JPH0462027A - Manufacture of high-stretch-blow-molded container - Google Patents

Manufacture of high-stretch-blow-molded container

Info

Publication number
JPH0462027A
JPH0462027A JP2165982A JP16598290A JPH0462027A JP H0462027 A JPH0462027 A JP H0462027A JP 2165982 A JP2165982 A JP 2165982A JP 16598290 A JP16598290 A JP 16598290A JP H0462027 A JPH0462027 A JP H0462027A
Authority
JP
Japan
Prior art keywords
temperature
stretch blow
preform
primary
stretch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2165982A
Other languages
Japanese (ja)
Inventor
Kaneo Yamada
務夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2165982A priority Critical patent/JPH0462027A/en
Publication of JPH0462027A publication Critical patent/JPH0462027A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/18Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using several blowing steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6472Heating or cooling preforms, parisons or blown articles in several stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C2049/023Combined blow-moulding and manufacture of the preform or the parison using inherent heat of the preform, i.e. 1 step blow moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • B29C49/12Stretching rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6418Heating of preforms
    • B29C49/6419Heating of preforms from the inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6427Cooling of preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6427Cooling of preforms
    • B29C49/6435Cooling of preforms from the outside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/68Ovens specially adapted for heating preforms or parisons
    • B29C49/681Ovens specially adapted for heating preforms or parisons using a conditioning receptacle, e.g. a cavity, e.g. having heated or cooled regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable

Abstract

PURPOSE:To enhance the gas barrier properties and the like of the container concerned by a method wherein primary stretch blow molding is performed under the condition that the temperature of only the surface of a preformed body is controlled, and, when the wall thickness decreases by some extent, the temperature of the whole preformed body is controlled so as to perform secondary stretch blow molding at the end of said temperature controlling. CONSTITUTION:A primary preformed body 10, which is held with B mouth part outer mold 41 and a mouth part inner mold 42, is installed in a primary forming mold 40. At this time, the temperatures at a layer 10a near the outer surface of the body 10 and at a layer 10c near its inner surface is lower than the temperature of a central layer 10b. Next, a stretching rod 45 is inserted in the body 10 so as to abut the tip part 46 of the rod against the central part 14 of the bottom part 13 of the body 10, and, at the same time, pressurizing air is blown off through blow-off holes 47 so as to perform primary stretch blow molding in order to obtain a secondary preformed body 20. In a temperature controlling device 60, by controlling the temperatures of temperature controlling cores and of respective temperature controlling heaters 81-85 and the inflow of air, the temperature of the secondary preformed body 20 is controlled from its inner and outer surfaces up to the temperature suitable for stretch blow molding. Finally, the secondary preformed body 20 is stretch-blow-molded so as to form a high-stretch-blow-molded container 30.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、延伸ブロー成形により成形される容器の製造
方法に関し、特(ご延伸倍率の大きし)高延伸ブロー成
形容器の製造方法l′−関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a container formed by stretch blow molding, and in particular a method for manufacturing a high stretch blow molded container (with a large stretch ratio). -Related.

〔従来の技術及び発明が解決しようとする課題〕炭酸飲
料や果汁飲料等を封入する樹脂製容器、特にボトルは、
ポリエチレンテレフタレート樹脂等を射出成形した予備
成形体を、延伸ブロー成形することにより製造される。
[Prior art and problems to be solved by the invention] Resin containers, especially bottles, for enclosing carbonated drinks, fruit juice drinks, etc.
It is manufactured by stretch-blow molding a preformed body made by injection molding polyethylene terephthalate resin or the like.

このような延伸ブロー成形容器に、果汁飲料等を封入す
る場合には、容器外から侵入する酸素の影響により内容
物の性質か変化し、風味を損なうという問題がある。ま
た炭酸飲料等を封入する場合にも、炭酸ガスが容器内部
から放出してしまうと、商品価値を損なうという問題が
ある。
When enclosing a fruit juice drink or the like in such a stretch-blow-molded container, there is a problem that the properties of the contents change due to the influence of oxygen entering from outside the container, impairing the flavor. Furthermore, when enclosing carbonated drinks or the like, there is a problem in that if carbon dioxide gas is released from the inside of the container, the product value will be impaired.

そこで、このような延伸ブロー成形容器にガスバリヤ−
性を付加するために、様々な対策が構じられている。
Therefore, a gas barrier is added to such stretch-blow molded containers.
Various measures have been taken to add gender.

例えば、延伸ブロー成形容器表面に酸素バリヤー性を有
する塩化ビニリデンあるいは酸化ケイ素(シリカ)等の
無機物をコーティングする方法、あるいは延伸ブロー成
形容器を形成するポリエチレンテレフタレート等の樹脂
層と、エチレンビニルアルコール共重合体あるいはナイ
ロン等の酸素バリヤー性を有する層との多層構造にする
方法、あるいは延伸ブロー成形容器の表面に酸素ノくリ
ヤー性を有するアルミニウム等を真空蒸着法等により、
プラスチックメタラ、イジングする方法等がある。
For example, a method of coating the surface of a stretch blow molded container with an inorganic material such as vinylidene chloride or silicon oxide (silica) having oxygen barrier properties, or a method of coating a resin layer such as polyethylene terephthalate forming the stretch blow molded container with an ethylene vinyl alcohol copolymer. By combining or creating a multilayer structure with a layer having oxygen barrier properties such as nylon, or by vacuum deposition of aluminum or the like having oxygen barrier properties on the surface of the stretch blow molded container,
There are methods such as plastic metallization and ising.

しかしながら、これら方法は、デラミネーションか発生
するとか、表面の強度が十分でないとか、リサイクルが
困離であるとか、酸素ノくリヤー性の性能が安定してい
ないとか、不透明になり製品価値を低下させる等の問題
を有する。
However, with these methods, delamination occurs, the surface strength is not sufficient, recycling is difficult, the oxygen barrier performance is not stable, and the product becomes opaque, reducing the product value. There are problems such as causing

上述の方法のようなデメリットを有さずに、ガスバリヤ
−性を向上する方法に、延伸ブロー成形における延伸倍
率を高くする方法がある。この方法は延伸倍率を高くす
るほど、ガスバリヤ−性を向上することができる。また
延伸倍率を高くすることにより、透明性、強度、剛性等
の容器の物理的性質をも向上することができる。
A method for improving gas barrier properties without having the disadvantages of the above-mentioned methods is to increase the stretch ratio in stretch blow molding. In this method, the gas barrier properties can be improved as the stretching ratio is increased. Furthermore, by increasing the stretching ratio, the physical properties of the container such as transparency, strength, and rigidity can also be improved.

ところが延伸倍率比を高くするためには、厚肉の予備成
形体を射出成形等により成形する必要があるが、成形中
に結晶化による白濁が発生しない様に冷却するため、長
時間を要するという問題がある。
However, in order to increase the draw ratio, it is necessary to mold a thick preform by injection molding, etc., but it takes a long time to cool it to prevent clouding due to crystallization during molding. There's a problem.

ところで、第11図に示すような、口部lと胴部2と底
部3とからなる有底円筒状の予備成形体を延伸ブロー成
形するには、例えば特開昭57−117929号で開示
されているような方法がある。この方法は、延伸ロッド
4で予備成形体の底部3を内側から縦方向に押圧すると
同時に、高温の加圧エアを延伸ロッド内から吹き出して
、胴部2を周方向に延伸ブロー成形する。その際、一般
に各部位の延伸度は異なるので、部位に応じて延伸ブロ
ーに最適な温度に調整する必要がある。
By the way, in order to stretch-blow mold a bottomed cylindrical preformed body consisting of a mouth part l, a body part 2, and a bottom part 3 as shown in FIG. There is a way to do that. In this method, the bottom part 3 of the preform is pressed vertically from the inside with a stretching rod 4, and at the same time, high-temperature pressurized air is blown out from inside the stretching rod to stretch-blow mold the body 2 in the circumferential direction. At that time, since the degree of stretching generally differs between regions, it is necessary to adjust the temperature to the optimum temperature for stretch blowing depending on the region.

