JPH0462028A - Manufacture of high-stretch-blow-molded container - Google Patents

Manufacture of high-stretch-blow-molded container

Info

Publication number
JPH0462028A
JPH0462028A JP2165983A JP16598390A JPH0462028A JP H0462028 A JPH0462028 A JP H0462028A JP 2165983 A JP2165983 A JP 2165983A JP 16598390 A JP16598390 A JP 16598390A JP H0462028 A JPH0462028 A JP H0462028A
Authority
JP
Japan
Prior art keywords
temperature
stretch blow
preform
primary
stretch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2165983A
Other languages
Japanese (ja)
Inventor
Kaneo Yamada
務夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2165983A priority Critical patent/JPH0462028A/en
Publication of JPH0462028A publication Critical patent/JPH0462028A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/18Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using several blowing steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C2049/023Combined blow-moulding and manufacture of the preform or the parison using inherent heat of the preform, i.e. 1 step blow moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • B29C2949/0722Preforms or parisons characterised by their configuration having variable wall thickness at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • B29C2949/0723Preforms or parisons characterised by their configuration having variable wall thickness at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • B29C2949/0724Preforms or parisons characterised by their configuration having variable wall thickness at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • B29C2949/0725Preforms or parisons characterised by their configuration having variable wall thickness at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/073Preforms or parisons characterised by their configuration having variable diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/073Preforms or parisons characterised by their configuration having variable diameter
    • B29C2949/0731Preforms or parisons characterised by their configuration having variable diameter at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/073Preforms or parisons characterised by their configuration having variable diameter
    • B29C2949/0732Preforms or parisons characterised by their configuration having variable diameter at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/073Preforms or parisons characterised by their configuration having variable diameter
    • B29C2949/0733Preforms or parisons characterised by their configuration having variable diameter at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0768Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform
    • B29C2949/077Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform characterised by the neck
    • B29C2949/0772Closure retaining means
    • B29C2949/0773Threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • B29C49/12Stretching rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6427Cooling of preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6427Cooling of preforms
    • B29C49/6435Cooling of preforms from the outside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/68Ovens specially adapted for heating preforms or parisons
    • B29C49/681Ovens specially adapted for heating preforms or parisons using a conditioning receptacle, e.g. a cavity, e.g. having heated or cooled regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable

Abstract

PURPOSE:To enhance the gas barrier properties and the like of the container concerned by a method wherein primary stretch blow molding is performed by controlling the temperature of only the surface of a preformed body, the cylindrical part of which is made of blend of polyester resin and gas barrier resin, and, after that, secondary stretch blow molding is performed under the condition that the temperature of the whole preformed body. CONSTITUTION:A primary preformed body 10, the cylindrical part of which is produced by injection molding blend of polyester resin and gas barrier resin, is primarily-stretch-blow- molded so as to form a secondary preformed body 20. The primary preformed body 10, which is held with a mouth part outer mold 41 and a mouth part inner mold 42, is installed in a primary forming mold 40 and the temperatures of the body 10 is controlled so as to set the temperatures at a layer 10a near the outer surface of the body 10 and at a layer 10c near its inner surface lower than the temperature of a central layer 10b. Next, primary stretch blow molding is performed by inserting a stretching rod 45 from above in the body so as to press it and, at the same time, blowing off pressurizing air through blow-off holes 47 in order to obtain a secondary preformed body 20. In a temperature Controlling device 60, the temperature of the secondary preformed body 20 is controlled from its inner and outer surfaces up to its suitable temperature so as to stretch-blow-molded in order to form a high-stretch-blow-molded container 30.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、延伸ブロー成形により成形される容器の製造
方法に関し、特に延伸倍率の大きい高延伸ブロー成形容
器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing containers molded by stretch blow molding, and particularly to a method for manufacturing high stretch blow molded containers with a large stretch ratio.

〔従来の技術及び発明か解決しようとする課題〕炭酸飲
料や果汁飲料等を封入する樹脂製容器、特にボトルは、
ポリエチレンテレフタレート樹脂等を射出成形した予備
成形体を、延伸ブロー成形することにより製造される。
[Prior art and problems to be solved by the invention] Resin containers, especially bottles, for enclosing carbonated drinks, fruit juice drinks, etc.
It is manufactured by stretch-blow molding a preformed body made by injection molding polyethylene terephthalate resin or the like.

このような延伸ブロー成形容器に、果汁飲料等を封入す
る場合には、容器外から侵入する酸素の影響により内容
物の性質が変化し、風味を損なうという問題かある。ま
た炭酸飲料等を封入する場合にも、炭酸ガスが容器内部
から放出してしまうと、商品価値を損なうという問題か
ある。
When enclosing a fruit juice drink or the like in such a stretch-blow-molded container, there is a problem that the properties of the contents change due to the influence of oxygen entering from outside the container, impairing the flavor. Furthermore, when enclosing a carbonated beverage or the like, there is a problem in that if carbon dioxide gas is released from inside the container, the product value will be impaired.

そこで、このような延伸ブロー成形容器にガスバリヤ−
性を付加するために、様々な対策か構しられている。
Therefore, a gas barrier is added to such stretch-blow molded containers.
Various measures have been devised to add gender.

例えば、延伸ブロー成形容器表面に酸素バリヤー性を有
する塩化ビニリデンあるいは酸化ケイ素(シリカ)等の
無機物をコーティングする方法、あるいは延伸ブロー成
形容器を形成するポリエチレンテレフタレート等の樹脂
層と、エチレンビニルアルコール共重合体あるいはナイ
ロン等の酸素バリヤー性を有する層との多層構造にする
方法、あるいは延伸ブロー成形容器の表面に酸素バリヤ
ー性を有するアルミニウム等を真空蒸着法等により、プ
ラスチックメタライジングする方法等かある。
For example, a method of coating the surface of a stretch blow molded container with an inorganic material such as vinylidene chloride or silicon oxide (silica) having oxygen barrier properties, or a method of coating a resin layer such as polyethylene terephthalate forming the stretch blow molded container with an ethylene vinyl alcohol copolymer. There are methods such as a method of forming a multilayer structure with a layer having an oxygen barrier property such as coalescence or nylon, or a method of plastic metallizing using a vacuum evaporation method or the like with aluminum having an oxygen barrier property on the surface of the stretch blow molded container.

しかしなから、これら方法は、デラミネーションが発生
するとか、表面の強度か十分でないとか、リサイクルか
困難であるとか、酸素バリヤー性の性能が安定していな
いとか、不透明になり製品価値を低下させる等の問題を
有する。
However, these methods cause delamination, insufficient surface strength, difficulty in recycling, unstable oxygen barrier performance, and reduce product value due to opacity. There are problems such as.

上述の方法のようなデメリットを有さすに、ガスバリヤ
−性を向上する方法に、延伸ブロー成形における延伸倍
率を高くする方法かある。この方法は延伸倍率を高くす
るほど、ガスバリヤ−性を向上することができる。また
延伸倍率を高くすることにより、透明性、強度、剛性等
の容器の物理的性質をも向上することができる。
Despite having the disadvantages of the above-mentioned methods, one method for improving gas barrier properties is to increase the stretch ratio in stretch blow molding. In this method, the gas barrier properties can be improved as the stretching ratio is increased. Furthermore, by increasing the stretching ratio, the physical properties of the container such as transparency, strength, and rigidity can also be improved.

またこの方法は、予備成形体の胴部をポリエステル樹脂
とガスバリヤ−性を有する樹脂との混合物とすることも
可能であり、これにより、さらにガスバリヤ−性に優れ
た高延伸ブロー成形容器を得ることができる。
This method also allows the body of the preform to be made of a mixture of polyester resin and a resin with gas barrier properties, thereby making it possible to obtain a highly stretchable blow-molded container with even better gas barrier properties. I can do it.

ところで、第11図に示すような、口部lと胴部2と底
部3とからなる有底円筒状の予備成形体を延伸ブロー成
形するには、例えば特開昭57−117929号て開示
されているような方法かある。この方法は、延伸ロッド
4で予備成形体の底部3を内側から縦方向に押圧すると
同時に、高温の加圧エアを延伸ロッド内から吹き出して
、胴部2を周方向に延伸ブロー成形する。その際、一般
に各部位の延伸度は異なるので、部位に応じて延伸ブロ
ーに最適な温度に調整する必要かある。
By the way, in order to stretch-blow mold a bottomed cylindrical preformed body consisting of a mouth part l, a body part 2, and a bottom part 3 as shown in FIG. Is there a way to do that? In this method, the bottom part 3 of the preform is pressed vertically from the inside with a stretching rod 4, and at the same time, high-temperature pressurized air is blown out from inside the stretching rod to stretch-blow mold the body 2 in the circumferential direction. At that time, since the degree of stretching is generally different for each part, it is necessary to adjust the temperature to the optimum temperature for stretch blowing depending on the part.

