 in advance, the thickness distribution of each part is intentionally adjusted, while the temperature of the injection mold is kept constant and the preform 11 is formed by injection filling into the cavity. It is desired that the cooling be performed at any part without height. Also, the skin layer 12 is rapidly cooled.
In the high-temperature preform 11 in which was formed, the best results were obtained by molding before the surface temperature reached the peak. When the peak is considered to have been reached, uneven wall thickness tends to occur, and a very good result cannot be obtained.
【0022】延伸吹込成形時での表面温度は、ポリエチ
レンテレフタレートでは80℃以上で、離型後の時間は
8秒前後であり、ポリプロピレンでは110℃以上で時
間としては14秒前後であった。しかし上記時間内であ
っても、スキン層12を急冷により形成しないと、良好
な結果が得難いことはこれまでの試みから明らかであ
る。これは冷却によりスキン層12に生ずる結晶状態の
差によるものと思われ、急冷による結晶は微結晶となる
が、徐冷では結晶が大きく成長し、結晶相互の結付きは
微結晶に比べて弱いためである。The surface temperature during stretch blow molding was 80 ° C. or more for polyethylene terephthalate, the time after release was about 8 seconds, and the time for polypropylene was 110 ° C. or more and about 14 seconds. However, even within the above-mentioned time, it is clear from the previous attempts that good results are difficult to obtain unless the skin layer 12 is formed by rapid cooling. This is thought to be due to the difference in crystal state generated in the skin layer 12 due to cooling, and the crystal is rapidly crystallized into microcrystals. However, the crystal grows larger by slow cooling, and the bonding between crystals is weaker than that of microcrystals. That's why.
【0023】したがって、この発明の1つ特徴は、溶融
樹脂を射出金型に射出充填して所要のプリフォームに形
成し、そのプリフォームをリップ型により口部を保持し
て射出金型から吹込金型に移送し、吹込金型内にて所要
の薄肉中空成形品に延伸吹込成形するにあたり、上記プ
リフォームの射出金型からの離型を、急冷により表面に
生じたスキン層により形状の維持が可能な状態にあり、
かつ内部冷却が未完で高温状態にあるうちに行い、その
プリフォームの延伸吹込成形を、自己の内部温度により
上昇するプリフォームの表面温度がピーク温度に達する
までの時間内にて行うことである。Therefore, one feature of the present invention is that a molten resin is injected and filled into an injection mold to form a required preform, and the preform is held by a lip mold while the mouth is blown from the injection mold. Transferring to the mold and stretching and blowing into the required thin-walled hollow molded product in the blow mold, the release of the preform from the injection mold is maintained by the skin layer generated on the surface by rapid cooling. Is available,
And while the internal cooling is incomplete and in a high temperature state, the stretch blow molding of the preform is performed within the time until the surface temperature of the preform rising due to its own internal temperature reaches the peak temperature. .
【0024】この発明の他の1の特徴は、ポリエチレン
テレフタレートによるプリフォームの射出金型からの離
型は、離型直後の表面温度が常温で60℃以上70℃以
下となる温度範囲にて行い、延伸吹込成形はプリフォー
ムの表面温度が80℃以上95℃以下の温度領域でピー
ク温度に達するまでの時間内にて行うことにある。Another feature of the present invention is that the release of the preform from the injection mold using polyethylene terephthalate is carried out in a temperature range where the surface temperature immediately after the release is from 60 ° C. to 70 ° C. at room temperature. The stretch blow molding is performed within a time period until the surface temperature of the preform reaches a peak temperature in a temperature range of 80 ° C. or more and 95 ° C. or less.