予備成形体の温調方法には、一般に二通りある。There are generally two methods for controlling the temperature of a preform.

一つはコールドパリソン方式と称する方法である。One is a method called the cold parison method.

この方法は、射出成形後、予備成形体をいったんストッ
クし、室温になった多数の予備成形体を順次移動させな
からヒータ等により加熱するものである。具体的には、
予備成形体を軸回りに回転させながら移動し、ヒータを
備えた加熱領域を通過させる。その際、ヒータの密度ま
たは発熱量を予備成形体の軸に沿った方向で適当に変え
、あるU=はヒータで加熱後、さらに予備成形体の所定
の部位に低温の空気を吹きつけて冷却する。それによっ
て、予備成形体の各部位を延伸ブロー成形適性温度にす
る。この方法は、予備成形体をストックすることができ
るため、大量生産に向いている。
In this method, after injection molding, the preforms are temporarily stored, and the large number of preforms that have reached room temperature are heated by a heater or the like before being moved one after another. in particular,
The preform is moved while rotating around its axis, and passed through a heating area equipped with a heater. At that time, the density or calorific value of the heater is changed appropriately in the direction along the axis of the preform, and a certain U= is heated by the heater and then cooled by blowing low temperature air onto a predetermined part of the preform. do. Thereby, each part of the preform is brought to a temperature suitable for stretch blow molding. This method is suitable for mass production because preforms can be stocked.

しかしなから、厚肉の予備成形体、例えば5mm以上の
ものをこの方法で加熱温調する場合、表面層が過加熱さ
れ、結晶化温度以上になり白濁するため通常4mm前後
の肉厚が一般に実施されている。
However, when heating and temperature controlling a thick-walled preform, such as one with a thickness of 5 mm or more, using this method, the surface layer is overheated and becomes cloudy due to the temperature exceeding the crystallization temperature. It has been implemented.

もう一つの方法は、ホットパリソン方式と称する方法で
ある。この方法は、複数の温調型を積層して、その内部
に射出成形直後の高温の予備成形体を設置し、各温調型
に対応する予備成形体の各部位を外周面を延伸ブロー成
形適性温度にする方法である(例えば、特開昭63−1
89225号)。この方法は予備成形体のストックを持
つ必要がないため、多品種少量生産をおこなう場合に、
在庫管理上、有利である。
Another method is a method called the hot parison method. In this method, multiple temperature control molds are stacked, a high-temperature preform immediately after injection molding is installed inside the mold, and each part of the preform corresponding to each temperature control mold is stretch-blow-molded on the outer peripheral surface. This is a method of adjusting the temperature to an appropriate temperature (for example, JP-A-63-1
No. 89225). This method does not require stock of preforms, so it is suitable for high-mix, low-volume production.
This is advantageous in terms of inventory management.

しかしながら、上述のような延伸ブロー成形容器の酸素
バリヤー性、透明性、強度、剛性等を向上するために延
伸倍率を高く設定する場合においては、厚肉の予備成形
体を厳密に延伸ブロー成形適性温度に温度調整しなけれ
ばならず、また通常の延伸ブロー成形に比べて予備成形
体の肉厚が厚(、また長さも短くなるために、予備成形
体内部の温度差を一様に延伸ブロー成形適性温度に調整
するためには、多くの時間を必要とし、生産性か低下す
るという問題がある。
However, when setting a high stretching ratio in order to improve the oxygen barrier properties, transparency, strength, rigidity, etc. of the stretch blow molded container as described above, it is necessary to The temperature must be adjusted to the desired temperature, and the preform is thicker (and shorter) than normal stretch blow molding, so stretch blow molding uniformly balances the temperature difference inside the preform. There is a problem in that a lot of time is required to adjust the temperature to a suitable temperature for molding, which reduces productivity.

特に射出成形直後の高温の予備成形体を、ただちに延伸
ブロー成形するホットパリソン方式においては、この予
備成形体を延伸ブロー成形適性温度に温度調整するため
に消費する時間は、生産効率の低下に直接影響をおよぼ
すという問題かある。
Particularly in the hot parison method, in which a high-temperature preform is stretch-blow molded immediately after injection molding, the time it takes to adjust the temperature of the preform to a temperature suitable for stretch-blow molding directly reduces production efficiency. There is an issue of influence.

また肉厚の予備成形体は、延伸ブロー成形適性温度に温
度調整する際に、結晶化による白化が生じやすく、透明
性が失われてしまうという問題がある。
In addition, thick preforms tend to whiten due to crystallization when the temperature is adjusted to a temperature suitable for stretch blow molding, resulting in a loss of transparency.

従って本発明の目的は、ホットパリソン方式において、
ガスバリヤ−性等を向上させるために、延伸ブロー成形
における延伸倍率を高く設定し、予備成形体か厚い肉厚
を有する場合においても、製品を白化させることなく、
射出成形直後の高温の予備成形体を厳密に延伸ブロー成
形適性温度に温度調整するために必要な時間を短縮する
ことかできる高延伸ブロー成形容器の製造方法を提供す
ることである。
Therefore, the object of the present invention is to
In order to improve gas barrier properties, etc., the stretch ratio in stretch blow molding is set high, and even if the preform has a thick wall thickness, the product can be processed without whitening.
It is an object of the present invention to provide a method for manufacturing a high-stretch blow-molded container that can shorten the time required to precisely adjust the temperature of a high-temperature preform immediately after injection molding to a temperature suitable for stretch-blow molding.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的に鑑み鋭意研究の結果、本発明者は、高延伸ブ
ロー成形容器の製造方法において、予備成形体の延伸ブ
ロー成形工程を二段階に分割し、射出型内薄肉の開口部
、底部及び厚肉の胴部のうち、型に接する内外表面の近
傍層をガラス転位温度付近まで冷却し、胴部の中心層は
ガラス転位温度以上、結晶化温度以下の高温のまま、す
なわち不均一な温度分布を有する状態、予備成形体の胴
部の表面のみを延伸効果が得られる温度に調節して、一
次の延伸ブロー成形工程を行い、予備成形体の肉厚を減
少させ表面積を拡大させた時点で、予備成形体全体の温
度調整をおこない、その温度調整が終了した時点て二次
の延伸ブロー成形をおこなうことにより、予備成形体を
、その内部に至るまで厳密に延伸ブロー成形適性温度に
調整するために必要とする時間を短縮することかできる
こと及び2度にわたる延伸により、特にパリソン内外表
面層は極めて高い延伸比を実現しうろことを発見し、本
発明に想到した。
As a result of intensive research in view of the above objectives, the present inventor divided the stretch blow molding process of the preform into two stages in the manufacturing method of a high stretch blow molded container, and determined that the The layers near the inner and outer surfaces of the meat body that are in contact with the mold are cooled to near the glass transition temperature, while the center layer of the meat body remains at a high temperature above the glass transition temperature and below the crystallization temperature, that is, an uneven temperature distribution. At the point when the temperature of only the surface of the body of the preform is adjusted to a temperature where a stretching effect can be obtained, the primary stretch blow molding process is performed to reduce the wall thickness of the preform and expand the surface area. , the temperature of the entire preform is adjusted, and once the temperature adjustment is completed, secondary stretch blow molding is performed to precisely adjust the temperature of the preform to the appropriate temperature for stretch blow molding, down to the inside of the preform. The inventors have discovered that the time required for this process can be shortened, and that by stretching twice, an extremely high stretching ratio can be achieved, especially for the inner and outer surface layers of the parison, and the present invention has been developed.

