JPS6036833B2 - How to treat chrome peck wastewater - Google Patents

How to treat chrome peck wastewater

Info

Publication number
JPS6036833B2
JPS6036833B2 JP4305477A JP4305477A JPS6036833B2 JP S6036833 B2 JPS6036833 B2 JP S6036833B2 JP 4305477 A JP4305477 A JP 4305477A JP 4305477 A JP4305477 A JP 4305477A JP S6036833 B2 JPS6036833 B2 JP S6036833B2
Authority
JP
Japan
Prior art keywords
type
exchange resin
column
basic anion
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4305477A
Other languages
Japanese (ja)
Other versions
JPS53128149A (en
Inventor
敏明 片岡
章 馬原
明 田黒
寛治 幸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Koei Chemical Industry Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Koei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Koei Chemical Industry Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP4305477A priority Critical patent/JPS6036833B2/en
Publication of JPS53128149A publication Critical patent/JPS53128149A/en
Publication of JPS6036833B2 publication Critical patent/JPS6036833B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明はクロムメッキ工程から排出されるクロムメッキ
廃水を処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating chrome plating wastewater discharged from a chrome plating process.

従来クロムメッキ廃水を処理する場合、還元剤でクロム
酸イオン(Cず十)をクロムイオン(Cr3十)に還元
し、しかる後アルカリを添加して該クロムイオンを水酸
化クロムとして沈澱させる方法がとられている。この還
元中和法は大量のスラッジが生成してこれらの廃棄によ
る2次公害の発生が懸念されるし又処理水は多くの爽雑
イオンを含み再使用できるものではない。これに対しイ
オン交換樹脂による方法はクロム酸イオンの回収と純度
の高い処理水を得る目的で種々の処理方法が検討されて
いるがいまだ満足しうるものがない。たとえば従来の方
法で‘1)強塩基ァニオン交≠剣樹脂でクロム酸イオン
を吸着する場合、クロム酸イオンの交換容量が低い反面
再生効率は悪く、たとえばカセィソーダ水溶液で再生す
る時の再生レベルは300タNaOH/1−樹脂を必要
とするなど不経済な方法であり、今日では一般的に再生
が容易であるということで弱塩基性アニオン交換樹脂が
使用されている。
Conventionally, when treating chromium plating wastewater, the method is to reduce chromate ions (C) to chromium ions (Cr) using a reducing agent, and then add alkali to precipitate the chromium ions as chromium hydroxide. It is taken. This reduction-neutralization method produces a large amount of sludge, and there is concern that secondary pollution may occur due to its disposal, and the treated water contains many undesirable ions and cannot be reused. On the other hand, various treatment methods using ion exchange resins have been investigated for the purpose of recovering chromate ions and obtaining treated water with high purity, but none have yet been satisfactory. For example, when adsorbing chromate ions with the conventional method '1) Strong base anion exchange≠sword resin, the exchange capacity of chromate ions is low, but the regeneration efficiency is poor. For example, when regenerating with a caustic soda aqueous solution, the regeneration level is 300. This method is uneconomical as it requires NaOH/1-resin, but today weakly basic anion exchange resins are generally used because they are easy to regenerate.

【2ー OH型弱塩基性アニオソ交土剣樹脂(以下単に
「OH型」という)でクロム酸イオンを吸着する場合は
樹脂の再生効率はよいが通液中にクロム酸イオンが漏出
しやすく、またクロム酸イオンの交換容量も塩型で使用
する場合に比べて激減する。
[2- When adsorbing chromate ions with OH-type weakly basic anioso-doken resin (hereinafter simply referred to as "OH-type"), the regeneration efficiency of the resin is good, but chromate ions tend to leak out during liquid passage. In addition, the exchange capacity of chromate ions is drastically reduced compared to when the salt type is used.

‘3} 塩型弱塩基性ァニオン交換樹脂(以下単に「塩
型」という)でクロム酸イオンを吸着する場合は樹脂の
再生効率およびクロム酸イオンの交換容量は満足しうる
ものであるがクロム酸イオンと置換したCI‐、あるい
はS042‐が漏出して処理水が酸性となる。
'3} When chromate ions are adsorbed using salt-type weakly basic anion exchange resins (hereinafter simply referred to as "salt-type"), the regeneration efficiency and chromate ion exchange capacity of the resin are satisfactory; CI- or S042- substituted with ions leaks out and the treated water becomes acidic.