【0025】さらにこの発明の他の特徴は、ポリプロピ
レンによるプリフォームの射出金型からの離型は、離型
直後の表面温度が常温で90℃以上100℃以下となる
温度範囲にて行い、延伸吹込成形はプリフォームの表面
温度が110℃以上122℃以下の温度領域でピーク温
度に達するまでの時間内にて行うこことであり、結晶性
樹脂として上記合成樹脂以外にも、ポリエチレン、ポリ
カーボネートなどの熱可塑性合成樹脂によるプリフォー
ムを同様な手段によって、容器に延伸成形し得ることで
ある。Another feature of the present invention is that the release of the preform from the injection mold with polypropylene is performed in a temperature range where the surface temperature immediately after the release is 90 ° C. or more and 100 ° C. or less at room temperature. The blow molding is performed within a time period until the surface temperature of the preform reaches a peak temperature in a temperature range of 110 ° C. or more and 122 ° C. or less. In addition to the above synthetic resin as a crystalline resin, polyethylene, polycarbonate, etc. Can be stretch-molded into a container by the same means.
【0026】[0026]
【作用】射出充填された射出金型内の溶融樹脂は、急冷
により型面に接する樹脂が極めて短時間に硬化してスキ
ン層を形成する。また硬化に伴う収縮により表面が型面
から離れるため、内部に対する冷却は悪くなり、冷却未
完の状態で高温を保っている。しかしプリフォームは硬
いスキン層により、離型可能な状態となり、また離型後
にも形状が維持される。このため抜き勾配に左右されず
早期の離型が可能となる。With the molten resin in the injection mold filled with injection, the resin in contact with the mold surface is hardened in an extremely short time by rapid cooling to form a skin layer. In addition, since the surface is separated from the mold surface due to shrinkage due to curing, cooling to the inside is deteriorated, and high temperature is maintained in a state where cooling is not completed. However, the preform is in a releasable state due to the hard skin layer, and the shape is maintained even after the release. For this reason, early mold release is possible irrespective of the draft angle.
【0027】このような高温のプリフォームでは、離型
後においても表面温度がピークに達するまでは、半溶融
状態の内部樹脂がスキン層に包まれた状態にあるから、
スキン層が軟化した時点にて延伸すると、まずスキン層
が内部樹脂を連れて薄く伸びて行く。この延伸の過程に
おいて、表面積の増加等によりプリフォーム全体の温度
が低下し、内部樹脂の温度までが延伸に適した温度とな
る。それまでスキン層につれられて延びていた内部樹脂
が、途中からスキン層と同様に薄く伸びるようになり、
その結果、プリフォームは肉厚分布が均一な成形品とな
る。In such a high-temperature preform, the semi-molten internal resin is wrapped in the skin layer until the surface temperature reaches the peak even after the mold release.
When the skin layer is stretched at the time of softening, the skin layer firstly extends thinly with the internal resin. In the stretching process, the temperature of the entire preform decreases due to an increase in the surface area or the like, and the temperature of the internal resin reaches a temperature suitable for stretching. Until then, the internal resin that had been extended along with the skin layer became thinner like the skin layer from the middle,
As a result, the preform becomes a molded product having a uniform thickness distribution.
【0028】[0028]
【実施例.1】ポリエチレンテレフタレートの溶融樹脂
を射出金型に射出充填し、急冷により図1に示すような
細口のプリフォーム11を成形した。また肉厚が異なる
3例のプリフォームを、サンプルごとに冷却時間を変え
射出成形し、表面温度の経時変化を測定した。【Example. 1. A molten resin of polyethylene terephthalate was injected into an injection mold and quenched to form a narrow mouth preform 11 as shown in FIG. Further, three examples of preforms having different wall thicknesses were injection-molded while changing the cooling time for each sample, and the change over time in the surface temperature was measured.
【0029】プリフォームは1リットル容器用で、全長
124mm、温度測定は底部から上30mm,60m
m,100mmの三箇所、測定温度はその平均値であ
る。温度測定器、デジタル放射温度計IR−AHOT
(株式会社チノン製)。The preform is for a 1 liter container, the total length is 124 mm, and the temperature measurement is 30 mm and 60 m above the bottom.
m, 100 mm, and the measured temperatures are average values. Temperature measuring instrument, digital radiation thermometer IR-AHOT
(Manufactured by Chinon Co., Ltd.).