予備成形体の温調方法には、一般に二通りある。There are generally two methods for controlling the temperature of a preform.

一つはコールドパリソン方式と称する方法である。One is a method called the cold parison method.

この方法は、射出成形後、予備成形体をいったんストッ
クし、室温になった多数の予備成形体を順次移動させな
からヒータ等により加熱するものである。具体的には、
予備成形体を軸回りに回転させながら移動し、ヒータを
備えた加熱領域を通過させる。その際、ヒータの密度ま
たは発熱量を予備成形体の軸に沿った方向で適当に変え
、あるいはヒータで加熱後、さらに予備成形体の所定の
部位に低温の空気を吹きつけて冷却する。それによって
、予備成形体の各部位を延伸ブロー成形適性温度にする
。この方法は、予備成形体をストックすることができる
ため、大量生産に向いている。
In this method, after injection molding, the preforms are temporarily stored, and the large number of preforms that have reached room temperature are heated by a heater or the like before being moved one after another. in particular,
The preform is moved while rotating around its axis, and passed through a heating area equipped with a heater. At this time, the density or calorific value of the heater is appropriately changed in the direction along the axis of the preform, or after heating with the heater, low-temperature air is blown onto a predetermined portion of the preform to cool it. Thereby, each part of the preform is brought to a temperature suitable for stretch blow molding. This method is suitable for mass production because preforms can be stocked.

もう一つの方法は、ホットパリソン方式と称する方法で
ある。この方法は、複数の温調型を積層して、その内部
に射出成形直後の高温の予備成形体を設置し、各温調型
に対応する予備成形体の各部位を外周面を延伸ブロー成
形適性温度にする方法である(例えば、特開昭63−1
89225号)。この方法は予備成形体のストックを持
つ必要かないため、多種少量生産をおこなう場合に、在
庫管理上、有利である。
Another method is a method called the hot parison method. In this method, multiple temperature control molds are stacked, a high-temperature preform immediately after injection molding is installed inside the mold, and each part of the preform corresponding to each temperature control mold is stretch-blow-molded on the outer peripheral surface. This is a method of adjusting the temperature to an appropriate temperature (for example, JP-A-63-1
No. 89225). Since this method does not require stocking of preforms, it is advantageous in terms of inventory control when producing a wide variety of products in small quantities.

しかしながら、上述のような延伸ブロー成形容器の酸素
バリヤー性、透明性、強度、剛性等を向上するために延
伸倍率を高く設定する場合においては、厚肉の予備成形
体を厳密に延伸ブロー成形適性温度に温度調整しなけれ
ばならず、また通常の延伸ブロー成形に比へて予備成形
体の肉厚が厚く、また長さも短くなるために、予備成形
体内部の温度差を一様に延伸ブロー成形適性温度に調整
するためには、多くの時間を必要とし、生産性か低下す
るという問題かある。
However, when setting a high stretching ratio in order to improve the oxygen barrier properties, transparency, strength, rigidity, etc. of the stretch blow molded container as described above, it is necessary to The temperature must be adjusted to the desired temperature, and the preform is thicker and shorter than normal stretch blow molding, so stretch blow molding uniformly balances the temperature difference inside the preform. It takes a lot of time to adjust the temperature to a suitable temperature for molding, which poses a problem in that productivity decreases.

特に射出成形直後の高温の予備成形体を、ただちに延伸
ブロー成形するホットパリソン方式においては、この予
備成形体を延伸ブロー成形適性温度に温度調整するため
に消費する時間は、生産効率の低下に直接影響をおよほ
すという問題がある。
Particularly in the hot parison method, in which a high-temperature preform is stretch-blow molded immediately after injection molding, the time it takes to adjust the temperature of the preform to a temperature suitable for stretch-blow molding directly reduces production efficiency. There is the problem of influence.

また肉厚の予備成形体は、延伸ブロー成形適性温度に温
度調整する際に、結晶化による白化が生じやすく、透明
性か失われてしまうという問題かある。
Further, thick preforms tend to whiten due to crystallization when the temperature is adjusted to a temperature suitable for stretch blow molding, resulting in loss of transparency.

従って本発明の目的は、ホットパリソン方式において、
ガスバリヤ−性等を向上させるために、予備成形体の胴
部をポリエステル樹脂とガスバリヤ−性樹脂とのブレン
ド物とするとともに、延伸ブロー成形における延伸倍率
を高く設定し、予備成形体が厚い肉厚を有する場合にお
いても、製品を白化させることなく、射出成形直後の高
温の予備成形体を厳密に延伸ブロー成形適性温厚に温度
調整するために必要な時間を短縮することができる高延
伸ブロー成形容器の製造方法を提供することである。
Therefore, the object of the present invention is to
In order to improve gas barrier properties, etc., the body of the preform is made of a blend of polyester resin and gas barrier resin, and the stretch ratio in stretch blow molding is set high, so that the preform has a thick wall thickness. A high stretch blow molding container that can shorten the time required to precisely adjust the temperature of a high-temperature preform immediately after injection molding to a temperature suitable for stretch blow molding without whitening the product even when the product has An object of the present invention is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的に鑑み鋭意研究の結果、本発明者は、胴部がポ
リエステル樹脂とガスバリヤ−性樹脂とのブレンド物か
らなる予備成形体を高延伸ブロー成形する容器の製造方
法において、予備成形体の延伸ブロー成形工程を二段階
に分割し、予備成形体の胴部の表面のみを温度調節して
、一次の延伸ブロー成形工程を行い、予備成形体の肉厚
がある程度減少した時点で、予備成形体全体の温度調整
をおこない、その温度調整が終了した時点で二次の延伸
ブロー成形をおこなうことにより、予備成形体を、その
内部に至るまで厳密に延伸ブロー成形適性温度に調整す
るために必要とする時間を短縮することができることを
発見し、本発明に想到した。
As a result of intensive research in view of the above object, the present inventor has developed a method for manufacturing a container in which a preform whose body portion is made of a blend of a polyester resin and a gas barrier resin is highly stretch blow molded. The blow molding process is divided into two stages, the temperature of only the surface of the body of the preform is controlled, and the primary stretch blow molding process is performed. When the thickness of the preform has decreased to a certain extent, the preform is finished. By adjusting the overall temperature and performing secondary stretch blow molding once the temperature adjustment has been completed, the preform is precisely adjusted to the appropriate temperature for stretch blow molding, right down to the inside of the preform. They discovered that the time it takes to do this can be shortened, and came up with the present invention.

すなわち、本発明の射出成形により成形される口部と胴
部と底部とからなるとともに前記胴部がポリエステル樹
脂とガスバリヤ−性樹脂とのブレンド物からなる肉厚の
樹脂製一次子偏成形体を高延伸ブロー成形する容器の製
造方法は、(a)射出成形後の高温の前記一次子偏成形
体の前記胴部の表面の近傍層の温度を低下させ、(b)
前記一次子偏成形体の中央層が高温であり、かつ前記近
傍層か低温の不均一の温度分布状態で一次延伸ブロー成
形することにより、二次予備成形体を成形し、(C)前
記二次予備成形体の温度分布を均一化するとともに、前
記二次予備成形体をさらに二次延伸ブロー成形すること
を特徴とする。
That is, a thick resin primary molded body is formed by the injection molding method of the present invention, and includes a mouth portion, a body portion, and a bottom portion, and the body portion is made of a blend of polyester resin and gas barrier resin. A method for producing a container by high stretch blow molding includes (a) lowering the temperature of a layer near the surface of the body of the primary uneven molded body which is at a high temperature after injection molding;
(C) forming a secondary preform by performing primary stretch blow molding in a non-uniform temperature distribution state in which the center layer of the primary uneven molded body is at a high temperature and the neighboring layers are at a low temperature; The present invention is characterized in that the temperature distribution of the secondary preformed body is made uniform, and the secondary preformed body is further subjected to secondary stretch blow molding.

〔実施例及び作用〕[Examples and effects]

まず本発明のガスバリヤ−性を有する高延伸ブロー成形
容器の製造方法に用いる予備成形体の胴部を構成する樹
脂について説明する。
First, the resin constituting the body of the preform used in the method of manufacturing a high stretch blow molded container having gas barrier properties according to the present invention will be explained.