以上のように今日ではクロム酸イオンを効率よく回収す
る場合は塩型を使用し、処理水はpH調節を行ない放流
しているが、一方処理水を再び水洗水として使用したい
場合ではクロム酸イオンの交換容量はよくないがOH型
を使用している。またクロムメッキ廃水は3価クロム、
鉄等の爽雑陽イオンを含んでいるため上記のアニオン交
換樹脂と共に一般的には強酸性カチオン交換樹脂が使用
されている。しかし3価クロムに関しては強酸性カチオ
ン交擬樹脂だけでは完全に吸着除去できず排水規制値の
独pm(全クロム)前後漏出しているのが現状である。
かくのごとく従釆の処理方法は種々の欠点を有している
。このようなことから本発明者らはクロムメッキ工程か
ら排出される廃水から効率よくクロム酸イオンを回収し
、かつ高純度の処理水を得べくイオン交予剣樹脂による
処理方法を種々研究の結果、該廃水を有利に処理するに
は、使用するイオン交換樹脂の組合わせおよび通液順序
が非常に重要であることを見出し、本発明を完成するに
至った。
As mentioned above, today, when chromate ions are to be efficiently recovered, salt type is used, and the treated water is pH-adjusted and discharged. Although the exchange capacity is not good, I am using the OH type. In addition, chromium plating wastewater contains trivalent chromium,
Strongly acidic cation exchange resins are generally used along with the above anion exchange resins because they contain harmful cations such as iron. However, with regard to trivalent chromium, it is not possible to completely adsorb and remove it using the strongly acidic cation exchange resin alone, and the current situation is that it leaks out at around pm (total chromium), which is the wastewater regulation value.
As described above, the subordinate treatment method has various drawbacks. For this reason, the present inventors have conducted various research into treatment methods using ion exchange resin in order to efficiently recover chromate ions from wastewater discharged from the chromium plating process and to obtain high-purity treated water. They discovered that the combination of ion exchange resins to be used and the order of flow are very important in order to advantageously treat the wastewater, and have completed the present invention.

すなわち本発明は、クロムメッキ工程から排出されるク
ロムメッキ廃水を風 塩型弱塩基性ァニオン交灘樹脂で
処理する第1工程‘Bー OH型弱塩基性アニオン交モ
製樹脂で処理する第2工程(O 日型強酸性カチオン交
≠剣樹脂で処理しついでOH型強塩基性アニオン交換樹
脂で処理するかあるいはH型強酸性カチオン交換樹脂と
OH型強塩基性ァニオン交予期樹脂とからなる混合樹脂
で処理する第3工程に順次通液することを特徴とするク
ロムメッキ廃水の処理方法である。
That is, the present invention includes a first step in which chromium plating wastewater discharged from the chrome plating process is treated with a wind-salt type weakly basic anionic resin; Process (O day type strongly acidic cation exchange ≠ treated with sword resin and then treated with OH type strong basic anion exchange resin or mixture consisting of H type strongly acidic cation exchange resin and OH type strongly basic anion exchange resin This is a method for treating chromium plating wastewater, which is characterized by sequentially passing the liquid through a third step in which it is treated with a resin.

本発明において、かかるイオン交換樹脂の組合わせおよ
び廃水の通液順序は非常に重要であり、上記条件をはず
れると充分な効果が得られない。以下に本発明を図面に
基づいて説明する。風 クロムメッキ廃水はまず「塩型
」を充填したA.塔に通液するのであるが、ここでクロ
ム酸イオンは「塩型」のCI‐あるいはS042−と交
換されクロム酸イオンが吸着除去されるかわりにA,塔
よりCI‐あるいはSQ2‐が漏出する。
In the present invention, the combination of ion exchange resins and the order in which the wastewater flows are very important, and if the above conditions are not met, sufficient effects will not be obtained. The present invention will be explained below based on the drawings. Wind Chrome plating wastewater is first collected in A. The liquid is passed through the column, but here the chromate ions are exchanged with "salt type" CI- or S042-, and instead of the chromate ions being adsorbed and removed, CI- or SQ2- leaks from the column. .