【0030】射出成形条件は以下の通りである。 材料の重量 33gr 射出温度 275℃ 金型温度(冷却水) 13℃ 抜き勾配 1.5゜ 射出充填時間 5.3秒 (射出充填時間経過後に冷却に入る)The injection molding conditions are as follows. Material weight 33gr Injection temperature 275 ° C Mold temperature (cooling water) 13 ° C Draft 1.5 ° Injection filling time 5.3 seconds (Cooling starts after the injection filling time elapses)
【0031】図3〜図5は、室温中(22℃)における
下記各サンプルの表面温度の経時変化(平均値)を示し
たものであり、その要点は次の表1に示す通りである。FIGS. 3 to 5 show the change over time (average value) of the surface temperature of each of the following samples at room temperature (22 ° C.), and the main points are as shown in Table 1 below.
【0032】 [0032]
【0033】上記各サンプルについて、それぞれ吹込空
気圧14kg/cm2で延伸吹込成形を行い、図1に鎖
線にて示すようなびん状の容器14を成形したところ、
図6に示す時間内、即ち、表面温度がピークに達する前
の時間t1とピークに達したと思われる時間t2との間
の時間t内にて、延伸吹込成形を行うことが最も良いこ
とが判明した。Each of the above samples was subjected to stretch blow molding at a blowing air pressure of 14 kg / cm 2 to form a bottle-shaped container 14 as shown by a chain line in FIG.
Within the time shown in FIG. 6, that is, at the time t between time t 2 that may have reached before the time t 1 and the peak surface temperature reaches a peak, it is best to perform the stretch blow molding It has been found.
【0034】 [0034]
【0035】しかしながら、離型直後の表面温度が常温
で60℃〜70℃の範囲外のプリフォーム、または延伸
吹込成形時の表面温度が80℃〜95℃の温度領域外の
プリフォームでは上記表2に示すように良好な成形品は
得られなかった。なお、表中の経過時間とは、プリフォ
ームを離型してから延伸吹込成形を開始るまでの時間を
云い、その経過時間を中心に前後1秒の範囲で数体の成
形を行た結果を、成形状態として示した。However, in the case of a preform having a surface temperature immediately after release from a temperature range of 60 ° C. to 70 ° C. at room temperature, or a preform having a surface temperature of 80 ° C. to 95 ° C. at the time of stretch blow molding, the above table is used. As shown in FIG. 2, no good molded product was obtained. The elapsed time in the table refers to the time from the release of the preform to the start of stretch blow molding, and the result of molding several bodies in the range of 1 second before and after the elapsed time. Was shown as a molded state.
【0036】[0036]
【実施例.2】ポリプロピレンの溶融樹脂を射出金型に
射出充填し、急冷により実施例1の場合と同様な図1に
示す細口のプリフォーム11を成形した。【Example. 2 A molten resin of polypropylene was injected into an injection mold and quenched to form a narrow-necked preform 11 shown in FIG.
【0037】また同一肉厚の8体のプリフォームを、そ
れぞれ冷却時間を変えて射出成形し、それらの室温中に
おける表面温度の経時変化を測定した。Eight preforms of the same thickness were injection-molded while changing the cooling time, and the time-dependent changes in the surface temperature at room temperature were measured.
【0038】射出成形条件は以下の通りである。 材料の重量 40gr 射出温度 240℃ 金型温度(冷却水) 13℃ 抜き勾配 3.0゜ 射出充填時間 6.0秒 (射出充填時間経過後に冷却に入る)The injection molding conditions are as follows. Material weight 40gr Injection temperature 240 ° C Mold temperature (cooling water) 13 ° C Draft 3.0 ° Injection filling time 6.0 seconds (begins cooling after injection filling time has elapsed)
【0039】図7は、室温中(22℃)における下記各
サンプルの表面温度の経時変化(平均値)を図にしたも
のであり、その要点は次の表3に示す通りである。FIG. 7 is a graph showing the change over time (average value) of the surface temperature of each of the following samples at room temperature (22 ° C.). The main points are as shown in Table 3 below.