すなわち、本発明の射出成形により成形される口部と胴
部と底部とからなる肉厚の樹脂製一次子偏成形体を高延
伸ブロー成形する容器の製造方法は、(a)射出成形後
の高温の前記一次子偏成形体の前記胴部の表面の近傍層
の温度を低下させ、(b)前記一次子偏成形体の中央層
が高温であり、かつ前記近傍層が低温の不均一の温度分
布状態で一次延伸ブロー成形することにより、二次予備
成形体を成形し、(c)前記二次予備成形体の温度分布
を均一化するとともに、前記二次予備成形体をさらに二
次延伸ブロー成形することを特徴とする。
That is, the method for producing a container of the present invention involves high-stretch blow molding of a thick-walled resin primary unevenly molded body formed by injection molding, consisting of a mouth, a body, and a bottom. (b) lowering the temperature of a layer near the surface of the trunk of the primary molded body at a high temperature; A secondary preform is formed by primary stretch blow molding in a temperature distribution state, and (c) the temperature distribution of the secondary preform is made uniform, and the secondary preform is further subjected to secondary stretching. It is characterized by blow molding.

〔実施例及び作用〕[Examples and effects]

第1図は本発明の一実施例による高延伸ブロー成形容器
の予備成形体を示す断面図であり、一次の延伸ブロー成
形前のもの(一次子偏成形体1oと称す)である。
FIG. 1 is a sectional view showing a preformed body of a high stretch blow-molded container according to an embodiment of the present invention, which is before primary stretch blow molding (referred to as primary uneven molded body 1o).

本実施例において、一次子偏成形体10は、射出成形に
より成形される有底円筒体であり、口部11と胴部12
と底部13とからなる。
In this embodiment, the primary uneven molded body 10 is a cylindrical body with a bottom formed by injection molding, and has a mouth part 11 and a body part 12.
and a bottom portion 13.

また本実施例において、一次子偏成形体10の口部11
を除く延伸成形長り。の1/2の位置における胴部12
の肉厚W。は、口部11の肉厚と底部13の肉厚より厚
く成形されている。
In addition, in this embodiment, the mouth portion 11 of the primary molded body 10 is
Excluding stretch molding length. The body 12 at a position of 1/2 of
Thickness W. is formed to be thicker than the mouth portion 11 and the bottom portion 13.

また、一次子偏成形体1oの延伸成形長り。の1/2の
位置における胴部12の平均径をφ。とじ、同位置にお
ける内側表面径をφ。1とし、さらに同位置における外
側表面径をφ。2とすると、φ。とφ。。
Also, the stretching length of the primary uneven molded body 1o. The average diameter of the trunk 12 at the 1/2 position is φ. The inner surface diameter at the same position is φ. 1, and the outer surface diameter at the same position is φ. 2, φ. andφ. .

とφ。2との関係は次式で表される。andφ. The relationship with 2 is expressed by the following equation.

φ。=(φ。1+φ。2)/2 また本実施例においては、一次子偏成形体1oの胴部1
2は、内表面近傍層10a 、中央層lob、外表面近
傍層10cとからなっている。
φ. =(φ.1+φ.2)/2 In addition, in this embodiment, the body portion 1 of the primary uneven molded body 1o
2 consists of a layer 10a near the inner surface, a center layer lob, and a layer 10c near the outer surface.

第2図は本発明の一実施例による高延伸ブロー成形容器
の予備成形体を示す断面図であり、第1図に示す一次子
備成形体10(ニー次の延伸ブロー成形を施したもの(
二次予備成形体20と称す)である。
FIG. 2 is a sectional view showing a preformed body of a high stretch blow molded container according to an embodiment of the present invention, and shows the primary molded body 10 shown in FIG.
(referred to as a secondary preform 20).

本実施例において、二次予備成形体20(ま、口部11
と胴部12と底部13とからなる。
In this example, the secondary preformed body 20 (well, the mouth part 11
It consists of a body part 12 and a bottom part 13.

また本実施例において、二次予備成形体20の延伸成形
長h1の172の位置における胴部12の肉厚をW2と
し、同位置における平均径をφ1とし、同位置における
内側表面径をφ11とし、同位置(こお(する外側表面
径をφ12とすると、φ1とφ11とφ、2との関係は
次式で表される。
In addition, in this example, the wall thickness of the body portion 12 at position 172 of the stretching length h1 of the secondary preform 20 is set as W2, the average diameter at the same position is set as φ1, and the inner surface diameter at the same position is set as φ11. , If the outer surface diameter at the same position is φ12, the relationship between φ1, φ11, φ, and 2 is expressed by the following equation.

φ1=(φ3.十φ12)/2 第3図は本発明の一実施例による高延伸ブロー成形容器
示す断面図である。
φ1=(φ3.0φ12)/2 FIG. 3 is a sectional view showing a high stretch blow molded container according to an embodiment of the present invention.

本実施例において、高延伸ブロー成形容器30(マ、口
部11と胴部12と底部13とからなる。
In this embodiment, a high-stretch blow-molded container 30 consists of a mouth portion 11, a body portion 12, and a bottom portion 13.

また本実施例において、高延伸ブロー成形容器30の延
伸成形長h2の1/2の位置における夕j (111表
面径をφ2□としている。
Further, in this embodiment, the surface diameter of the surface of the high-stretch blow-molded container 30 at a position 1/2 of the stretch-formed length h2 is set to φ2□.

第4図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第一段階を示す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing the first step in the manufacturing process of a high stretch blow-molded container according to an embodiment of the present invention.

第4図においては、射出成形された一次子備成形体10
か一次延伸ブロー成形され、二次予備成形体20か形成
された状態を示している。
In FIG. 4, an injection molded primary component molded body 10 is shown.
The figure shows a state in which a secondary preform 20 has been formed by primary stretch blow molding.

本実施例においては、口部外型41と口部内型42とに
より把握された一次子備成形体10 (第4図において
は、破線により示す)が、−吹成形型40内に装着され
るが、この時、第1図に示す一次子備成形体10は射出
成形型内で温度調整されるため、外表面近傍層10a及
び内表面近傍層10cの温度は低くなっており、中央層
10bの温度は高くなっている。具体的には、外表面近
傍層10a及び内表面近傍層10cの温度をガラス転位
点温度付近とするのが好ましく、また中央層10bの温
度を、ガラス転位点温度以上、結晶化温度以下とするの
が好ましい。これは内外表面近傍層10c 110aは
延伸配向効果が得られ、かつ中央層の結晶化による白濁
の発生を防止でき、また内外表面近傍層が離型てきる硬
さになるためである。
In this embodiment, a primary molded article 10 (indicated by broken lines in FIG. 4) held by an outer mouth mold 41 and an inner mouth mold 42 is installed in a blow mold 40. However, at this time, since the temperature of the primary molded article 10 shown in FIG. 1 is adjusted in the injection mold, the temperature of the layer 10a near the outer surface and the layer 10c near the inner surface is low, and the temperature of the layer 10a near the outer surface is low, and the temperature of the layer 10c near the inner surface is low. temperature is rising. Specifically, it is preferable that the temperature of the layer 10a near the outer surface and the layer 10c near the inner surface be around the glass transition point temperature, and the temperature of the center layer 10b be above the glass transition point temperature and below the crystallization temperature. is preferable. This is because the layers 10c and 110a near the inner and outer surfaces can obtain a stretching orientation effect, can prevent clouding from occurring due to crystallization of the central layer, and have a hardness that allows the layers near the inner and outer surfaces to be released from the mold.