ポリエステル樹脂としては、飽和ジカルボン酸と飽和二
価アルコールとからなる熱可塑性樹脂が使用できる。飽
和ジカルボン酸としては、テレフタル酸、イソフタル酸
、フタル酸、ナフタレン−1゜4−又は2,6−ジカル
ボン酸、ジフェニルエーテル−4,4’−ジカルボン酸
、ジフェニルジカルボン酸類、ジフエノキシエタンジエ
タンジカルボン酸類等の芳香族ジカルボン酸類、アジピ
ン酸、セパチン酸、アゼライン酸、デカン−1,lO−
ジカルボン酸等の脂肪族ジカルボン酸、シクロヘキサン
ジカルボン酸等の脂環族ジカルボン酸等を使用すること
かできる。また飽和二価アルコールとしては、エチレン
グリコール、プロピレングリコール、トリメチレングリ
コール、テトラメチレングリコール、ジエチレングリコ
ール、ポリエチレングリコール、ポリプロピレングリコ
ール、ポリテトラメチレングリコール、ヘキサメチレン
グリコール、ドデカメチレングリコール、ネオペンチル
グリコール等の脂肪族グリコール類、シクロヘキサンジ
メタツール等の脂環族グリコール、2,2−ビス(4′
−βヒドロキシエトキシフェニル)プロパン、その他の
芳香族ジオール類等を使用することができる。
As the polyester resin, a thermoplastic resin consisting of a saturated dicarboxylic acid and a saturated dihydric alcohol can be used. Saturated dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, naphthalene-1°4- or 2,6-dicarboxylic acid, diphenyl ether-4,4'-dicarboxylic acid, diphenyldicarboxylic acids, and diphenoxyethane diethanedicarboxylic acids. Aromatic dicarboxylic acids such as adipic acid, sepatic acid, azelaic acid, decane-1,1O-
Aliphatic dicarboxylic acids such as dicarboxylic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, etc. can be used. Saturated dihydric alcohols include aliphatic alcohols such as ethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, diethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, hexamethylene glycol, dodecamethylene glycol, and neopentyl glycol. Glycols, alicyclic glycols such as cyclohexane dimetatool, 2,2-bis(4'
-βhydroxyethoxyphenyl)propane, other aromatic diols, etc. can be used.

好ましいポリエステルは、テレフタル酸とエチレングリ
コールとからなるポリエチレンテレフタレートである。
A preferred polyester is polyethylene terephthalate consisting of terephthalic acid and ethylene glycol.

次にバリヤー性樹脂としては、酸素、炭酸ガス等のガス
バリヤ−性に優れるものとして、エチレンビニルアルコ
ール共重合樹脂、ハイニトリル樹脂、ポリアクリロニト
リル、アクリロニトリルとメチルアクリレートとブタジ
ェンとのコポリマー(商品名:バレックス)、ポリ塩化
ビニル、メタキシリレンジアミンとアジピン酸とからな
るナイロンMXD6、ポリエチレンイソフタレート系コ
ポリマー、イソフタル酸又はテレフタル酸とエチレング
リコールと1.3−ビス(2−ヒドロキシエトキシ)ベ
ンゼンとからなるコポリエステル、ポリーP−フエニレ
テレフタルアミド及び各種の液晶ポリエステル(商品名
:エコノール、XYDA等)か挙げられる。
Next, barrier resins that have excellent barrier properties against gases such as oxygen and carbon dioxide include ethylene vinyl alcohol copolymer resin, high nitrile resin, polyacrylonitrile, and a copolymer of acrylonitrile, methyl acrylate, and butadiene (product name: Valex). ), polyvinyl chloride, nylon MXD6 made of metaxylylene diamine and adipic acid, polyethylene isophthalate copolymer, copolymer made of isophthalic acid or terephthalic acid, ethylene glycol and 1,3-bis(2-hydroxyethoxy)benzene. Examples include polyester, poly P-phenyleterephthalamide, and various liquid crystal polyesters (trade names: Econol, XYDA, etc.).

この他にもブレンド樹脂として、有機金属錯体を利用し
たLONG LIFB (アクアノーティックス社商品
名)やPET 、 MXD6ナイロンにコバルト塩(5
゜〜200PPm)をブレンドしたOXBAR(CMB
社商社名品名の混合系も挙げられる。
In addition, blend resins include LONG LIFB (trade name of Aquanautics), which uses organometallic complexes, PET, MXD6 nylon, and cobalt salt (5
OXBAR (CMB
A mixture of names of famous products from companies and trading companies can also be mentioned.

第1図は本発明の一実施例による高延伸ブロー成形容器
の予備成形体を示す断面図てあり、一次の延伸ブロー成
形前のもの(一次子偏成形体10と称す)である。
FIG. 1 is a sectional view showing a preformed body of a high stretch blow molded container according to an embodiment of the present invention, which is before primary stretch blow molding (referred to as a primary uneven molded body 10).

本実施例において、一次子偏成形体lOは、射出成形に
より成形される有底円筒体であり、口部11と胴部12
と底部13とからなる。
In the present embodiment, the primary uneven molded body IO is a cylindrical body with a bottom formed by injection molding, and has a mouth part 11 and a body part 12.
and a bottom portion 13.

また本実施例において、一次子偏成形体10の口部11
を除く延伸成形長り。の1/2の位置における胴部12
の肉厚W0は、口部11の肉厚と底部13の肉厚より厚
く成形されている。
In addition, in this embodiment, the mouth portion 11 of the primary molded body 10 is
Excluding stretch molding length. body 12 at a position of 1/2 of
The wall thickness W0 is formed to be thicker than the wall thickness of the mouth portion 11 and the wall thickness of the bottom portion 13.

また、一次子偏成形体IOの延伸成形長り。の1/2の
位置における胴部12の平均径をφ。とじ、同位置にお
ける内側表面径をφ。、とし、さらに同位置における外
側表面径をφ。2とすると、φ。とφ。
In addition, the stretching length of the primary uneven molded body IO. The average diameter of the trunk 12 at the 1/2 position is φ. The inner surface diameter at the same position is φ. , and the outer surface diameter at the same position is φ. 2, φ. andφ.

とφ。2との関係は次式で表される。andφ. The relationship with 2 is expressed by the following equation.

φo”(φo1+φ。2)/2 また本実施例においては、一次子偏成形体10の胴部1
2は、内表面近傍層10a、中央層10b 、外表面近
傍層10cとからなっている。
φo”(φo1+φ.2)/2 In addition, in this embodiment, the body 1 of the primary uneven molded body 10
2 consists of a layer 10a near the inner surface, a center layer 10b, and a layer 10c near the outer surface.

第2図は本発明の一実施例による高延伸ブロー成形容器
の予備成形体を示す断面図であり、第1図に示す一次予
備成形体10に一次の延伸ブロー成形を施したもの(二
次予備成形体2oと称す)である。
FIG. 2 is a cross-sectional view showing a preform of a high stretch blow-molded container according to an embodiment of the present invention. (referred to as preformed body 2o).

本実施例において、二次予備成形体2oは、口部11と
胴部12と底部13とからなる。
In this embodiment, the secondary preform 2o includes a mouth portion 11, a body portion 12, and a bottom portion 13.

また本実施例において、二次予備成形体2oの延伸成形
長h1の172の位置における胴部12の肉厚をW2と
し、同位置における平均径をφ1とし、同位置における
内側表面径をφ、1とし、同位置における外側表面径を
φ、2とすると、φ、とφ1.とφとの関係は次式で表
される。
Further, in this example, the wall thickness of the body portion 12 at the position 172 of the stretching length h1 of the secondary preform 2o is W2, the average diameter at the same position is φ1, and the inner surface diameter at the same position is φ, 1, and the outer surface diameters at the same position are φ and 2, then φ and φ1. The relationship between and φ is expressed by the following equation.

φ、=(φ、1+φ12)/2 第3図は本発明の一実施例による高延伸ブロー成形容器
示す断面図である。
φ,=(φ,1+φ12)/2 FIG. 3 is a sectional view showing a high stretch blow molded container according to an embodiment of the present invention.

本実施例において、高延伸ブロー成形容器3oは、口部
11と胴部12と底部13とからなる。
In this embodiment, the high-stretch blow-molded container 3o includes a mouth portion 11, a body portion 12, and a bottom portion 13.

また本実施例において、高延伸ブロー成形容器30の延
伸成形長h2の172の位置における外側表面径をφ、
2としている。
In addition, in this example, the outer surface diameter at the position 172 of the stretch-forming length h2 of the high-stretch blow-molded container 30 is φ,
It is set at 2.

第4図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第一段階を示す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing the first step in the manufacturing process of a high stretch blow-molded container according to an embodiment of the present invention.

第4図においては、射出成形された一次予備成形体10
が一次延伸ブロー成形され、二次予備成形体20か形成
された状態を示している。
In FIG. 4, an injection molded primary preform 10 is shown.
The figure shows a state in which a secondary preform 20 has been formed by primary stretch blow molding.

本実施例においては、口部外型41と口部内型42とに
より把握された一次予備成形体10 (第4図において
は、破線により示す)か、−吹成形型4o内に装着され
るか、この時、第1図に示す一次予備成形体10は射出
成形型内で温度調整されるため、外表面近傍層10a及
び内表面近傍層10cの温度は低くなっており、中央層
10bの温度は高くなっている。具体的には、外表面近
傍層10a及び内表面近傍層10cの温度をガラス転位
点温度付近とするのが好ましく、また中央層Jobの温
度を、ガラス転位点温度以上、結晶化温度以下とするの
が好ましい。これは内外表面近傍層10c 510aは
延伸配向効果か得られ、かつ中央層の結晶化による白濁
の発生を防止でき、また内外表面近傍層が離型てきる硬
さになるためである。
In this embodiment, the primary preform 10 held by the outer mouth mold 41 and the inner mouth mold 42 (indicated by a broken line in FIG. 4), or the primary preform 10 held in the blow mold 4o. At this time, the temperature of the primary preform 10 shown in FIG. 1 is adjusted in the injection mold, so the temperature of the layer 10a near the outer surface and the layer 10c near the inner surface is low, and the temperature of the center layer 10b is low. is getting higher. Specifically, it is preferable that the temperature of the layer 10a near the outer surface and the layer 10c near the inner surface be around the glass transition point temperature, and the temperature of the central layer Job be above the glass transition point temperature and below the crystallization temperature. is preferable. This is because the layers 10c and 510a near the inner and outer surfaces can obtain a stretching orientation effect, can prevent clouding from occurring due to crystallization of the center layer, and have a hardness that allows the layers near the inner and outer surfaces to be released from the mold.

次いて、口部内型42の穴部43を通して上方から延伸
ロッド45が挿入される。延伸ロット45の先端部46
が、一次子偏成形体10の底部13の中央部14に当接
しく第4図においては、この状態を破線により示す)、
押圧するとともに、延伸ロッド45の複数個の吹出穴4
7より加圧エアを吹き出し、一次延伸ブロー成形をおこ
なうことにより、二次予備成形体20か得られる。
Next, the stretching rod 45 is inserted from above through the hole 43 of the inner mouth mold 42 . Tip portion 46 of stretching rod 45
is in contact with the center portion 14 of the bottom portion 13 of the primary irregular molded body 10 (this state is shown by a broken line in FIG. 4),
While pressing, the plurality of blowout holes 4 of the stretching rod 45
By blowing out pressurized air from 7 and performing primary stretch blow molding, a secondary preform 20 is obtained.

第5図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第二段階を示す概略断面図である。
FIG. 5 is a schematic cross-sectional view showing the second step of the manufacturing process of a high stretch blow-molded container according to an embodiment of the present invention.

第5図において、口部外型41に装着した状態の二次予
備成形体20の内側には、複数のエアベント用の溝部5
1を有する温度調整コア5oが挿入されて、温度調整装
置60内に挿入される。ここて温度調整コア50の内部
には温度調整用の媒体か循環しており、また温度調整コ
ア50は離型を容易にするために、テーバ状に形成され
ている。
In FIG. 5, there are a plurality of air vent grooves 5 on the inside of the secondary preform 20 attached to the mouth outer mold 41.
1 is inserted into the temperature regulating device 60. A temperature regulating medium is circulated inside the temperature regulating core 50, and the temperature regulating core 50 is formed into a tapered shape to facilitate mold release.

本実施例において、温度調整装置60は、5ケの温度調
整ブロック61〜65を有し、各温度調整ブロック61
〜65の内側には、通路71〜75を有し、また外側に
は、バンド型の温度調整ヒータ81〜85を有する。
In this embodiment, the temperature adjustment device 60 has five temperature adjustment blocks 61 to 65, and each temperature adjustment block 61 has five temperature adjustment blocks 61 to 65.
-65 has passages 71-75 on the inside, and band-type temperature adjustment heaters 81-85 on the outside.

また本実施例において、温度調整装置60は、上部ブロ
ック66及び下部ブロック67を有し、上部ブロック6
6には通路76を有し、下部ブロック67には、通路7
7を有する。上記各通路は連続しており、下部ブロック
67の通路77から各温度調整ブロック61〜65の各
通路71〜75を通じて、上部ブロック66の通路76
へ抜ける温度調整用のエアか通過する構造になっている
Further, in this embodiment, the temperature adjustment device 60 has an upper block 66 and a lower block 67, and the upper block 66 has an upper block 66 and a lower block 67.
6 has a passage 76, and the lower block 67 has a passage 76.
It has 7. Each of the above-mentioned passages is continuous, from the passage 77 of the lower block 67 through the passages 71 to 75 of the temperature adjustment blocks 61 to 65, to the passage 76 of the upper block 66.
It has a structure that allows temperature adjustment air to pass through.

このような構造の温度調整装置60においては、温度調
整コアと、各温度調整ヒータ81〜85の温度と、エア
の流入量とを調整することにより、二次予備成形体20
を内外表面より延伸ブロー成形適性温度に温度調整する
In the temperature adjustment device 60 having such a structure, the secondary preform 20 is adjusted by adjusting the temperature of the temperature adjustment core, the temperature of each temperature adjustment heater 81 to 85, and the amount of air inflow.
Adjust the temperature of the inner and outer surfaces to a temperature suitable for stretch blow molding.

ここで第5図に示した温調工程をとらずに第4図の型4
0を温調することにより一次延伸ブロー後も型40内に
とどめ引続き二次予備成形体を温調し、第三の工程へ進
むこともできる。
Here, mold 4 in Figure 4 was prepared without taking the temperature control process shown in Figure 5.
By controlling the temperature of the secondary preform, the secondary preform can be kept in the mold 40 even after the primary stretch blowing, and the temperature of the secondary preform can be controlled, and the process can proceed to the third step.

第6図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第三段階を示す概略断面図である。
FIG. 6 is a schematic cross-sectional view showing the third step in the manufacturing process of a high-stretch blow-molded container according to an embodiment of the present invention.

第6図においては、二次予備成形体20が延伸ブロー成
形され、高延伸ブロー成形容器30が成形された状態を
示している。
FIG. 6 shows a state in which the secondary preform 20 has been stretch blow molded to form a high stretch blow molded container 30.

本実施例においては、口部外型91と口部内型92とに
より把握された二次予備成形体20(第6図においては
、破線により示す)が二次成形型90内に装着され、ま
た口部内型92の穴部93を通して、上方から延伸ロッ
ド95が挿入される。ここで延伸ロッド95の先端部9
6か、二次予備成形体20の底部23の中央部24に当
接しく第6図においては、この状態を破線により示す)
、押圧するとともに、延伸ロッド95の複数個の吹出穴
97よりエアを吹き出し二次の延伸ブロー成形をおこな
うことにより、高延伸ブロー成形容器30が得られる。
In this embodiment, the secondary preform 20 (indicated by broken lines in FIG. 6) held by the outer mouth mold 91 and the inner mouth mold 92 is mounted in the secondary mold 90, and A stretching rod 95 is inserted from above through the hole 93 of the inner mouth mold 92 . Here, the tip end 9 of the stretching rod 95
(6) or in contact with the center part 24 of the bottom part 23 of the secondary preform 20 (in FIG. 6, this state is shown by a broken line)
, while pressing, air is blown out from the plurality of blowing holes 97 of the stretching rod 95 to perform secondary stretch blow molding, thereby obtaining the high stretch blow molded container 30.

第7図は、第1図に示す一次予備成形体10の断面厚さ
方向の温度分布を定性的に示すグラフであり、射出成型
後に射出成形型から離型した直後の一次予備成形体lO
の断面厚さ方向の温度分布を示すものである。
FIG. 7 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the primary preform 10 shown in FIG.
This figure shows the temperature distribution in the cross-sectional thickness direction of .

第7図においてaは一次予備成形体10の外表面近傍層
10aに対応する位置を示し、bは中央層10bに対応
する位置を示し、Cは内表面近傍層10cに対応する位
置を示す。
In FIG. 7, a indicates a position corresponding to the layer 10a near the outer surface of the primary preform 10, b indicates a position corresponding to the center layer 10b, and C indicates a position corresponding to the layer 10c near the inner surface.

第8図は、第1図に示す一次予備成形体10の断面厚さ
方向の温度分布を定性的に示すグラフであり、一次ブロ
ー成形する直前の一次予備成形体l。
FIG. 8 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the primary preform 10 shown in FIG.

の断面厚さ方向の温度分布を示すものである。This figure shows the temperature distribution in the cross-sectional thickness direction of .

第7図及び第8図においてaは一次予備成形体10の内
表面近傍層10aに対応する位置を示し、bは中央層1
0bに対応する位置を示し、Cは外表面近傍層10cに
対応する位置を示す。
In FIGS. 7 and 8, a indicates a position corresponding to the layer 10a near the inner surface of the primary preform 10, and b indicates a position corresponding to the center layer 1
A position corresponding to 0b is shown, and C is a position corresponding to the outer surface vicinity layer 10c.

第9図は、第2図に示す二次予備成形体20の断面厚さ
方向の温度分布を定性的に示すグラフであリ、一次延伸
ブロー成形直後の二次予備成形体20の断面厚さ方向の
温度分布を示すものである。
FIG. 9 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the secondary preform 20 shown in FIG. It shows the temperature distribution in the direction.

第10図は、第2図に示す二次予備成形体20の断面厚
さ方向の温度分布を定性的に示すグラフであり、第5図
に示す構造の温度調整装置内で温度調整を行った直後の
二次予備成形体20の断面厚さ方向の温度分布を示すも
のである。
FIG. 10 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the secondary preform 20 shown in FIG. 2, and the temperature was adjusted in a temperature adjustment device having the structure shown in FIG. It shows the temperature distribution in the cross-sectional thickness direction of the secondary preform 20 immediately after.

第7図〜第1O図において、グラフの横軸は、予備成形
体10.20の胴部12の断面厚さ方向の位置(0、W
Os W2は断面の最外部、Wo、w3は断面の中央部
を示す)を示している。またグラフの縦軸は、温度(T
、は延伸適性温度を示し、Li++I、T。
7 to 1O, the horizontal axis of the graph indicates the position (0, W
Os W2 indicates the outermost part of the cross section, and Wo and w3 indicate the central part of the cross section. Also, the vertical axis of the graph is the temperature (T
, indicates the appropriate temperature for stretching, and Li++I,T.

1、T、++3、Lln4は最低温度、T+++axl
、Traaxt、T□1、T□84は最高温度を示す)
を示している。
1, T, ++3, Lln4 is the lowest temperature, T+++axl
, Traaxt, T□1, T□84 indicate the maximum temperature)
It shows.

第7図においてa、Cで示す、肉厚の一次予備成形体1
0の表面近傍層は、冷却された射出成形型に接していた
ため、低温状態である。またbで示す中央層は、射出成
形時の高温をほぼ保っている。
Thick primary preformed body 1 indicated by a and C in FIG.
The layer near the surface of No. 0 was in a low temperature state because it was in contact with the cooled injection mold. Further, the central layer indicated by b almost maintains the high temperature during injection molding.

このため、Twa a x IとT、わ、との差は、か
なり大きい。
Therefore, the difference between Twa a x I and T, wa, is quite large.

第8図において、射出成形型から離型した一次延伸ブロ
ー成形直前の一次予備成形体は、胴部の温度分布状態が
第7図に示す状態より若干均一化している。しかしなか
ら、 Tmax2とLl++2との差は大きい。ただし
a、Cに示す表面近傍層は、はぼ延伸ブロー成形適性温
度になっており、この状態で一次延伸ブロー成形するこ
とにより、表面近傍層については、延伸ブロー成形の効
果か得られる。
In FIG. 8, the temperature distribution state of the body of the primary preformed body released from the injection mold immediately before primary stretch blow molding is slightly more uniform than that shown in FIG. 7. However, the difference between Tmax2 and Ll++2 is large. However, the layers near the surface shown in a and C are at a temperature suitable for stretch blow molding, and by performing primary stretch blow molding in this state, the effects of stretch blow molding can be obtained for the layers near the surface.

第9図において、二次予備成形体の胴部の肉厚は薄くな
るか、短時間で一次延伸ブロー成形されるため、Tl1
mX2とTゆ1ゎ3との差は依然として解消されていな
い。
In FIG. 9, since the wall thickness of the body of the secondary preform is thinner or the primary stretch blow molding is performed in a short time, Tl1
The difference between mX2 and Tyu1ゎ3 is still unresolved.

第1O図においては、胴部全での断面部の温度が、延伸
ブロー成形適性温度付近に均一化されている。
In FIG. 1O, the temperature of the cross section of the entire body is made uniform around the temperature suitable for stretch blow molding.

本実施例においては、肉厚の予備成形体を一度で延伸ブ
ロー成形方法に比へて、上記均一化に要する時間を、著
しく短縮することができる。このため、全成形工程のサ
イクルタイムも短縮化し、生産性を著しく向上すること
ができる。
In this example, compared to the stretch blow molding method in which a thick preform is formed in one go, the time required for the above-mentioned uniformity can be significantly shortened. Therefore, the cycle time of the entire molding process can be shortened, and productivity can be significantly improved.

また本実施例においては、温度調整が短時間で行われる
ことにより、容器か結晶白濁化することかなく、良好な
透明性か得られる。これにより、予備成形体の肉厚か5
mmを超えるポリエチレンテレフタレート樹脂とバリヤ
ー樹脂のブレンドによる容器の成形にも対応することか
できる。
Further, in this example, since the temperature adjustment is carried out in a short time, the container does not become cloudy with crystals, and good transparency can be obtained. This allows the wall thickness of the preform to be 5
It is also possible to mold containers using a blend of polyethylene terephthalate resin and barrier resin that exceeds mm.

さらに本実施例においては、一次延伸ブロー成形後の薄
肉の二次予備成形体を円筒形状にすることにより、温度
調整用の型等の形状も簡素化することができる。
Furthermore, in this example, by making the thin secondary preformed body after the primary stretch blow molding into a cylindrical shape, the shape of the mold for temperature adjustment, etc. can also be simplified.

さらに本実施例においては、一次子偏成形体の胴部の肉
厚が完成容器の胴部の肉厚に比へて10〜20倍の高倍
率の延伸ブロー成形にも対応することができ、この場合
も白化を生じる等の問題はなく、良好な効果を発揮する
Furthermore, in this embodiment, the wall thickness of the body of the primary uneven molded body can be applied to stretch blow molding at a high magnification of 10 to 20 times that of the body of the finished container. In this case as well, there are no problems such as whitening, and good effects are exhibited.

さらに本実施例においては、一次子偏成形体から二次予
備成形体を成形する際に、予備成形体の軸方向の延伸倍
率を周方向の倍率比より大きくとり、主として軸方向の
み延伸することも可能であり、この場合も良好な効果を
発揮する。
Furthermore, in this example, when forming the secondary preform from the primary uneven mold, the stretching ratio in the axial direction of the preform is set to be larger than the ratio in the circumferential direction, and stretching is performed mainly in the axial direction only. is also possible, and in this case also exhibits a good effect.

なお本実施例においては、ホットパリソン方式により高
延伸ブロー成形容器を成形する例について示したが、延
伸倍率の大きい延伸ブロー成形であれば、本発明の方法
は良好な効果を発揮する。
In this example, an example was shown in which a high-stretch blow-molded container was molded by the hot parison method, but the method of the present invention exhibits good effects when it is stretch-blow molded with a large stretching ratio.

しかしながら、ホットパリソン方式により、高延伸ブロ
ー成形容器を成形する場合において、特に良好な効果を
発揮する。
However, the hot parison method exhibits particularly good effects when molding high-stretch blow-molded containers.

本発明のブレンドは種々の樹脂混合法で行いうるが、ガ
スバリヤレジンか分子レベルで均一分散するのでなく、
島構造を有する様な不均一分散がより望ましく、その為
、射出成形時シリンダ内で溶融混合する方法が良い。
Although the blend of the present invention can be made using various resin mixing methods, the gas barrier resin is not homogeneously dispersed at the molecular level;
Non-uniform dispersion with an island structure is more desirable, and therefore a method of melting and mixing in a cylinder during injection molding is preferred.

本発明の高延伸ブロー成形容器の製造方法を以下の具体
的実施例により詳細に説明する。
The method for producing a high stretch blow-molded container of the present invention will be explained in detail with reference to the following specific examples.

ここで本実施例において、予備成形体の胴部を構成する
樹脂は、具体的にポリエチレンテレフタレート樹脂J1
35 (三井ペット樹脂■製)からなるポリエステル樹
脂と、ガスバリヤ−性を有する共重合ポリエステル樹脂
BOIO(三井ペット樹脂■製)との混合物(重量比9
:1)を使用した。
In this example, the resin constituting the body of the preform is specifically polyethylene terephthalate resin J1.
A mixture of a polyester resin consisting of 35 (manufactured by Mitsui Pet Resin ■) and a copolymerized polyester resin BOIO (manufactured by Mitsui Pet Resin ■) having gas barrier properties (weight ratio 9
:1) was used.

実施例1 第3図に示す112= 284mm、φ2 = 93.
5mmであり内容積1.5fの高延伸ブロー成形容器3
0を成形するために、A S B 50型成形機(日清
ASB機械■製)を用いて、第1図に示す重量50g 
ha= 110.5mm 、 Wo= 5.5mm、φ
o+=12mm、φ02 = 23mm、φ0= 17
.5mmの一次予備成形体10を成形した。射出冷却時
間23秒後に、離型した。
Example 1 112 shown in FIG. 3 = 284 mm, φ2 = 93.
High stretch blow molded container 3 with a diameter of 5 mm and an internal volume of 1.5 f
0, using an ASB 50 type molding machine (manufactured by Nisshin ASB Kikai ■), the weight 50g shown in Figure 1 was used.
ha=110.5mm, Wo=5.5mm, φ
o+=12mm, φ02=23mm, φ0=17
.. A 5 mm primary preform 10 was molded. After an injection cooling time of 23 seconds, the mold was released.

この一次子偏成形体10を、第4図に示す構造の装置の
中に挿入し、延伸ブロー成形することにより、第2図に
示すh+=165mm 、 W2= 3.0mm、φ、
1=19mm、φ、 2= 25mm、φ、 =22m
mの二次予備成形体20を成形した。
This primary uneven molded body 10 is inserted into an apparatus having the structure shown in FIG. 4 and subjected to stretch blow molding to obtain h+=165 mm, W2=3.0 mm, φ, as shown in FIG. 2.
1=19mm, φ, 2=25mm, φ, =22m
A secondary preform 20 of m was molded.

引続き、この二次予備成形体20を第4図に示す温調さ
れた型内にとどめ、約19秒間温度調整し、二次予備成
形体20の各部か所望の延伸ブロー成形適性温度95°
C〜115°Cを得た。
Subsequently, this secondary preformed body 20 is kept in a temperature-controlled mold shown in FIG. 4, and the temperature is adjusted for about 19 seconds to bring each part of the secondary preformed body 20 to the desired stretch-blow molding temperature of 95°.
C to 115°C was obtained.

次いで、この二次予備成形体20を第6図に示す構造の
装置内に挿入し、延伸ブロー成形することにより、上記
高延伸ブロー成形30を得た。
Next, this secondary preform 20 was inserted into an apparatus having the structure shown in FIG. 6, and stretch blow molding was performed to obtain the above-mentioned high stretch blow molding 30.

本実施例においては、軸方向延伸倍率h2/ho=2.
6倍、周方向延伸倍率φ、/φ。=5.3倍、表面積倍
率13.7倍であった。また、延伸倍率を容器の内外表
面で見てみると、内表面では約20倍、外表面では約l
015倍であった。さらに高延伸ブロー成形容器の成形
サイクルは、約27秒と短く、容器に白化は生じなかっ
た。
In this example, the axial stretching ratio h2/ho=2.
6 times, circumferential stretching magnification φ, /φ. = 5.3 times, and the surface area magnification was 13.7 times. In addition, when looking at the stretching ratio on the inner and outer surfaces of the container, it is approximately 20 times on the inner surface and about 1 on the outer surface.
015 times. Furthermore, the molding cycle of the high stretch blow molded container was as short as about 27 seconds, and no whitening occurred in the container.

上述の高延伸ブロー成形容器の酸素バリヤー性を計測し
た。この結果、1気圧の条件で1本1日当りの酸素透過
量は、0.23ccであり、良好な酸素バリヤー性か得
られた。
The oxygen barrier properties of the above-mentioned high stretch blow molded containers were measured. As a result, the oxygen permeation amount per tube per day under the condition of 1 atm was 0.23 cc, and good oxygen barrier properties were obtained.

実施例2 実施例1と同様の高延伸ブロー成形容器3oを成形する
ために、実施例1と同様の樹脂及び成形機を用いて、第
1図に示す重量50g h a ”= 83mm、w。
Example 2 In order to mold a high-stretch blow-molded container 3o similar to that of Example 1, using the same resin and molding machine as that of Example 1, the weight shown in FIG. 1 was 50 g ha''=83 mm, w.

=7、0mm、  φo + = 12mm、  φ。=7, 0mm, φo + = 12mm, φ.

! = 26mm1  φo=19mmの一次予備成形
体10を成形した。射出成型後26秒間冷却し、離型し
た。
! = 26 mm1 A primary preformed body 10 with φo = 19 mm was molded. After injection molding, the mold was cooled for 26 seconds and released.

この一次子偏成形体loを、第4図に示す構造の装置の
中に挿入し、延伸ブロー成形することにより、第2図に
示すh+=200.0mm 、 W2: 2.0mm、
φ、 、 = 24mm、φI 2 = 28mm、φ
畜= 26mmの二次予備成形体20を成形した。
This primary uneven molded body lo was inserted into an apparatus having the structure shown in FIG. 4 and stretch-blow molded to obtain h+=200.0 mm, W2: 2.0 mm, as shown in FIG. 2.
φ, , = 24mm, φI 2 = 28mm, φ
A secondary preform 20 having a diameter of 26 mm was molded.

引続き、この二次予備成形体20を第4図に示す温調さ
れた型内にとどめ、約24秒間温度調整し、二次予備成
形体20の各部か所望の延伸ブロー成形適性温度を得た
Subsequently, this secondary preform 20 was kept in a temperature-controlled mold shown in FIG. 4, and the temperature was adjusted for about 24 seconds to obtain the desired stretch-blow molding temperature for each part of the secondary preform 20. .

次いて、この二次予備成形体20を第6図に示す構造の
装置内に挿入し、延伸ブロー成形することにより、上記
高延伸ブロー成形容器3oを得た。
Next, this secondary preform 20 was inserted into an apparatus having the structure shown in FIG. 6 and subjected to stretch blow molding, thereby obtaining the high stretch blow molded container 3o.

本実施例においては、軸方向延伸倍率h2/ho=3.
4倍、周方向延伸倍率φ、/φ。=4.9倍、表面積倍
率16.8倍、内表面では27倍、外表面では12倍で
あり、実施例1と比較して、さらに高延伸倍率とした。
In this example, the axial stretching ratio h2/ho=3.
4 times, circumferential stretching magnification φ, /φ. = 4.9 times, the surface area magnification was 16.8 times, the inner surface was 27 times, and the outer surface was 12 times, which was an even higher stretching ratio compared to Example 1.

また、高延伸ブロー成形容器の成形サイクルは、約31
秒であり、容器に白化は生じなかった。。
In addition, the molding cycle of the high stretch blow molded container is approximately 31
seconds, and no whitening occurred in the container. .

上述の容器の酸素バリヤー性を計測した。この結果、1
気圧の条件で1本1日当りの酸素透過量は、0.21c
cであり、実施例1に対してさらに優れた酸素バリヤー
性か得られた。
The oxygen barrier properties of the containers described above were measured. As a result, 1
The amount of oxygen permeated per bottle per day under atmospheric pressure conditions is 0.21c.
c, and even better oxygen barrier properties than in Example 1 were obtained.

比較例1 実施例1と同様の製品容器、樹脂成形材を用いて、同様
の一次予備成形体を成形し、二次予備成形体を成形する
ことなく、延伸ブロー成形することにより、実施例1と
同様の高延伸倍率の容器を得た。この時の成形サイクル
は約40秒と長く、また27秒以下とすると容器に白化
を生じた。また容器の一部に薄い部分があり、ショット
毎の肉厚は安定しなかった。
Comparative Example 1 Using the same product container and resin molding material as in Example 1, a similar primary preform was molded, and stretch blow molding was performed without molding a secondary preform. A container with a high draw ratio similar to the above was obtained. The molding cycle at this time was long, about 40 seconds, and if it was shorter than 27 seconds, whitening occurred on the container. In addition, there were some thin parts of the container, and the wall thickness was not stable from shot to shot.

また本比較例においては、実施例1と同様に、上述の高
延伸ブロー成形容器の酸素バリヤー性を計測した。この
結果、1気圧の条件で1本1日当りの酸素透過量は0.
32ccであり、十分な酸素バリヤー性は得られなかっ
た。
In addition, in this comparative example, the oxygen barrier properties of the above-mentioned high stretch blow-molded container were measured in the same manner as in Example 1. As a result, under the condition of 1 atm, the amount of oxygen permeation per tube per day was 0.
32 cc, and sufficient oxygen barrier properties could not be obtained.

比較例2 実施例1と同様の樹脂及び成形機を用いて、第1図に示
す重量50g ho=137mm 、 Wo= 4.0
mm、φ、 、 = 16.5mm、  φ、 2= 
24.5mm、  φo =2o、smmの一次予備成
形体lOを成形し、二次予備成形体を成形することなく
、実施例1と同様の製品容器高延伸ブロー成形をおこな
った。
Comparative Example 2 Using the same resin and molding machine as in Example 1, the weight shown in Fig. 1 was 50 g, ho = 137 mm, Wo = 4.0
mm, φ, , = 16.5mm, φ, 2=
A primary preform lO of 24.5 mm, φo = 2o, smm was molded, and high stretch blow molding of a product container was performed in the same manner as in Example 1 without molding a secondary preform.

本比較例においては、軸方向延伸倍率h2/h、=2.
1倍、周方向延伸倍率φ2/φ。=4.5倍、表面積倍
率9.5倍であった。また成形サイクルは、約28秒で
あり、白化は生じなかった。
In this comparative example, the axial stretching ratio h2/h, =2.
1x, circumferential stretching magnification φ2/φ. = 4.5 times, and the surface area magnification was 9.5 times. The molding cycle was approximately 28 seconds, and no whitening occurred.

また本比較例においては、実施例Iと同様に、上述の高
延伸ブロー成形容器の酸素バリヤー性を計測した。この
結果、1気圧の条件で1本1日当りの酸素透過量は0.
28ccであり、酸素バリヤー性は実施例1より劣って
いた。
Further, in this comparative example, the oxygen barrier properties of the above-mentioned high stretch blow-molded container were measured in the same manner as in Example I. As a result, under the condition of 1 atm, the amount of oxygen permeation per tube per day was 0.
28 cc, and the oxygen barrier property was inferior to that of Example 1.

比較例3 実施例2と同様の一次予備成形体を成形し、二次予備成
形体を成形することなく、延伸ブロー成形することによ
り、実施例1と同様の高延伸倍率の成形容器を得た。こ
の容器は白濁し肉厚も安定しなかった。
Comparative Example 3 A molded container with a high stretch ratio as in Example 1 was obtained by molding the same primary preform as in Example 2 and stretch blow molding without molding a secondary preform. . This container became cloudy and the wall thickness was unstable.

上述の高延伸倍率の容器の酸素バリヤー性を計測した。The oxygen barrier properties of the containers with the above-mentioned high draw ratio were measured.

この結果、1気圧の条件で1本1日当りの酸素透過量は
0.35ccであり、十分な酸素バリヤー性は得られな
かった。
As a result, the oxygen permeation amount per tube per day was 0.35 cc under the condition of 1 atm, and sufficient oxygen barrier properties were not obtained.

比較例4 J135樹脂のみを使用して、実施例1と同様の方法で
容器を得た。酸素バリヤーは、0.32ccであり実施
例1の性能は得られなかった。
Comparative Example 4 A container was obtained in the same manner as in Example 1 using only J135 resin. The oxygen barrier was 0.32 cc, and the performance of Example 1 could not be obtained.

以上に示したように、本実施例によれば、肉厚の予備成
形体を用いて、延伸倍率を大きく設定する場合において
も、容器に白化を生じることなく、短時間で肉厚のばら
つきのない適性な肉厚分布を持った高延伸ブロー成形容
器を得ることかできた。
As shown above, according to this example, even when using a thick preform and setting a large stretching ratio, the container does not whiten and the variation in wall thickness can be reduced in a short time. It was possible to obtain a high-stretch blow-molded container with a suitable wall thickness distribution.

また延伸倍率を高くすることにより、優れたガスバリヤ
−性を有する容器とすることができた。
Furthermore, by increasing the stretching ratio, a container with excellent gas barrier properties could be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の高延伸ブロー成形容器の
製造方法においては、胴部がポリエステル樹脂とガスバ
リヤ−性樹脂とのブレンド物からなる予備成形体の延伸
ブロー成形工程を二段階に分割し、予備成形体の表面の
みを温度調節して、一次の延伸ブロー成形工程を行い、
予備成形体の肉厚かある程度減少した時点で、予備成形
体全体の温度調整をおこない、その温度調整が終了した
時点で二次の延伸ブロー成形をおこなう構造になってい
る。
As detailed above, in the method for manufacturing a high stretch blow molded container of the present invention, the stretch blow molding process of a preform whose body is made of a blend of polyester resin and gas barrier resin is divided into two steps. Then, the temperature is adjusted only on the surface of the preform, and the primary stretch blow molding process is performed.
The structure is such that the temperature of the entire preform is adjusted when the thickness of the preform has decreased to a certain extent, and secondary stretch blow molding is performed when the temperature adjustment is completed.

これにより、ポリエステル樹脂とガスバリヤ−性樹脂と
のブレンド物により成形される予備成形体が、ガスバリ
ヤ−性等を向上させるために、延伸ブロー成形における
延伸倍率を高く設定し、厚い肉厚を有する場合であって
も、白化を生じることなく、予備成形体を内部に至るま
で厳密に延伸ブロー成形適性温度に調整するために必要
とする時間を短縮することができる。
As a result, in order to improve gas barrier properties, etc., a preform formed from a blend of a polyester resin and a gas barrier resin has a large wall thickness by setting a high stretch ratio in stretch blow molding. Even in this case, it is possible to shorten the time required to precisely adjust the temperature of the preform to the temperature suitable for stretch blow molding, without causing whitening.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による高延伸ブロー成形容器
の予備成形体を示す断面図であり、第2図は本発明の一
実施例による高延伸ブロー成形容器の予備成形体を示す
断面図であり、第3図は本発明の一実施例による高延伸
ブロー成形容器を示す断面図であり、 第4図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第一段階を示す概略断面図であり、 第5図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第二段階を示す概略断面図であり、 第6図は本発明の一実施例による高延伸ブロー成形容器
の製造工程の第三段階を示す概略断面図であり、 第7図は第1図に示す一次予備成形体10の断面厚さ方
向の温度分布を定性的に示すグラフであり、第8図は第
1図に示す一次予備成形体10の断面厚さ方向の温度分
布を定性的に示すグラフであり、第9図は第2図に示す
二次予備成形体20の断面厚さ方向の温度分布を定性的
に示すグラフであり、第10図は第2図に示す二次予備
成形体2oの断面厚さ方向の温度分布を定性的に示すグ
ラフであり、第11図は予備成形体の一例を示す断面図
である。 1.11・・・・・口部 2.12・・ ・・胴部 3.13・・・・・底部 4.45.95・・・延伸ロッド 10・ 10a 10b  ・ ・ 0c 14.24・ 20・ ・ ・ 30・ 40・ 41.91・ 42、92・ 43、93・ ・ 46.96・ 47.97・ ・ 50・ ・ ・ ・ 51 ・ 60・ 61〜65・ 66・ 67・ 71〜77・ ・ ・一次子偏成形体 ・内表面近傍層 ・中央層 ・外表面近傍層 ・・中央部 二次予備成形体 ・延伸ブロー成形容器 ・−吹成形型 ・口部外型 ・口部内型 ・穴部 ・先端部 ・・吹出穴 ・温度調整コア ・溝部 ・温度調整装置 ・温度調整ブロック ・・上部ブロック ・・下部ブロック ・・通路 81〜85・ 90・ ・温度調整ヒータ 二次成形型
FIG. 1 is a sectional view showing a preformed body of a high stretch blow molded container according to an embodiment of the present invention, and FIG. 2 is a cross sectional view showing a preformed body of a high stretch blow molded container according to an embodiment of the present invention. FIG. 3 is a sectional view showing a high stretch blow molded container according to an embodiment of the present invention, and FIG. 4 is a first step of the manufacturing process of a high stretch blow molded container according to an embodiment of the present invention. FIG. 5 is a schematic cross-sectional view showing the second step of the manufacturing process of a high-stretch blow-molded container according to an embodiment of the present invention, and FIG. FIG. 7 is a schematic cross-sectional view showing the third stage of the manufacturing process of a high-stretch blow-molded container; FIG. 7 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the primary preform 10 shown in FIG. 1; , FIG. 8 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the primary preform 10 shown in FIG. 1, and FIG. 9 is a graph showing the cross-sectional thickness of the secondary preform 20 shown in FIG. 10 is a graph qualitatively showing the temperature distribution in the cross-sectional thickness direction of the secondary preform 2o shown in FIG. 2, and FIG. It is a sectional view showing an example of a preform. 1.11... Mouth 2.12... Body 3.13... Bottom 4.45.95... Stretching rod 10. 10a 10b . . 0c 14.24. 20・ ・ ・ 30・ 40・ 41.91・ 42, 92・ 43, 93・ ・ 46.96・ 47.97・ ・ 50・ ・ ・ ・ 51 ・ 60・ 61~65・ 66・ 67・ 71~77・・ ・Primary uneven molded body・Layer near the inner surface・Center layer・Layer near the outer surface・・Central secondary preformed body・Stretch blow molded container・-Blow molding mold・Outer mouth mold・Inner mouth mold・Hole・Tip section・Blowout hole・Temperature adjustment core・Groove・Temperature adjustment device・Temperature adjustment block・・Upper block・・Lower block・・Passages 81 to 85・ 90・・Temperature adjustment heater secondary molding mold