【0040】 [0040]
【0041】上記サンプルNO4について、ポリエチレ
ンテレフタレートの場合と同様に、図6に示す時間内に
て、それぞれ吹込空気圧12kg/cm2で延伸吹込成
形を行い、図1に鎖線にて示すようなびん状の容器14
を成形したところ、図8に示す時間内、即ち、表面温度
がピークに達する前の時間t1とピークに達したと思わ
れる時間t2の間の時間t内にて、延伸吹込成形を行う
ことが最も良いことが判明した。As in the case of polyethylene terephthalate, the above sample No. 4 was stretch blow-molded at a blowing air pressure of 12 kg / cm 2 within the time shown in FIG. 6 to obtain a bottle-like shape as shown by a chain line in FIG. Container 14
Was molded, performed within the time shown in FIG. 8, i.e., at the time in t between the previous time t 1 and time t 2, which appears to have reached a peak surface temperature reaches a peak, the stretch blow molding It turned out to be the best.
【0042】しかし、離型直後の表面温度が常温で90
℃〜100℃の範囲外のプリフォーム、または延伸吹込
成形時の表面温度が、110℃以下または123℃以上
のプリフォームでは、次の表4に示すように良好な結果
が得られなかった。However, the surface temperature immediately after demolding is 90 at room temperature.
As shown in the following Table 4, good results were not obtained with a preform outside the range of 100C to 100C or with a preform having a surface temperature of 110C or lower or 123C or higher during stretch blow molding.
【0043】 [0043]
【0044】[0044]
【発明の効果】この発明は上述のように、射出成形した
プリフォームの射出金型からの離型を、急冷により表面
に生じたスキン層により形状の維持が可能な状態にあ
り、かつ内部冷却が未完で高温状態にあるうちに行い、
そのプリフォームの延伸吹込成形を、自己の内部温度に
より上昇するプリフォームの表面温度がピーク温度に達
するまでの時間内にて行うことから、低温のプリフォー
ムを延伸吹込成形した時に生じがちな応力歪みが少な
い。したがって、応力歪みが原因とされる高温充填時の
収縮変形が起こり難く、ポリエチレンテレフタレートに
よる容器では耐熱性が向上する。As described above, according to the present invention, the shape of the injection-molded preform can be released from the injection mold by the skin layer formed on the surface by rapid cooling, and the internal cooling is performed. Is done while it is incomplete and hot
Since the stretch blow molding of the preform is performed within the time until the surface temperature of the preform that rises due to its own internal temperature reaches the peak temperature, the stress that tends to occur when stretching the low temperature preform by stretch blow molding is performed. Low distortion. Therefore, shrinkage deformation at the time of high-temperature filling due to stress distortion is unlikely to occur, and the heat resistance of a container made of polyethylene terephthalate is improved.
【0045】また内部が半溶融状態の時にプリフォーム
を延伸するため、温度むらによる影響は殆どなく、内部
が結晶化する前に成形が完了するので、透明で偏肉のな
い薄肉の容器が得られる。Further, since the preform is stretched when the inside is in a semi-molten state, there is almost no influence of temperature unevenness, and the molding is completed before the inside is crystallized, so that a thin container without any uneven wall thickness can be obtained. Can be
【0046】更にまた急冷によりスキン層を形成するた
め、内部が軟らかくとも離型が可能となり、これまでプ
リフォームの抜き勾配の関係から、適度な温度にての離
型が困難なことから、温調を必要とされていたびん状の
細口容器をも、3ステーション方式すなわち三工程によ
り広口容器の場合と同様に成形することができる。Further, since the skin layer is formed by quenching, the mold can be released even if the inside is soft, and it is difficult to release the mold at an appropriate temperature because of the draft angle of the preform. A bottle-shaped narrow-necked container which needs to be adjusted can be formed by a three-station system, that is, three steps, in the same manner as in the case of a wide-mouthed container.
【0047】しかも、延伸吹込成形に要する時間がこれ
までより著しく短くなるので、成形サイクルも早くな
り、時間当たり生産量が増すなどの利点をも有する。In addition, since the time required for stretch blow molding is significantly shorter than before, there are also advantages such as a faster molding cycle and an increase in production per hour.
【図面の簡単な説明】[Brief description of the drawings]
【図1】 高温プリフォームの断面図である。FIG. 1 is a cross-sectional view of a high-temperature preform.