つまり「塩型」をCI型で使用した場合はCI‐が、ま
たS04型で使用した場合はS042‐が吸着したクロ
ム酸イオンと当量分だけ樹脂より漏出し、その他、クロ
ムメッキ廃水中に含まれるS042‐(Cの3に対して
1%程度含有されている)はA,塔を通過して漏出する
。‘B} 次にCI‐あるいはS042‐を含有するA
,塔処理水は「OH型」を充填したん塔に通液し、ほと
んどのCI‐あるいはS042‐が吸着除去される。
In other words, when the salt type is used in the CI type, CI- and S042- are leaked from the resin in an amount equivalent to the adsorbed chromate ions when used in the S04 type. The S042- (containing about 1% based on 3 of C) passes through the column A and leaks out. 'B} Next, A containing CI- or S042-
The water treated by the tower is passed through a tower filled with "OH type", and most of the CI- or S042- is adsorbed and removed.

{C’ ひきつづき、A2塔処理水は3価クロム等の陽
イオンと若干の陰イオンを含有しているため、H型強酸
性カチオン交換樹脂とOH型強塩基性ァニオン交去勢樹
脂との混合塔(以下M塔という)で処理するか、あるい
はH型強酸性カチオン交換樹脂で処理し、ついでOH型
強塩基性ァニオン交換樹脂で処理することにより純度の
高い処理水を得ることができる。つぎに本発明の主要部
をなすA,塔と、A2塔について詳説する。クロムメッ
キ廃水を第1図に示すようにA,塔に通液するとやがて
クロム酸イオンが漏出するがさらにA,塔のクロム酸イ
オン吸着館がほとんどなくなるまで通液をつづけると「
塩型」のCI‐あるいはS042‐はほとんどクロム酸
イオンと置換し、実質的にA,塔はクロム酸イオンによ
って飽和される。
{C' Continuing, since the A2 tower treated water contains cations such as trivalent chromium and some anions, a mixed tower of H-type strongly acidic cation exchange resin and OH-type strongly basic anion exchange resin is used. (hereinafter referred to as M column), or by treatment with an H-type strongly acidic cation exchange resin and then with an OH-type strongly basic anion exchange resin, highly purified treated water can be obtained. Next, the A column and the A2 column, which are the main parts of the present invention, will be explained in detail. As shown in Figure 1, when chromium plating wastewater is passed through the tower A, chromate ions will eventually leak out, but if the flow continues until the chromate ion adsorption chamber in the tower is almost completely exhausted.
CI in the salt form or S042 replaces most of the chromate ions, and the column is substantially saturated with the chromate ions.