次いて、口部内型42の穴部43を通して上方から延伸
ロッド45が挿入される。延伸ロッド45の先端部46
が、一次子偏成形体10の底部13の中央部14に当接
しく第4図においては、この状態を破線により示す)、
押圧するとともに、延伸ロッド45の複数個の吹出穴4
7より加圧エアを吹き出し、一次延伸ブロー成形をおこ
なうことにより、二次予備成形体20が得られる。
Next, the stretching rod 45 is inserted from above through the hole 43 of the inner mouth mold 42 . Tip end 46 of stretching rod 45
is in contact with the center portion 14 of the bottom portion 13 of the primary irregular molded body 10 (this state is shown by a broken line in FIG. 4),
While pressing, the plurality of blowout holes 4 of the stretching rod 45
By blowing out pressurized air from 7 and performing primary stretch blow molding, the secondary preform 20 is obtained.

第5図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第二段階を示す概略断面図である。
FIG. 5 is a schematic cross-sectional view showing the second step of the manufacturing process of a high stretch blow-molded container according to an embodiment of the present invention.

第5図において、口部外型41に装着した状態の二次予
備成形体20の内側には、複数のエアベント用の溝部5
1を有する温度調整コア50か挿入されて、温度調整装
置60内に挿入される。ここで温度調整コア50の内部
には温度調整用の媒体か循環しており、また温度調整コ
ア50は離型を容易にするために、テーバ状に形成され
ている。
In FIG. 5, there are a plurality of air vent grooves 5 on the inside of the secondary preform 20 attached to the mouth outer mold 41.
1 is inserted into the temperature regulating device 60. Here, a temperature regulating medium is circulated inside the temperature regulating core 50, and the temperature regulating core 50 is formed into a tapered shape to facilitate mold release.

本実施例において、温度調整装置60は、5ケの温度調
整ブロック61〜65を有し、各温度調整ブロック61
〜65の内側には、通路71〜75を有し、また外側に
は、バンド型の温度調整ヒータ81〜85を有する。
In this embodiment, the temperature adjustment device 60 has five temperature adjustment blocks 61 to 65, and each temperature adjustment block 61 has five temperature adjustment blocks 61 to 65.
-65 has passages 71-75 on the inside, and band-type temperature adjustment heaters 81-85 on the outside.

また本実施例において、温度調整装置60は、上部ブロ
ック66及び下部ブロック67を有し、上部ブロック6
6には通路76を有し、下部ブロック67には、通路7
7を有する。上記各通路は連続しており、下部ブロック
67の通路77から各温度調整ブロック61〜65の各
通路71〜75を通じて、上部ブロック66の通路76
へ抜ける温度調整用のエアが通過する構造になっている
Further, in this embodiment, the temperature adjustment device 60 has an upper block 66 and a lower block 67, and the upper block 66 has an upper block 66 and a lower block 67.
6 has a passage 76, and the lower block 67 has a passage 76.
It has 7. Each of the above-mentioned passages is continuous, from the passage 77 of the lower block 67 through the passages 71 to 75 of the temperature adjustment blocks 61 to 65, to the passage 76 of the upper block 66.
It has a structure that allows temperature adjustment air to pass through.

このような構造の温度調整装置60においては、温度調
整コアと、各温度調整ヒータ81〜85の温度と、エア
の流入量とを調整することにより、二次予備成形体20
を内外表面より延伸ブロー成形適性温度に温度調整する
。ここで、第5図に示した温調工程をとらずに第4図の
型40を所望の温度に温調することにより、一次延伸ブ
ロー後型40内にとどめ引続き二次予備成形体を温調し
、第三の工程へ進むこともできる。
In the temperature adjustment device 60 having such a structure, the secondary preform 20 is adjusted by adjusting the temperature of the temperature adjustment core, the temperature of each temperature adjustment heater 81 to 85, and the amount of air inflow.
Adjust the temperature of the inner and outer surfaces to a temperature suitable for stretch blow molding. Here, by controlling the temperature of the mold 40 shown in FIG. 4 to a desired temperature without taking the temperature control step shown in FIG. You can also move on to the third step.

第6図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第三段階を示す概略断面図である。
FIG. 6 is a schematic cross-sectional view showing the third step in the manufacturing process of a high-stretch blow-molded container according to an embodiment of the present invention.

第6図においては、二次予備成形体20か延伸ブロー成
形され、高延伸ブロー成形容器30が成形された状態を
示している。
FIG. 6 shows a state in which the secondary preform 20 has been stretch blow molded to form a high stretch blow molded container 30.

本実施例においては、口部外型91と口部内型92とに
より把握された二次予備成形体20(第6図においては
、破線により示す)が二次成形型90内に装着され、ま
た口部内型92の穴部93を通して、上方から延伸ロッ
ド95が挿入される。ここて延伸ロッド95の先端部9
6か、二次予備成形体20の底部23の中央部24に当
接しく第6図においては、この状態を破線により示す)
、押圧するとともに、延伸ロッド95の複数個の吹出穴
97よりエアを吹き出し二次の延伸ブロー成形をおこな
うことにより、高延伸ブロー成形容器30が得られる。
In this embodiment, the secondary preform 20 (indicated by broken lines in FIG. 6) held by the outer mouth mold 91 and the inner mouth mold 92 is mounted in the secondary mold 90, and A stretching rod 95 is inserted from above through the hole 93 of the inner mouth mold 92 . Here, the tip end 9 of the extension rod 95
(6) or in contact with the center part 24 of the bottom part 23 of the secondary preform 20 (in FIG. 6, this state is shown by a broken line)
, while pressing, air is blown out from the plurality of blowing holes 97 of the stretching rod 95 to perform secondary stretch blow molding, thereby obtaining the high stretch blow molded container 30.

第7図は、第1図に示す一次子備成形体lOの断面厚さ
方向の温度分布を定性的に示すグラフであり、射出成型
後に射出成形型から離型した直後の一次子備成形体10
の断面厚さ方向の温度分布を示すものである。
FIG. 7 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the primary molded body lO shown in FIG. 10
This figure shows the temperature distribution in the cross-sectional thickness direction of .

第7図においてaは一次子備成形体lOの外表面近傍層
10aに対応する位置を示し、bは中央層lObに対応
する位置を示し、Cは内表面近傍層10cに対応する位
置を示す。
In FIG. 7, a indicates a position corresponding to the layer 10a near the outer surface of the primary component molded body lO, b indicates a position corresponding to the center layer lOb, and C indicates a position corresponding to the layer 10c near the inner surface of the primary molded body lO. .

第8図は、第1図に示す一次子備成形体10の断面厚さ
方向の温度分布を定性的に示すグラフであり、一次ブロ
ー成形する直前の一次子備成形体lOの断面厚さ方向の
温度分布を示すものである。
FIG. 8 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the primary equipped molded body 10 shown in FIG. This shows the temperature distribution of .

第7図及び第8図においてaは一次子備成形体lOの内
表面近傍層10aに対応する位置を示し、bは中央層1
0bに対応する位置を示し、Cは外表面近傍層10cに
対応する位置を示す。
In FIGS. 7 and 8, a indicates a position corresponding to the layer 10a near the inner surface of the primary molded body IO, and b indicates a position corresponding to the center layer 1
A position corresponding to 0b is shown, and C is a position corresponding to the outer surface vicinity layer 10c.

第9図は、第2図に示す二次予備成形体20の断面厚さ
方向の温度分布を定性的に示すグラフであり、一次延伸
ブロー成形直後の二次予備成形体20の断面厚さ方向の
温度分布を示すものである。
FIG. 9 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the secondary preform 20 shown in FIG. This shows the temperature distribution of .