【図2】 結晶性樹脂により射出成形した高温プリフォ
ームの表面温度の経時変化図である。FIG. 2 is a graph showing the change over time in the surface temperature of a high-temperature preform injection-molded with a crystalline resin.
【図3】 ポリエチレンテレフタレートにより射出成形
したサンプルNO1の高温プリフォームの表面温度の経
時変化図である。FIG. 3 is a graph showing the change over time of the surface temperature of a high-temperature preform of sample NO1 injection-molded with polyethylene terephthalate.
【図4】 ポリエチレンテレフタレートにより射出成形
したサンプルNO2の高温プリフォームの表面温度の経
時変化図である。FIG. 4 is a graph showing the change over time in the surface temperature of a high-temperature preform of sample NO2 injection-molded with polyethylene terephthalate.
【図5】 ポリエチレンテレフタレートにより射出成形
したサンプルNO3の高温プリフォームの表面温度の経
時変化図である。FIG. 5 is a graph showing the change over time of the surface temperature of a high-temperature preform of sample NO3 injection-molded with polyethylene terephthalate.
【図6】 ポリエチレンテレフタレートによるプリフォ
ームの延伸吹込成形時を示す表面温度の経時変化図であ
る。FIG. 6 is a graph showing the change over time of the surface temperature during stretch blow molding of a preform using polyethylene terephthalate.
【図7】 ポリプロピレンにより射出成形したサンプル
NO4の高温プリフォームの表面温度の経時変化図であ
る。FIG. 7 is a graph showing the change over time in the surface temperature of a high-temperature preform of sample NO4 injection-molded with polypropylene.
【図8】 ポリプロピレンによるプリフォームの延伸吹
込成形時を示す表面温度の経時変化図である。FIG. 8 is a graph showing the change over time of the surface temperature during stretch blow molding of a preform made of polypropylene.
11 プリフォーム 12 スキン層 13 内部樹脂 14 容器 11 Preform 12 Skin layer 13 Internal resin 14 Container
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29L 22:00 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI B29L 22:00
Claims (4)
のプリフォームに形成し、そのプリフォームをリップ型
により口部を保持して射出金型から吹込金型に移送し、
吹込金型内にて所要の薄肉中空成形品に延伸吹込成形す
るにあたり、上記プリフォームの射出金型からの離型
を、急冷により表面に生じたスキン層により形状の維持
が可能な状態にあり、かつ内部冷却が未完で高温状態に
あるうちに行い、そのプリフォームの延伸吹込成形を、
自己の内部温度により上昇するプリフォームの表面温度
がピーク温度に達するまでの時間内にて行うことを特徴
とする射出延伸吹込成形方法。1. A molten resin is injected into an injection mold to form a required preform, and the preform is transferred from the injection mold to a blow mold while holding a mouth portion by a lip mold.
In stretching blow molding to a required thin hollow molded product in a blow mold, the preform is released from the injection mold, and the shape can be maintained by a skin layer generated on the surface by rapid cooling. And while the internal cooling is incomplete and in a high temperature state, stretch blow molding of the preform,
An injection stretch blow molding method, which is performed within a time period until the surface temperature of the preform that rises due to its own internal temperature reaches a peak temperature.
ートからなり、そのプリフォームの射出金型からの離型
は、離型直後の表面温度が常温で60℃以上70℃以下
となる温度範囲にて行い、延伸吹込成形はプリフォーム
の表面温度が80℃以上95℃以下の温度領域でピーク
温度に達するまでの時間内にて行うことを特徴とする請
求項1記載の射出延伸吹込成形方法。2. The preform is made of polyethylene terephthalate, and the preform is released from the injection mold in a temperature range where the surface temperature immediately after the release is 60 ° C. or more and 70 ° C. or less at room temperature. The injection stretch blow molding method according to claim 1, wherein the blow molding is performed within a time period until the surface temperature of the preform reaches a peak temperature in a temperature range of 80C to 95C.