このとき通液を停止するが、その時期についてはA,塔
より漏出するクロム酸イオン濃度が原水中のクロム酸イ
オン濃度に近づくほどその再生液中のクロム酸イオンの
純度は上昇するが、A2塔およびM塔の交換容量を考慮
して自由に設定することができる。通液を停止したとき
のん塔は、A,塔より排出されたCI‐あるいはS04
2‐によってほとんど「OH型」から「塩型」に変換し
、さらにA,塔より漏出したクロム酸イオンをも吸着し
た状態にある。次に再生を行なうがA,塔はカセィソー
ダ等のアルカリ水溶液で再生し純度の高いクロム酸ソー
ダ水溶液を回収し、ひきつづき水洗を行なって「OH型
」となし、次サイクルでは第2塔として使用する(第2
図参照)。またA2塔はほとんど「塩型」になっている
が必要ならば通常の弱塩基性アニオン交換樹脂のOH型
から塩型に変換する時に使用する塩酸又は硫酸等の鉱酸
の量の1/10〜1/3程度を用いて完全に「塩型」に
変換してもよい。このA2塔は次サイクルでは第1塔と
して使用する(第2図参照)。以後同様な操作をくり返
し各サイクルごとにA,塔とA2塔の通液順序を逆にし
て使用するが、基本的には「塩型」「OH型」の順に通
液してクロムメッキ廃水を処理する。またM塔の再生周
期は原水中の全力チオン濃度と第2塔より漏出するわず
かのアニオン濃度により変化するが、その再生は公知の
操作方法により行う。本発明において用いられる弱塩基
性ァニオン交換樹脂としては、たとえばデユオライトE
S−308 デユオライトES−368(いずれもダイ
ヤモンドシャムロックケミカル社製)で代表される弱塩
基性アニオン交換樹脂が用いられるが特に望ましくはク
ロム酸に対しての耐酸化性が強く、またクロム酸イオン
の交換容量が非常に大きい(1と樹脂当りCの3として
240夕を吸着)という点でピリジン骨格構造を主鎖ま
たは側鎖に有し、好ましくは多孔性の弱塩基性アニオン
交換樹脂であるところのスミキレートCR−2(住友化
学工業■製)である。H型強酸性カチオン交モ剣樹脂と
しては、たとえばデュオラィトC一20、デユオライト
C一250、デユオライトES一26(いずれもダイヤ
モンドシャムロックケミカル社製)などである。また強
塩基性アニオン交換樹脂としては、たとえばデュオラィ
トA−101D、デユオライトA−1020、デユオラ
イトA−161(いずれもダイヤモンドシャムロックケ
ミカル社製)などである。
At this time, the flow of liquid is stopped, but the timing is A2. It can be freely set in consideration of the exchange capacity of the column and the M column. When the flow of liquid is stopped, the column is A, CI- or S04 discharged from the column.
2- converts most of the ``OH type'' to the ``salt type'', and it also adsorbs chromate ions leaked from the A column. Next, regeneration is performed, but A. The tower is regenerated with an alkaline aqueous solution such as caustic soda, and a highly pure sodium chromate aqueous solution is recovered. It is then washed with water to make it into an "OH type" and used as the second tower in the next cycle. (Second
(see figure). In addition, the A2 column is mostly in the "salt type", but if necessary, the amount of mineral acid such as hydrochloric acid or sulfuric acid used when converting the OH type of a normal weakly basic anion exchange resin to the salt type is 1/10. About 1/3 may be used to completely convert into the "salt form". This A2 column will be used as the first column in the next cycle (see Figure 2). Thereafter, the same operation is repeated and the order of passing the liquid through the A, column and A2 column is reversed for each cycle, but basically the chromium plating wastewater is passed through the "salt type" and "OH type" in that order. Process. The regeneration cycle of the M tower varies depending on the total thione concentration in the raw water and the slight anion concentration leaked from the second tower, but the regeneration is carried out by a known operating method. Examples of the weakly basic anion exchange resin used in the present invention include Duolite E
S-308 A weakly basic anion exchange resin represented by Duolite ES-368 (both manufactured by Diamond Shamrock Chemical Co.) is used, but it is particularly desirable that it has strong oxidation resistance to chromic acid, and that it It is a porous, weakly basic anion exchange resin that has a pyridine skeleton structure in the main chain or side chain in that it has a very large exchange capacity (adsorbs 240 units of C per resin). However, it is Sumikylate CR-2 (manufactured by Sumitomo Chemical Co., Ltd.). Examples of the H-type strongly acidic cation crosslinking resin include Duolite C-20, Duolite C-250, and Duolite ES-26 (all manufactured by Diamond Shamrock Chemical Co.). Examples of strong basic anion exchange resins include Duolite A-101D, Duolite A-1020, and Duolite A-161 (all manufactured by Diamond Shamrock Chemical Co.).

本発明の方法は前記の樹脂の構成により行なわれるが第
1塔の「塩型」においてはその再生の容易な点とクロム
酸イオンの交換容量が大きくしかもその交換容量の限度
まで使用可能である点を利用し、さらに第2塔の「OH
型」においては第1塔より排出される酸性液中のCI‐
またはS042−をほとんど吸着して自ずから塩型に変
換し次サイクルではそのままでも第1塔として使用でき
ひいては第3塔での純水化の負荷を大中に減少させるこ
とができるなど、クロムメッキ廃水を経済的にかつ簡単
な装置で処理することができるため非常に有効な方法で
ある。また従来一般的に行なわれていた強酸性カチオン
交換樹脂、弱塩基性アニオン交糊樹脂の順に通液して処
理する方法やその後にさらに強塩基性アニオン交換樹脂
を使用して処理する方法では完全に吸着除去できなかっ
た3価クロムについても、この方法により容易に除去で
きその処理水は高純度のものを得ることができしかも第
1塔から回収されるクロム酸ソーダも高純度のものが得
られる点なども本発明の特徴の大きな部分である。つぎ
に実施例により更に詳しく説明するが本発明がこれらに
限定されないことは言うまでもない。実施例 1 第1図に示されるごとき通液装置においてA,塔には「
塩型」のスミキレートCR−2を1そ充填し、5%比S
04水溶液3そを用いてS04型に調整した。
The method of the present invention is carried out using the above-mentioned resin composition, and the "salt type" in the first column is easy to regenerate and has a large exchange capacity for chromate ions, and can be used up to the limit of its exchange capacity. Use the points to further check the second tower's
In the "type", CI- in the acidic liquid discharged from the first column
Alternatively, most of the S042- can be adsorbed and automatically converted to the salt form, which can be used as the first column in the next cycle, and the load of water purification in the third column can be greatly reduced. This is a very effective method because it can be processed economically and with simple equipment. In addition, the conventional methods of sequentially passing a strong acidic cation exchange resin and then a weakly basic anion cross-sizing resin, or the method of subsequently using a strongly basic anion exchange resin, are not completely effective. Trivalent chromium, which could not be removed by adsorption, can be easily removed using this method, and the treated water can be of high purity.Moreover, the sodium chromate recovered from the first column can also be of high purity. This is also a major feature of the present invention. Next, the present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited thereto. Example 1 In a liquid passing device as shown in Fig. 1, A and the tower are equipped with
Filled with 1 piece of "salt type" Sumikylate CR-2, 5% ratio S
It was adjusted to type S04 using three aqueous solutions of 04.

A2塔にはOH型のスミキレートCR−2を1〆充填し
、さらにM塔には0.5その強酸性カチオン交換樹脂(
デュオラィトES−26)とIZの強塩基性ァニオン交
≠剣樹脂(デュオラィトA−101D)を用いて混合樹
脂塔とした。かくのごとき処理装置に通液原水として6
価クロム50岬pm、硫酸イオン15.8ppm、3価
クロム25ppm、塩素イオン8.5ppm、フッ素イ
オン4.6ppm等を含有しているPH=2.4のクロ
ムメッキ水洗水を10夕/hの流速でA,塔、A2塔、
M塔の順に通液した。通液量が210れこなった時点で
A,塔より6価クロムが漏出しはじめ〜塔での吸着が開
始したがさらにひきつづき通液し、250そを処理した
時点でA,塔より6価クロムが70ppm漏出していた
ので通液を停止した。この間の処理水の水質、比抵抗と
も満足すべきものであった。処理水の水質についての分
析値等については第1表に示す。第1表 実施例 2 実施例1で使用した第1塔(A,塔)は4%NaOH水
溶液5とを用いてクロム酸イオンを脱着し、その後15
その水を用いて水洗して「OH型」となし、本例では第
2塔として使用する。
The A2 column was filled with 1.5 OH type sumichlate CR-2, and the M column was filled with 0.5 of the strongly acidic cation exchange resin (
A mixed resin tower was prepared using Duolite ES-26) and IZ's strongly basic anion cross sword resin (Duolite A-101D). 6 as raw water passing through such treatment equipment.
Chromium plating washing water with a pH of 2.4 containing 50 pm of valent chromium, 15.8 ppm of sulfate ions, 25 ppm of trivalent chromium, 8.5 ppm of chlorine ions, 4.6 ppm of fluorine ions, etc. was used for 10 evenings/h. At flow rate A, tower, A2 tower,
The liquid was passed through the M tower in this order. When the amount of liquid passed was 210, hexavalent chromium started to leak from the column A. Adsorption in the column started, but the liquid continued to flow, and when 250 chromium was processed, hexavalent chromium was leaked from the column A. Since 70 ppm of water was leaking, the flow of liquid was stopped. During this period, the quality and specific resistance of the treated water were both satisfactory. Analytical values regarding the quality of treated water are shown in Table 1. Table 1 Example 2 The first column (A, column) used in Example 1 desorbs chromate ions using 4% NaOH aqueous solution 5 and then 15
It is washed with that water to form an "OH type", which is used as the second tower in this example.

この再生液20そ中の6価クロム濃度は 5785ppmであった。The concentration of hexavalent chromium in this regeneration solution 20 is It was 5785 ppm.

また実施例1で使用した第2塔(ふ塔)は、わずかにク
ロム酸イオンを吸着しているがほとんどは塩型に変換さ
れており、このものは約3その水を用いて逆洗しそのま
ま実施例2では第1塔として使用する。さらに混合樹*
*8旨塔(M塔)の強酸性カチオン樹脂(ES−26)
は5%日2S04水溶液5そと水5夕を用いてH型に再
生し強塩基性アニオン樹脂(A−101D)は4%Na
OH水溶液5〆と水5夕を用いてOH型に再生し、両者
を混合して混合樹脂塔として使用する。通液は第2図に
示されるごとくA2塔、A.塔、M塔の順に行なう。通
液原水および通液速度は実施例1と同様に行ない25時
間通液した第1塔、第2塔およびM塔通過後の処理水水
質は第2表に示すとおりである。第2表 実施例 3 実施例2において2期時間処理を行なった後遺液を停止
し再生を行なった。
In addition, the second tower (futo tower) used in Example 1 adsorbs a small amount of chromate ions, but most of them are converted to salt form, and this is backwashed using approximately 30% of the water. In Example 2, it is used as the first column. More mixed trees*
* Strongly acidic cationic resin (ES-26) of 8th column (M column)
was regenerated into H type using 5% aqueous solution of 2S04 and 5% water, and strong basic anion resin (A-101D) was regenerated with 4% Na.
It is regenerated into an OH type using 5 parts of an OH aqueous solution and 5 parts of water, and the two are mixed and used as a mixed resin tower. As shown in FIG. 2, the liquid is passed through the A2 tower and the A. Do this in order of tower and M tower. The raw water and the rate of liquid passage were the same as in Example 1, and the quality of the treated water after passing through the first column, second column, and M column, which were passed for 25 hours, is as shown in Table 2. Table 2 Example 3 In Example 2, after the two-stage time treatment, the residual fluid was stopped and regenerated.

実施例2における第1塔(ん塔)は4%NaOH水溶液
5〆を用いクロム酸イオンを脱着し、5その水を用いて
水洗してOH型となし、実施例3では第2塔として使用
する。
The first column (column) in Example 2 desorbs chromate ions using a 4% NaOH aqueous solution and washes it with water to form an OH type, which is used as the second column in Example 3. do.

この再生液20〆中の6個クロム濃度は5980ppm
であった。また実施例2で使用した第2塔(A,塔)は
5%比S04水溶液1そで完全に塩型とし、その後3そ
の水で水洗および逆洗をし、実施例3では第1塔として
使用する。混合樹脂塔は実施例2と同様に再生した。通
液は第1図に示されるごとくA,塔、〜塔、M塔の順に
行なう、通液原水および通液速度は実施例1と同様に行
ない25時間通液した。第1塔、第2塔およびM塔通過
後の処理水水質は第3表に/示すとおりである。第3表
参考例 1 6価クロムを450ppm、3価クロムを18ppm含
有するクロムメッキ廃水を1そのS04型弱塩基性ァニ
オン交換樹脂(スミキレートCR−2)及び1そのH型
強酸性カチオン交灘樹脂(デュオラィトES−26)に
10ぞ/hの通液速度で順次通液した処理水中の3価ク
ロム濃度を測定した。
The concentration of 6 chromium in this regenerated solution is 5980 ppm.
Met. In addition, the second column (A, column) used in Example 2 was completely made into a salt form with a 5% ratio S04 aqueous solution, and then washed and backwashed with that water three times. use. The mixed resin column was regenerated in the same manner as in Example 2. As shown in FIG. 1, the liquid was passed in the order of A, tower, ~ tower, and M tower. The raw water and the rate of liquid passing were the same as in Example 1, and the liquid was passed for 25 hours. The quality of the treated water after passing through the first tower, second tower and M tower is as shown in Table 3. Reference example in Table 3 1. Chromium plating wastewater containing 450 ppm of hexavalent chromium and 18 ppm of trivalent chromium was mixed with 1. S04 type weakly basic anion exchange resin (Sumichelate CR-2) and 1. H type strongly acidic cation exchange resin. The trivalent chromium concentration in the treated water that was sequentially passed through (Duolite ES-26) at a flow rate of 10 mm/h was measured.

結果は第4表に示したが強塩基性ァニオン交予剣箇脂を
省いて弱塩基性ァニオン交換樹脂と強酸性カチオン交機
樹脂だけの通液では3価クロムを完全に吸着除去するこ
とができないことが判明した。参考例 2 3価クロムを100ppm含有するpH=2.5のモデ
ル廃水を1そのH型強酸性カチオン交換樹脂2種類(デ
ユオライトC−20およびダイヤイオンSKIB)にそ
れぞれ10そ/hの通液速度で通液し、処理水中の3価
クロム濃度を測定した。
The results are shown in Table 4, but trivalent chromium cannot be completely adsorbed and removed by omitting the strongly basic anion exchange resin and passing only the weakly basic anion exchange resin and the strongly acidic cation exchange resin. It turns out it can't be done. Reference Example 2 Model wastewater containing 100 ppm of trivalent chromium and pH = 2.5 was passed through two types of H-type strongly acidic cation exchange resins (Duolite C-20 and Diaion SKIB) at a rate of 10 m/h each. The trivalent chromium concentration in the treated water was measured.

結果は第5表に示した。実際のクロムメッキ水洗水中の
3価クロム濃度はこれほど高くないが、この結果より強
酸性カチオン交換樹脂だけでは完全な吸着除去は不可能
であることを示している。第4表
The results are shown in Table 5. Although the concentration of trivalent chromium in actual chromium plating washing water is not this high, this result shows that complete adsorption removal is not possible with a strongly acidic cation exchange resin alone. Table 4

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法を実施するための通液操作を図式的
に例示した系統図であって、第1図は第1サイクル目の
、第2図は第2サイクル目のそれぞれの通液操作を示す
。 図中、A.・・・・・・弱塩基性ァニオン交換樹脂塔、
〜・…・・弱塩基性アニオン交換樹脂塔、M・・…・強
酸性カチオン樹脂と強塩基性アニオン樹脂の混合樹脂塔
を各々示す。 菱1図 豹2図
The drawings are system diagrams schematically illustrating the liquid passing operation for carrying out the method of the present invention, in which FIG. 1 shows the liquid passing operation in the first cycle, and FIG. 2 shows the liquid passing operation in the second cycle. shows. In the figure, A.・・・・・・Weakly basic anion exchange resin tower,
~... Weakly basic anion exchange resin tower, M... A mixed resin tower of a strong acidic cation resin and a strong basic anion resin, respectively. Diamond 1 Leopard 2

Claims (1)

【特許請求の範囲】 1 クロムメツキ工程から排出されるクロムメツキ廃水
を(A)塩型弱塩基性アニオン交換樹脂で処理する第1
工程(B)OH型弱塩基性アニオン交換樹脂で処理する
第2工程(C)H型強酸性カチオン交換樹脂で処理し、
ついでOH型強塩基性アニオン交換樹脂で処理するか、
あるいはH型強酸性カチオン交換樹脂とOH型強塩基性
アニオン交換樹脂とからなる混合樹脂で処理する第3工
程に順次通液することを特徴とするクロムメツキ廃水の
処理方法。 2 弱塩基性アニオン交換樹脂がピリジン骨格構造を主
鎖または側鎖に有し、かつ多孔性を有する弱塩基性アニ
オン交換樹脂である特許請求の範囲第1項記載の処理方
法。
[Claims] 1. A first method of treating chrome plating wastewater discharged from the chrome plating process with (A) a salt-type weakly basic anion exchange resin.
Step (B) Treatment with an OH type weakly basic anion exchange resin Second step (C) Treatment with an H type strongly acidic cation exchange resin,
Then, it is treated with an OH type strong basic anion exchange resin, or
Alternatively, a method for treating chrome plating wastewater, characterized in that the liquid is sequentially passed through a third step of treatment with a mixed resin consisting of an H-type strongly acidic cation exchange resin and an OH-type strongly basic anion exchange resin. 2. The treatment method according to claim 1, wherein the weakly basic anion exchange resin has a pyridine skeleton structure in its main chain or side chain and is porous.
JP4305477A 1977-04-13 1977-04-13 How to treat chrome peck wastewater Expired JPS6036833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4305477A JPS6036833B2 (en) 1977-04-13 1977-04-13 How to treat chrome peck wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4305477A JPS6036833B2 (en) 1977-04-13 1977-04-13 How to treat chrome peck wastewater

Publications (2)

Publication Number Publication Date
JPS53128149A JPS53128149A (en) 1978-11-08
JPS6036833B2 true JPS6036833B2 (en) 1985-08-22

Family

ID=12653160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4305477A Expired JPS6036833B2 (en) 1977-04-13 1977-04-13 How to treat chrome peck wastewater

Country Status (1)

Country Link
JP (1) JPS6036833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646561U (en) * 1992-11-19 1994-06-28 株式会社ケイ・アイ・ディー Canned beverage display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515083A (en) * 2009-01-15 2012-07-05 ダウ グローバル テクノロジーズ エルエルシー Ion exchange resins containing interpenetrating polymer networks and their use for chromium removal
CN102897837A (en) * 2012-11-06 2013-01-30 北京理工大学 Method for separating high-concentration K2Cr2O7 from saturated NaCl solution
JP2019118891A (en) * 2018-01-09 2019-07-22 栗田工業株式会社 Pure water producing apparatus and pure water producing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646561U (en) * 1992-11-19 1994-06-28 株式会社ケイ・アイ・ディー Canned beverage display device

Also Published As

Publication number Publication date
JPS53128149A (en) 1978-11-08

Similar Documents

Publication Publication Date Title
US4303704A (en) Selective removal of copper or nickel from complexing agents in aqueous solution
CN104805291B (en) The process of a kind of stainless steel acid-washing waste liquid and iron, chromium, the recovery method of nickel
CN101746906A (en) Method for processing electroplating wastewater with heavy metal ions
US3961029A (en) Process for recovering chromic acid solution from a waste liquor containing chromic ions
JPS62191800A (en) Method of processing waste water containing uranium and fluorine
CN104355365A (en) Chromium-containing wastewater treatment method capable of realizing zero emission of pollutants
CN108996642A (en) A kind of processing method of chlorine-contained wastewater
US2660558A (en) Method for the purification of water by ion exchange
CN105565533A (en) Zero-discharge on-line treatment process for preparing deionized water from copper sulphate electroplating waste water
US4009101A (en) Recycle treatment of waste water from nickel plating
CN103693773A (en) Chromium-containing waste water reuse treatment method
CN105080624B (en) A kind of ion exchange resin regeneration method
US2628165A (en) Process of preventing pollution of streams
US4012318A (en) Method for the recycle treatment of waste water from chromium plating
JPS6036833B2 (en) How to treat chrome peck wastewater
US4049772A (en) Process for the recovery of chromic acid solution from waste water containing chromate ions
CN115677090A (en) Method for recycling electroplating chromium-containing wastewater
CN115571948A (en) Method for treating and recycling electroplating chromium-containing wastewater through ion exchange
CN110643818B (en) Method for recovering nickel from electroplating wastewater
CN209940667U (en) System for recycling acid liquor in acidic wastewater
KR101837740B1 (en) Methods of Phosphate Adsorption and Desorption in Water Using Zeolite Incorporated with Iron and Their Apparatus
GB1446603A (en) Method for the recycle treatment of waste water from chromium plating
JPS6011158B2 (en) Method for reusing hexavalent chromium in dyeing wastewater
JP4155541B2 (en) Regeneration method of chromium-containing anion exchange resin for wastewater treatment
JPS591396B2 (en) How to treat water containing boron and COD