第10図は、第2図に示す二・次子偏成形体20の断面
厚さ方向の温度分布を定性的に示すグラフてあり、第5
図に示す構造の温度調整装置内で温度調整を行った直後
の二次予備成形体20の断面厚さ方向の温度分布を示す
ものである。
FIG. 10 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the secondary and secondary shaped body 20 shown in FIG.
This figure shows the temperature distribution in the cross-sectional thickness direction of the secondary preform 20 immediately after temperature adjustment was performed in the temperature adjustment device having the structure shown in the figure.

第7図〜第1θ図において、グラフの横軸は、予備成形
体1O120の胴部12の断面厚さ方向の位置(0、w
o、w2は断面の最外部、W3、w3は断面の中央部を
示す)を示している。またグラフの縦軸は、温度(T、
は延伸適性温度を示し、T1.1、T。
In FIGS. 7 to 1θ, the horizontal axis of the graph indicates the position (0, w
o and w2 indicate the outermost part of the cross section, and W3 and w3 indicate the central part of the cross section. Also, the vertical axis of the graph is temperature (T,
indicates the appropriate stretching temperature, T1.1, T.

、2、T1.2、T1.4は最低温度、Laxl、T+
++axt、Tmax2、T*ax4は最高温度を示す
)を示している。
, 2, T1.2, T1.4 are the lowest temperatures, Laxl, T+
++axt, Tmax2, and T*ax4 indicate the maximum temperature).

第7図においてa、Cで示す、肉厚の一次子備成形体1
0の表面近傍層は、冷却された射出成形型に接していた
ため、低温状態である。またbで示す中央層は、射出成
形時の高温をほぼ保っている。
Thick primary molded body 1 indicated by a and C in FIG.
The layer near the surface of No. 0 was in a low temperature state because it was in contact with the cooled injection mold. Further, the central layer indicated by b almost maintains the high temperature during injection molding.

このため、T1111111’lとLlmlとの差は、
かなり大きい。
Therefore, the difference between T1111111'l and Llml is
Quite large.

第8図において、射出成形型から離型した一次延伸ブロ
ー成形直前の一次子備成形体は、胴部の温度分布状態が
第7図に示す状態より若干均一化している。しかしなが
ら、 T□、とT、52との差は大きい。ただしa、C
に示す表面近傍層は、はぼ延伸ブロー成形適性温度にな
っており、この状態で一次延伸ブロー成形することによ
り、表面近傍層については、延伸ブロー成形の効果か得
られる。
In FIG. 8, the temperature distribution state of the body of the primary molded article immediately before primary stretch blow molding which has been released from the injection mold is slightly more uniform than that shown in FIG. 7. However, the difference between T□ and T,52 is large. However, a, C
The layer near the surface shown in is at a temperature suitable for stretch blow molding, and by performing primary stretch blow molding in this state, the effect of stretch blow molding can be obtained for the layer near the surface.

第9図において、二次予備成形体の胴部の肉厚は薄くな
るが、短時間で一次延伸ブロー成形されるため、T□0
とTm1n3との差は依然として解消されていない。
In FIG. 9, the wall thickness of the body of the secondary preform is thinner, but because the primary stretch blow molding takes place in a short time, T□0
The difference between Tm1n3 and Tm1n3 remains unresolved.

第10図においては、胴部全での断面部の温度か、延伸
ブロー成形適性温度付近に均一化されている。
In FIG. 10, the temperature of the cross section of the entire body is made uniform around the temperature suitable for stretch blow molding.

本実施例においては、肉厚の予備成形体を一度で延伸ブ
ロー成形方法に比へて、上記均一化に要する時間を、著
しく短縮することができる。このため、全成形工程のサ
イクルタイムも短縮化し、生産性を著しく向上すること
ができる。
In this example, compared to the stretch blow molding method in which a thick preform is formed in one go, the time required for the above-mentioned uniformity can be significantly shortened. Therefore, the cycle time of the entire molding process can be shortened, and productivity can be significantly improved.

また本実施例においては、温度調整が短時間で行われる
ことにより、容器が結晶白濁化することかなく、良好な
透明性か得られる。これにより、予備成形体の肉厚が5
mmを超えるホモボリマーボリエチレンテレフタレート
樹脂による容器の成形にも対応することができる。
Further, in this example, since the temperature adjustment is carried out in a short time, the container does not become cloudy with crystals, and good transparency can be obtained. As a result, the wall thickness of the preform is 5
It is also possible to mold containers using homobolymer polyethylene terephthalate resin exceeding mm.

さらに本実施例においては、一次延伸ブロー成形後の薄
肉の二次予備成形体を円筒形状にすることにより、温度
調整用の型等の形状も簡素化することかできる。
Furthermore, in this embodiment, by making the thin secondary preformed body after the primary stretch blow molding into a cylindrical shape, the shape of the mold for temperature adjustment, etc. can also be simplified.

さらに本実施例においては、一次子偏成形体の胴部の肉
厚が完成容器の胴部の肉厚に比べて10〜20倍の高倍
率の延伸ブロー成形にも対応することかでき、この場合
も白化を生しる等の問題はなく、良好な効果を発揮する
Furthermore, in this example, the wall thickness of the body of the primary uneven molded body can be applied to stretch blow molding at a high magnification of 10 to 20 times that of the body of the finished container. In this case, there are no problems such as whitening, and the effect is good.

さらに本実施例においては、一次子偏成形体から二次予
備成形体を成形する際に、予備成形体の軸方向の延伸倍
率を周方向の倍率比より大きくとり、主として軸方向の
み延伸することも可能であり、この場合も良好な効果を
発揮する。
Furthermore, in this example, when forming the secondary preform from the primary uneven mold, the stretching ratio in the axial direction of the preform is set to be larger than the ratio in the circumferential direction, and stretching is performed mainly in the axial direction only. is also possible, and in this case also exhibits a good effect.

なお本実施例においては、ホットパリソン方式により高
延伸ブロー成形容器を成形する例について示したが、延
伸倍率の大きい延伸ブロー成形であれば、本発明の方法
は良好な効果を発揮する。
In this example, an example was shown in which a high-stretch blow-molded container was molded by the hot parison method, but the method of the present invention exhibits good effects when it is stretch-blow molded with a large stretching ratio.

しかしながら、ホットパリソン方式により、高延伸ブロ
ー成形容器を成形する場合において、特に良好な効果を
発揮する。
However, the hot parison method exhibits particularly good effects when molding high-stretch blow-molded containers.

本発明の高延伸ブロー成形容器の製造方法を以下の具体
的実施例により詳細に説明する。
The method for producing a high stretch blow-molded container of the present invention will be explained in detail with reference to the following specific examples.

実施例1 第3図に示すh2= 284mm、φ2 = 93.5
mmであり内容積1.51の高延伸ブロー成形容器30
を成形するために、IV値か約0.8のポリエチレンテ
レフタレートを使用し、ASB50型成形機(目積AS
B機械■製)を用いて、第1図に示す重量50g ha
”110.5mm 、 Wo= 5.5mm、φo +
 = 12mm1 φoz=23mm。
Example 1 h2 shown in Fig. 3 = 284 mm, φ2 = 93.5
High stretch blow molded container 30 with a diameter of 1.5 mm and an internal volume of 1.51 mm
For molding, polyethylene terephthalate with an IV value of approximately 0.8 is used, and an ASB50 type molding machine (scale
Using a machine manufactured by B Machine ■, the weight 50g ha shown in Figure 1 was used.
"110.5mm, Wo=5.5mm, φo+
= 12mm1 φoz=23mm.

φ。= 17.5mmの一次子備成形体lOを成形した
。射出冷却時間22秒後に、離型した。
φ. A primary molded body IO having a diameter of 17.5 mm was molded. After an injection cooling time of 22 seconds, the mold was released.

この一次子偏成形体10を、第4図に示す構造の装置の
中に挿入し、延伸ブロー成形することにより、第2図に
示すh+ = 165mm 、 W2= 3.0mm、
φ1=19mm、φ、 、 = 25mm、φ、 =2
2mmの二次予備成形体20を成形した。
By inserting this primary uneven molded body 10 into an apparatus having the structure shown in FIG. 4 and stretch-blow molding, h+ = 165 mm, W2 = 3.0 mm, as shown in FIG. 2, are obtained.
φ1=19mm, φ, , = 25mm, φ, =2
A 2 mm secondary preform 20 was molded.

引続き、この二次予備成形体20を第4図に示す温調さ
れた型内にとどめ、約19秒間温度調整し、二次予備成
形体20の各部が所望の延伸ブロー成形適性温度95℃
〜115 ℃を得た。
Subsequently, this secondary preformed body 20 is kept in a temperature-controlled mold shown in FIG. 4, and the temperature is adjusted for about 19 seconds, so that each part of the secondary preformed body 20 reaches the desired stretch blow molding temperature of 95°C.
~115°C was obtained.

次いで、この二次予備成形体20を第6図に示す構造の
装置内に挿入し、延伸ブロー成形することにより、上記
高延伸ブロー成形30を得た。
Next, this secondary preform 20 was inserted into an apparatus having the structure shown in FIG. 6, and stretch blow molding was performed to obtain the above-mentioned high stretch blow molding 30.

本実施例においては、軸方向延伸倍率h 2/ fi 
In this example, the axial stretching magnification h2/fi
.

2.6倍、周方向延伸倍率φ2/φ。=5.3倍、表面
積倍率13.7倍であった。また、延伸倍率を容器の内
外表面で見てみると、内表面では約20倍、外表面では
約10.5倍であった。さらに高延伸ブロー成形容器の
成形サイクルは、約26秒と短く、容器に白化は生じな
かった。
2.6 times, circumferential stretching ratio φ2/φ. = 5.3 times, and the surface area magnification was 13.7 times. Further, when looking at the stretching ratio on the inner and outer surfaces of the container, it was about 20 times on the inner surface and about 10.5 times on the outer surface. Furthermore, the molding cycle of the high stretch blow molded container was as short as about 26 seconds, and no whitening occurred in the container.

上述の容器の酸素バリヤー性を計測した結果、1気圧の
条件で1本1日当りの酸素透過量は、0゜32CCであ
り、良好な酸素バリヤー性が得られた。
As a result of measuring the oxygen barrier properties of the above-mentioned container, the oxygen permeation amount per container per day was 0°32 CC under the condition of 1 atm, indicating that good oxygen barrier properties were obtained.

実施例2 実施例1と同様の高延伸ブロー成形容器30を成形する
ために、実施例1と同様の樹脂及び成形機を用いて、第
1図に示す重量50g ho=g:3mm% w。
Example 2 In order to mold a high-stretch blow-molded container 30 similar to that of Example 1, the same resin and molding machine as those of Example 1 were used, and the weight as shown in FIG. 1 was 50 g ho = g: 3 mm% w.

7、 Qmm 、φ。+=t2mmqφ。2=26mm
%φ0=19mmの一次子備成形体10を成形した。射
出成型後26秒間冷却し、離型した。
7, Qmm, φ. +=t2mmqφ. 2=26mm
A primary molded body 10 having a diameter of %φ0 of 19 mm was molded. After injection molding, the mold was cooled for 26 seconds and released.

この一次子偏成形体10を、第4図に示す構造の装置の
中に挿入し、延伸ブロー成形することにより、第2図に
示すtz =200.0mm SW、= 2.0mm、
φ11 ”’ 24m” sφI 2 ” 28mm 
%φ、  =25mmの二次予備成形体20を成形した
This primary uneven molded body 10 is inserted into an apparatus having the structure shown in FIG. 4 and subjected to stretch blow molding to obtain tz = 200.0 mm SW, = 2.0 mm as shown in FIG. 2.
φ11 ”' 24m” sφI 2” 28mm
A secondary preform 20 having a diameter of 25 mm was molded.

引続き、この二次予備成形体20を第4図に示す温調さ
れた型内にとどめ、約23秒間温度調整し、二次予備成
形体20の各部が所望の延伸ブロー成形適性温度を得た
Subsequently, this secondary preformed body 20 was kept in a temperature-controlled mold shown in FIG. 4, and the temperature was adjusted for about 23 seconds, so that each part of the secondary preformed body 20 obtained the desired stretch-blow molding temperature. .

次いで、この二次予備成形体20を第6図に示す構造の
装置内に挿入し、延伸ブロー成形することにより、上記
高延伸ブロー成形容器30を得た。
Next, this secondary preform 20 was inserted into an apparatus having the structure shown in FIG. 6 and stretch blow molded, thereby obtaining the high stretch blow molded container 30.

本実施例においては、軸方向延伸倍率り、/h0=3.
4倍、周方向延伸倍率φ2/φ。=4.9倍、表面積倍
率16.8倍、内表面では27倍、外表面では12倍で
あり、実施例1と比較して、さらに高延伸倍率とした。
In this example, the axial stretching ratio is /h0=3.
4 times, circumferential stretching magnification φ2/φ. = 4.9 times, the surface area magnification was 16.8 times, the inner surface was 27 times, and the outer surface was 12 times, which was an even higher stretching ratio compared to Example 1.

また、高延伸ブロー成形容器の成形すイクルは、約30
秒であり、容器に白化は生じなかった。。
In addition, the molding cycle of the high stretch blow molded container is approximately 30
seconds, and no whitening occurred in the container. .

上述の容器の酸素バリヤー性を計測した結果、1気圧の
条件で1本1日当りの酸素透過量は、0゜31ccであ
り、実施例1に対してさらに優れた酸素バリヤー性が得
られた。
As a result of measuring the oxygen barrier properties of the above-mentioned container, the oxygen permeation amount per container per day was 0.31 cc under the condition of 1 atm, and even better oxygen barrier properties than in Example 1 were obtained.

比較例1 実施例1と同様製品容器、樹脂成形機を用いて、同様の
一次子備成形体を成形し、二次予備成形体を成形するこ
となく、延伸ブロー成形することにより、実施例1と同
様の高延伸倍率の容器を得た。
Comparative Example 1 Using the same product container and resin molding machine as in Example 1, a similar primary molded body was molded, and by stretch blow molding without molding a secondary preform, Example 1 was obtained. A container with a high draw ratio similar to the above was obtained.

この時の成形サイクルは約40秒と長く、また40秒以
下とすると容器に白化を生じた。また容器の一部に薄い
肉厚部分があり延伸ブロー成形後の容器肉厚は安定しな
かった。
The molding cycle at this time was as long as about 40 seconds, and if the molding cycle was shorter than 40 seconds, whitening occurred on the container. In addition, there was a thin wall part in a part of the container, and the wall thickness of the container after stretch blow molding was not stable.

上述の容器の酸素バリヤー性を計測した結果、1気圧の
条件で1本1日当りの酸素透過量は0.38CCであり
、十分な酸素バリヤー性は得られなかった。
As a result of measuring the oxygen barrier properties of the above-mentioned container, the oxygen permeation amount per container per day was 0.38 CC under the condition of 1 atm, and sufficient oxygen barrier properties were not obtained.

比較例2 実施例1と同様の樹脂及び成形機を用いて、第1図に示
す重量50g Flo=137mm 、 Wo= 4.
0mm、φ、、=16.5mm、φ。、 =24.5m
m、φo=20.5mmの一次子備成形体10を成形し
、二次予備成形体を成形することなく、実施例1と同様
製品容器の延伸ブロー成形をおこなった。
Comparative Example 2 Using the same resin and molding machine as in Example 1, the weight as shown in FIG. 1 was 50 g, Flo=137 mm, Wo=4.
0mm, φ, , = 16.5mm, φ. , =24.5m
A primary molded body 10 with m and φo = 20.5 mm was molded, and stretch blow molding of a product container was performed in the same manner as in Example 1 without molding a secondary preform.

本比較例においては、軸方向延伸倍率h2/ho=2.
1倍、周方向延伸倍率φ2/φ、=4.5倍、表面積倍
率9.5倍であった。また成形サイクルは、約26秒で
あり、白化は生じなかった。
In this comparative example, the axial stretching ratio h2/ho=2.
The stretching ratio in the circumferential direction was 1x, the stretching ratio in the circumferential direction was φ2/φ, = 4.5x, and the surface area ratio was 9.5x. The molding cycle was approximately 26 seconds, and no whitening occurred.

また上述の容器の酸素バリヤー性を計測した。The oxygen barrier properties of the containers described above were also measured.

この結果、1気圧の条件で1本1日当りの酸素透過量は
0.37ccであり、十分な酸素バリヤー性は得られな
かった。
As a result, the oxygen permeation amount per tube per day was 0.37 cc under the condition of 1 atm, and sufficient oxygen barrier properties were not obtained.

比較例3 実施例2と同様の一次子備成形体を成形し、二次予備成
形体を成形することなく、延伸ブロー成形することによ
り、実施例2と同様の高延伸倍率の容器を成形した。射
出成形型内で十分時間をかけて冷却しても延伸ブロー工
程に入る前に予備成形体は白化してしまい、従って容器
に白化を生じた。
Comparative Example 3 A container with a high stretch ratio as in Example 2 was molded by molding the same primary molded product as in Example 2 and stretch-blow molding without molding a secondary preform. . Even after sufficient cooling time in the injection mold, the preform turned white before entering the stretch-blowing process, resulting in whitening of the container.

上述の高延伸倍率の容器の酸素バリヤー性を計測した。The oxygen barrier properties of the containers with the above-mentioned high draw ratio were measured.

この結果、1気圧の条件で1本1日当りの酸素透過量は
0.40ccであり、十分な酸素バリヤー性は得られな
かった。これは厚肉の予備成形体が適性な温度に温調で
きず、肉厚が不均一であり、薄肉部分が存在するためで
あった。
As a result, the oxygen permeation amount per tube per day was 0.40 cc under the condition of 1 atm, and sufficient oxygen barrier properties were not obtained. This was because the thick preform could not be temperature controlled to an appropriate temperature, the wall thickness was uneven, and there were thin parts.

以上に示したように、本実施例によれば、肉厚の予備成
形体を用いて、延伸倍率を大きく設定する場合において
も、容器に白化を生じることなく、短時間で肉厚のばら
つきのない、適性な肉厚分布をもった高延伸ブロー成形
容器を得ることができた。
As shown above, according to this example, even when using a thick preform and setting a large stretching ratio, the container does not whiten and the variation in wall thickness can be reduced in a short time. We were able to obtain a highly stretchable blow-molded container with an appropriate wall thickness distribution.

また延伸倍率を高くすることにより、優れたガスバリヤ
−性を有する容器とすることができた。
Furthermore, by increasing the stretching ratio, a container with excellent gas barrier properties could be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の高延伸ブロー成形容器の
製造方法においては、予備成形体の延伸ブロー成形工程
を二段階に分割し、予備成形体の表面のみを温度調節し
て、一次の延伸ブロー成形工程を行い、予備成形体の肉
厚がある程度減少した時点で、予備成形体全体の温度調
整をおこない、その温度調整が終了した時点で二次の延
伸ブロー成形をふこなう構造になっている。
As described in detail above, in the method for producing a high stretch blow molded container of the present invention, the stretch blow molding process of the preform is divided into two stages, and only the surface of the preform is temperature-controlled. After the stretch blow molding process is performed and the thickness of the preform has decreased to a certain extent, the temperature of the entire preform is adjusted, and when the temperature adjustment is completed, the structure is such that the secondary stretch blow molding is carried out. It has become.

これにより、ガスバリヤ−性等を向上させるために、延
伸ブロー成形における延伸倍率を高く設定し、予備成形
体が厚い肉厚を有する場合であっても、白化を生じるこ
となく、予備成形体を内部に至るまで厳密に延伸ブロー
成形適性温度に調整するために必要とする時間を短縮す
ることができる。
As a result, in order to improve gas barrier properties, etc., the stretching ratio in stretch blow molding is set high, and even if the preform has a large wall thickness, the preform can be heated internally without whitening. It is possible to shorten the time required to strictly adjust the temperature to the appropriate temperature for stretch blow molding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による高延伸ブロー成形容器
の予備成形体を示す断面図であり、第2図は本発明の一
実施例による高延伸ブロー成形容器の予備成形体を示す
断面図であり、第3図は本発明の一実施例による高延伸
ブロー成形容器を示す断面図であり、 第4図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第一段階を示す概略断面図であり、 第5図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第二段階を示す概略断面図であり、 第6図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第三段階を示す概略断面図であり、 第7図は第1図に示す一次子備成形体lOの断面厚さ方
向の温度分布を定性的に示すグラフであり、第8図は第
1図に示す一次子備成形体10の断面厚さ方向の温度分
布を定性的に示すグラフであり、第9図は第2図に示す
二次予備成形体20の断面厚さ方向の温度分布を定性的
に示すグラフであり、第10図は第2図に示す二次予備
成形体20の断面厚さ方向の温度分布を定性的に示すグ
ラフであり、第11図は予備成形体の一例を示す断面図
である。 1.11・・・・・口部 2.12・・・・・胴部 3.13・・・・・底部 4.45.95・ 10 ・ 0a 0b 0c 14.24・ 20 ・ 30 ・ 40 ・ 41.91 ・ 42.92・ 43.93 ・ 46.96・ 47.97・ 50 ・ 51 ・ 60 ・ 61〜65・ 66 ・ 67 ・ 延伸ロッド 一次子備成形体 内表面近傍層 中央層 外表面近傍層 中央部 二次予備成形体 延伸ブロー成形容器 一次成形型 口部外型 口部内型 穴部 先端部 吹出穴 温度調整コア 溝部 温度調整装置 温度調整ブロック 上部ブロック 下部ブロック 71〜77 ・ 81〜85 ・ 90 ・ ・通路 ・温度調整ヒータ 二次成形型
FIG. 1 is a sectional view showing a preformed body of a high stretch blow molded container according to an embodiment of the present invention, and FIG. 2 is a cross sectional view showing a preformed body of a high stretch blow molded container according to an embodiment of the present invention. FIG. 3 is a sectional view showing a high stretch blow molded container according to an embodiment of the present invention, and FIG. 4 is a first step of the manufacturing process of a high stretch blow molded container according to an embodiment of the present invention. FIG. 5 is a schematic cross-sectional view showing the second step of the manufacturing process of a high-stretch blow-molded container according to an embodiment of the present invention, and FIG. FIG. 7 is a schematic cross-sectional view showing the third stage of the manufacturing process of the high-stretch blow-molded container; FIG. 7 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the primary molded body lO shown in FIG. 8 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the primary preformed body 10 shown in FIG. 1, and FIG. 9 is a graph showing the temperature distribution of the secondary preformed body 20 shown in FIG. 10 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the secondary preform 20 shown in FIG. 2; The figure is a sectional view showing an example of a preform. 1.11... Mouth 2.12... Body 3.13... Bottom 4.45.95 10 ・ 0a 0b 0c 14.24 ・ 20 ・ 30 ・ 40 ・41.91 ・ 42.92 ・ 43.93 ・ 46.96 ・ 47.97 ・ 50 ・ 51 ・ 60 ・ 61 ~ 65 ・ 66 ・ 67 ・ Layer near the inner surface of the primary molded body of the stretched rod Central layer Layer near the outer surface Central part Secondary preform Stretch blow molded container Primary mold mouth Outer mold mouth Inner mold hole Tip part Blowout hole Temperature adjustment core Groove Temperature adjustment device Temperature adjustment block Upper block Lower block 71-77 ・ 81-85 ・ 90・ ・Passway/temperature adjustment heater secondary molding mold