り、そのプリフォームの射出金型からの離型は、離型直
後の表面温度が常温で90℃以上100℃以下となる温
度範囲にて行い、延伸吹込成形はプリフォームの表面温
度が110℃以上122℃以下の温度領域でピーク温度
に達するまでの時間内にて行うことを特徴とする請求項
1記載の射出延伸吹込成形方法。3. The preform is made of polypropylene, and the preform is released from the injection mold in a temperature range where the surface temperature immediately after the release is 90 ° C. or more and 100 ° C. or less at room temperature. The injection stretch blow molding method according to claim 1, wherein the molding is performed within a time period until the surface temperature of the preform reaches a peak temperature in a temperature range of 110 ° C to 122 ° C.
ン、ポリカーボネートなどの結晶性樹脂からなることを
特徴とする請求項1記載の射出延伸吹込方法。4. The injection stretch blowing method according to claim 1, wherein the preform molding resin is made of a crystalline resin such as polyethylene or polycarbonate.
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3068036A JP2931428B2 (en) | 1990-03-30 | 1991-03-07 | Injection stretch blow molding method |
AU73869/91A AU640997B2 (en) | 1990-03-30 | 1991-03-27 | Injection orientation blow molding method |
EP91104952A EP0454997B1 (en) | 1990-03-30 | 1991-03-28 | Injection orientation blow molding method |
SG1996009522A SG43360A1 (en) | 1990-03-30 | 1991-03-28 | Injection orientation blow molding method |
DE69120863T DE69120863T2 (en) | 1990-03-30 | 1991-03-28 | Process for injection stretch blow molding |
DE91104952T DE454997T1 (en) | 1990-03-30 | 1991-03-28 | Process for injection stretch blow molding. |
CA002039488A CA2039488C (en) | 1990-03-30 | 1991-03-28 | Injection orientation blow molding method |
ES91104952T ES2038099T3 (en) | 1990-03-30 | 1991-03-28 | METHOD OF MOLDING BY INJECTION AND BLOWING WITH ORIENTATION. |
SU914895131A RU2060889C1 (en) | 1990-03-30 | 1991-03-29 | Method of injection orientation blow moulding |
KR1019910005057A KR950009720B1 (en) | 1990-03-30 | 1991-03-29 | Injection orientation blow molding method |
CN91102594A CN1035806C (en) | 1990-03-30 | 1991-03-30 | Lijection orientation blow mollding method |
MX025161A MX173373B (en) | 1990-03-30 | 1991-04-01 | BLOW MOLDING METHOD WITH INJECTION ORIENTATION |
AR91319357A AR247130A1 (en) | 1990-03-30 | 1991-04-01 | A blow-moulding method for injection orientation. |
US07967529 US5364585B1 (en) | 1990-03-30 | 1992-10-27 | Injection orientation blow molding method |
HK97101699A HK1000182A1 (en) | 1990-03-30 | 1997-09-02 | Injection orientation blow molding method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8559490 | 1990-03-30 | ||
JP2-85594 | 1990-03-30 | ||
JP3068036A JP2931428B2 (en) | 1990-03-30 | 1991-03-07 | Injection stretch blow molding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04214322A JPH04214322A (en) | 1992-08-05 |
JP2931428B2 true JP2931428B2 (en) | 1999-08-09 |
Family
ID=26409269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3068036A Expired - Lifetime JP2931428B2 (en) | 1990-03-30 | 1991-03-07 | Injection stretch blow molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2931428B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100763106B1 (en) * | 2000-09-29 | 2007-10-04 | 가부시키가이샤 아오키가타시겐큐쇼 | Stretch blow container and molding method therefor |
JP2020037273A (en) * | 2017-10-19 | 2020-03-12 | 日精エー・エス・ビー機械株式会社 | Method and device for producing resin vessel |
WO2022014540A1 (en) * | 2020-07-17 | 2022-01-20 | 日精エー・エス・ビー機械株式会社 | Method for manufacturing resin container and apparatus for manufacturing same |
WO2022030461A1 (en) * | 2020-08-03 | 2022-02-10 | 日精エー・エス・ビー機械株式会社 | Resin container manufacturing method, die unit, and blow molding device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3316511B2 (en) * | 1994-09-26 | 2002-08-19 | 株式会社青木固研究所 | Injection stretch blow molding method for polyethylene |