Claims (4)

【特許請求の範囲】[Claims] (1)射出成形により成形される口部と胴部と底部とか
らなるとともに、前記胴部がポリエステル樹脂とガスバ
リヤー性樹脂とのブレンド物からなる厚肉の樹脂製一次
予備成形体を高延伸ブロー成形する容器の製造方法にお
いて、(a)射出成形後の高温の前記一次予備成形体の
前記胴部の表面の近傍層の温度を低下させ、(b)前記
一次予備成形体の中央層が高温であり、かつ前記近傍層
が低温の不均一の温度分布状態で一次延伸ブロー成形す
ることにより、二次予備成形体を成形し、 (C)前記二次予備成形体の温度分布を均一化するとと
もに、 前記二次予備成形体をさらに二次延伸ブロー成形するこ
とを特徴とする方法。
(1) A thick primary preform made of resin is formed by injection molding and consists of a mouth part, a body part, and a bottom part, and the body part is made of a blend of polyester resin and gas barrier resin, and is highly stretched. In a method for producing a blow-molded container, (a) the temperature of a layer near the surface of the body of the primary preform, which is at a high temperature after injection molding, is lowered, and (b) the center layer of the primary preform is (C) forming a secondary preform by performing primary stretch blow molding in a non-uniform temperature distribution state where the temperature is high and the neighboring layer is low; (C) uniformizing the temperature distribution of the secondary preform; A method characterized in that the secondary preform is further subjected to secondary stretch blow molding.
(2)請求項1に記載の高延伸ブロー成形容器の製造方
法において、前記近傍層の温度がガラス転位点温度付近
であり、かつ前記中央層の温度がガラス転位点温度以上
、結晶化温度以下の状態で、一次延伸ブロー成形するこ
とを特徴とする方法。
(2) In the method for manufacturing a high-stretch blow-molded container according to claim 1, the temperature of the neighboring layer is around the glass transition point temperature, and the temperature of the central layer is above the glass transition point temperature and below the crystallization temperature. A method characterized by carrying out primary stretch blow molding under the following conditions.
(3)請求項1又は2に記載の高延伸ブロー成形容器の
製造方法において、前記一次予備成形体の胴部の厚さが
、前記二次延伸ブロー成形後の胴部の厚さに対して、1
0〜20倍であることを特徴とする方法。
(3) In the method for manufacturing a high stretch blow molded container according to claim 1 or 2, the thickness of the body of the primary preform is greater than the thickness of the body after the secondary stretch blow molding. ,1
A method characterized in that the magnification is 0 to 20 times.
(4)請求項1乃至3のいずれかに記載の高延伸ブロー
成形容器の製造方法において、前記一次延伸ブロー成形
する際に、軸方向の延伸倍率が前記胴部の周方向の倍率
以上であり、主として軸方向を延伸することを特徴とす
る方法。
(4) In the method for manufacturing a high-stretch blow-molded container according to any one of claims 1 to 3, during the primary stretch blow-molding, an axial stretching ratio is greater than or equal to a circumferential stretching ratio of the body. , a method characterized by stretching mainly in the axial direction.
JP2165983A 1990-06-25 1990-06-25 Manufacture of high-stretch-blow-molded container Pending JPH0462028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165983A JPH0462028A (en) 1990-06-25 1990-06-25 Manufacture of high-stretch-blow-molded container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165983A JPH0462028A (en) 1990-06-25 1990-06-25 Manufacture of high-stretch-blow-molded container

Publications (1)

Publication Number Publication Date
JPH0462028A true JPH0462028A (en) 1992-02-27

Family

ID=15822698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165983A Pending JPH0462028A (en) 1990-06-25 1990-06-25 Manufacture of high-stretch-blow-molded container

Country Status (1)

Country Link
JP (1) JPH0462028A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045119A (en) * 2005-08-12 2007-02-22 Frontier:Kk Manufacturing method of plastic container having tubular barrel
JP2008279611A (en) * 2007-05-08 2008-11-20 Aoki Technical Laboratory Inc Injection stretch blow molding method for producing heat-resistant bottle
WO2010149522A1 (en) * 2009-06-27 2010-12-29 Netstal Maschinen Ag Method and device for producing preforms with special geometries
JP2015511895A (en) * 2012-02-24 2015-04-23 マヒル アクタス Method and apparatus for forming an optimized bottom profile of a preform
WO2020158920A1 (en) * 2019-01-31 2020-08-06 日精エー・エス・ビー機械株式会社 Device and method for producing resin container
WO2023157863A1 (en) * 2022-02-16 2023-08-24 日精エー・エス・ビー機械株式会社 Temperature adjustment mold, temperature adjustment method, and resin container manufacturing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045119A (en) * 2005-08-12 2007-02-22 Frontier:Kk Manufacturing method of plastic container having tubular barrel
JP2008279611A (en) * 2007-05-08 2008-11-20 Aoki Technical Laboratory Inc Injection stretch blow molding method for producing heat-resistant bottle
WO2010149522A1 (en) * 2009-06-27 2010-12-29 Netstal Maschinen Ag Method and device for producing preforms with special geometries
US10029403B2 (en) 2009-06-27 2018-07-24 Netstal-Maschinen Ag Method and device for producing preforms with special geometries
DE102009030762B4 (en) * 2009-06-27 2015-12-31 Netstal-Maschinen Ag Method and device for producing preforms with special geometries
US9272457B2 (en) 2009-06-27 2016-03-01 Netstal-Maschinen Ag Method and device for producing preforms with special geometries
RU2627858C2 (en) * 2012-02-24 2017-08-14 Махир АКТАС Method and device for optimized bottom contour manufacture on workpiece
JP2015511895A (en) * 2012-02-24 2015-04-23 マヒル アクタス Method and apparatus for forming an optimized bottom profile of a preform
WO2020158920A1 (en) * 2019-01-31 2020-08-06 日精エー・エス・ビー機械株式会社 Device and method for producing resin container
JP6770666B1 (en) * 2019-01-31 2020-10-14 日精エー・エス・ビー機械株式会社 Resin container manufacturing equipment and manufacturing method
JP2021054068A (en) * 2019-01-31 2021-04-08 日精エー・エス・ビー機械株式会社 Production device and production method of resin container
US11850788B2 (en) 2019-01-31 2023-12-26 Nissei Asb Machine Co., Ltd. Device and method for producing resin container
WO2023157863A1 (en) * 2022-02-16 2023-08-24 日精エー・エス・ビー機械株式会社 Temperature adjustment mold, temperature adjustment method, and resin container manufacturing device

Similar Documents

Publication Publication Date Title
JP3047732B2 (en) Manufacturing method of biaxially stretched blow container
JP4840367B2 (en) Method for producing biaxially stretched polyester bottle
JPH10511617A (en) Cooling method of multilayer preform
KR20000048355A (en) Plastic bottle and method of producing the same
JPH0351568B2 (en)
WO2008044793A1 (en) Biaxially stretched thin-walled polyester bottle
JP4210901B2 (en) Manufacturing method of bottle-shaped container
JP4052055B2 (en) Stretch blow molding method for plastic bottle containers
JP3350192B2 (en) Pressure-resistant self-standing container and method of manufacturing the same
JP2013075465A (en) Stretched foam plastic container and method for manufacturing the same
JPH0462028A (en) Manufacture of high-stretch-blow-molded container
JPH0351117A (en) Injection drawing blow molding method
US20020048642A1 (en) Production of crystallizable polymer blow molded containers having a crystallized interior
RU2479425C2 (en) Modified systems of hot pouring heads for injection blow moulding
JPH0376646B2 (en)
JPH0615643A (en) Manufacture of premolded body
JP2005081641A (en) Manufacturing method for flat container by two-stage blow molding method
JPH0462027A (en) Manufacture of high-stretch-blow-molded container
JPH0531792A (en) Manufacture of heat resistant container
JPS58167127A (en) Cylindrical preforming heating method and its device
JPH0443498B2 (en)
JP5929085B2 (en) Foam stretch container and method for producing the same
JP2963644B2 (en) Molding method of plastic bottle having constricted shape
JP2632960B2 (en) Biaxial stretch blow molding method and apparatus
JP3674984B2 (en) Polyester container and method for producing the same