Claims (4)

【特許請求の範囲】[Claims] (1)射出成形により成形される口部と胴部と底部とか
らなる厚肉の樹脂製一次予備成形体を高延伸ブロー成形
する容器の製造方法において、(a)射出成形後の高温
の前記一次予備成形体の前記胴部の表面の近傍層の温度
を低下させ、(b)前記一次予備成形体の中央層が高温
であり、かつ前記近傍層が低温の不均一の温度分布状態
で一次延伸ブロー成形することにより、二次予備成形体
を成形し、 (c)前記二次予備成形体の温度分布を均一化するとと
もに、 前記二次予備成形体をさらに二次延伸ブロー成形するこ
とを特徴とする方法。
(1) In a container manufacturing method in which a thick-walled resin primary preform formed by injection molding is formed by high-stretch blow molding, (a) the container is heated at a high temperature after injection molding. (b) lowering the temperature of a layer near the surface of the body of the primary preform; Forming a secondary preform by stretch blow molding, (c) uniformizing the temperature distribution of the secondary preform, and further performing secondary stretch blow molding of the secondary preform. How to characterize it.
(2)請求項1に記載の高延伸ブロー成形容器の製造方
法において、結晶性樹脂を用いて前記近傍層の温度がガ
ラス転位点温度付近であり、かつ前記中央層の温度がガ
ラス転位点温度以上、結晶化温度以下の状態で、一次延
伸ブロー成形することを特徴とする方法。
(2) In the method for manufacturing a high stretch blow-molded container according to claim 1, a crystalline resin is used so that the temperature of the neighboring layer is around the glass transition point temperature, and the temperature of the central layer is around the glass transition point temperature. A method characterized by performing primary stretch blow molding at a temperature below the crystallization temperature.
(3)請求項1又は2に記載の高延伸ブロー成形容器の
製造方法において、前記一次予備成形体の胴部の厚さが
、前記二次延伸ブロー成形後の胴部の厚さに対して、1
0〜20倍であることを特徴とする方法。
(3) In the method for manufacturing a high stretch blow molded container according to claim 1 or 2, the thickness of the body of the primary preform is greater than the thickness of the body after the secondary stretch blow molding. ,1
A method characterized in that the magnification is 0 to 20 times.
(4)請求項1乃至3のいずれかに記載の高延伸ブロー
成形容器の製造方法において、前記一次延伸ブロー成形
する際に、軸方向の延伸倍率が前記胴部の周方向の倍率
以上であり、主として軸方向を延伸することを特徴とす
る方法。
(4) In the method for manufacturing a high-stretch blow-molded container according to any one of claims 1 to 3, during the primary stretch blow-molding, an axial stretching ratio is greater than or equal to a circumferential stretching ratio of the body. , a method characterized by stretching mainly in the axial direction.
JP2165982A 1990-06-25 1990-06-25 Manufacture of high-stretch-blow-molded container Pending JPH0462027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165982A JPH0462027A (en) 1990-06-25 1990-06-25 Manufacture of high-stretch-blow-molded container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165982A JPH0462027A (en) 1990-06-25 1990-06-25 Manufacture of high-stretch-blow-molded container

Publications (1)

Publication Number Publication Date
JPH0462027A true JPH0462027A (en) 1992-02-27

Family

ID=15822680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165982A Pending JPH0462027A (en) 1990-06-25 1990-06-25 Manufacture of high-stretch-blow-molded container

Country Status (1)

Country Link
JP (1) JPH0462027A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279611A (en) * 2007-05-08 2008-11-20 Aoki Technical Laboratory Inc Injection stretch blow molding method for producing heat-resistant bottle
ITRM20130218A1 (en) * 2013-04-10 2014-10-11 Siapi S R L A Socio Unico PROCEDURE AND EQUIPMENT FOR THE FORMATION OF LARGE SIZE CONTAINERS STARTING FROM A PREFORM
WO2020158920A1 (en) * 2019-01-31 2020-08-06 日精エー・エス・ビー機械株式会社 Device and method for producing resin container

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279611A (en) * 2007-05-08 2008-11-20 Aoki Technical Laboratory Inc Injection stretch blow molding method for producing heat-resistant bottle
ITRM20130218A1 (en) * 2013-04-10 2014-10-11 Siapi S R L A Socio Unico PROCEDURE AND EQUIPMENT FOR THE FORMATION OF LARGE SIZE CONTAINERS STARTING FROM A PREFORM
WO2014167408A1 (en) * 2013-04-10 2014-10-16 Siapi S.R.L. A Socio Unico A process and apparatus for the making of large sized containers obtained from a preform
WO2020158920A1 (en) * 2019-01-31 2020-08-06 日精エー・エス・ビー機械株式会社 Device and method for producing resin container
JP6770666B1 (en) * 2019-01-31 2020-10-14 日精エー・エス・ビー機械株式会社 Resin container manufacturing equipment and manufacturing method
JP2021054068A (en) * 2019-01-31 2021-04-08 日精エー・エス・ビー機械株式会社 Production device and production method of resin container
US11850788B2 (en) 2019-01-31 2023-12-26 Nissei Asb Machine Co., Ltd. Device and method for producing resin container

Similar Documents

Publication Publication Date Title
KR20190087658A (en) Manufacturing method of resin container, mold unit and molding machine
US8691140B2 (en) Process for injection molding of thin-walled preform
US5364585A (en) Injection orientation blow molding method
JP5033469B2 (en) Injection stretch blow molding method for heat-resistant bottles
JP2006346891A (en) Injection stretch blow molding method
WO2007083396A1 (en) Process for producing bottle of biaxially oriented polyester
JP2005119208A (en) Method and apparatus for producing container by compression molding and stretching blow molding
US20230339165A1 (en) Production device and production method for resin containers
JPS6359513A (en) Manufacture of hollow polyester molded body
JP4210901B2 (en) Manufacturing method of bottle-shaped container
US20240059004A1 (en) Device and method for producing resin container
JP2001526598A (en) Improved multilayer container and preform
JP2931428B2 (en) Injection stretch blow molding method
JPH0462027A (en) Manufacture of high-stretch-blow-molded container
JPH0462028A (en) Manufacture of high-stretch-blow-molded container
US20040022974A1 (en) Stretch blow container and molding method therefor
KR860000209B1 (en) Injection stretch blow molding of two-layered bottle
JP4222462B2 (en) Preform for heat-resistant PET bottle
US11135759B2 (en) Blow molding apparatus and blow molding method
JPH0615643A (en) Manufacture of premolded body
US20230347570A1 (en) Method and apparatus for producing resin container
JP4286968B2 (en) preform
JPH10278101A (en) Single stage type apparatus and method for manufacture of container composed of thermoplastic material
JP2003103607A (en) Bottom structure of heat-resistant bottle
EP3919255A1 (en) Temperature adjustment device and temperature adjustment method for preform and manufacturing device and manufacturing method for resin molding container