JPH0994872A (en) * | 1995-09-29 | 1997-04-08 | Aokiko Kenkyusho:Kk | Method for injection draw blow molding |
JP4714509B2 (en) * | 2005-06-13 | 2011-06-29 | 株式会社青木固研究所 | Injection stretch blow molding method |
JP5033469B2 (en) * | 2007-05-08 | 2012-09-26 | 株式会社青木固研究所 | Injection stretch blow molding method for heat-resistant bottles |
JP6727604B1 (en) | 2020-04-23 | 2020-07-22 | 株式会社青木固研究所 | Injection stretch blow molding machine and method for molding polyethylene container |
-
1991
- 1991-03-07 JP JP3068036A patent/JP2931428B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100763106B1 (en) * | 2000-09-29 | 2007-10-04 | 가부시키가이샤 아오키가타시겐큐쇼 | Stretch blow container and molding method therefor |
JP2020037273A (en) * | 2017-10-19 | 2020-03-12 | 日精エー・エス・ビー機械株式会社 | Method and device for producing resin vessel |
JP7202279B2 (en) | 2017-10-19 | 2023-01-11 | 日精エー・エス・ビー機械株式会社 | Method for manufacturing resin container |
WO2022014540A1 (en) * | 2020-07-17 | 2022-01-20 | 日精エー・エス・ビー機械株式会社 | Method for manufacturing resin container and apparatus for manufacturing same |
JP7511645B2 (en) | 2020-07-17 | 2024-07-05 | 日精エー・エス・ビー機械株式会社 | Manufacturing method and manufacturing device for resin container |
WO2022030461A1 (en) * | 2020-08-03 | 2022-02-10 | 日精エー・エス・ビー機械株式会社 | Resin container manufacturing method, die unit, and blow molding device |
JP7555417B2 (en) | 2020-08-03 | 2024-09-24 | 日精エー・エス・ビー機械株式会社 | Manufacturing method for resin container and blow molding device |
Also Published As
Publication number | Publication date |
---|---|
JPH04214322A (en) | 1992-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950009720B1 (en) | Injection orientation blow molding method | |
KR102280295B1 (en) | Method for producing resin vessel made of resin, mould unit and moulding apparatus | |
US4108937A (en) | Method of making hollow articles from plastic material | |
US8100687B2 (en) | Injection blow molding device for the manufacture of a thin-walled part | |
JP4714509B2 (en) | Injection stretch blow molding method | |
EP3919254A1 (en) | Production device and production method for resin containers | |
JP2931428B2 (en) | Injection stretch blow molding method | |
JP6770666B1 (en) | Resin container manufacturing equipment and manufacturing method | |
KR0185181B1 (en) | Method for injection stretch blow molding of polyethylene | |
EP3900913B1 (en) | Injection stretch blow molding machine and method for molding polyethylene container | |
JP2001526598A (en) | Improved multilayer container and preform | |
GB1597660A (en) | Manufacture of hollow bodies of polyethylene terephthalate | |
JP3316510B2 (en) | Injection stretch blow molding method for polyethylene | |
JP2948865B2 (en) | Injection stretch blow molding method | |
US6555046B1 (en) | Injection stretch blow molding method | |
JPS63122516A (en) | Manufacture of bottle made of polyethylene terephthalate resin | |
JPH0557782A (en) | Injection orientation blow molding method for flat vessel | |
JPH0615643A (en) | Manufacture of premolded body | |
JP3316511B2 (en) | Injection stretch blow molding method for polyethylene | |
JPH0462027A (en) | Manufacture of high-stretch-blow-molded container | |
JPS61291121A (en) | Method and apparatus for manufacturing stretched polyester bottle | |
JPH09314650A (en) | Biaxially stretching blow molding method | |
JPH0427093B2 (en) | ||
IE47479B1 (en) | Manufacture of hollow bodies of polyethylene terephthalate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |