JPS591396B2 - How to treat water containing boron and COD - Google Patents

How to treat water containing boron and COD

Info

Publication number
JPS591396B2
JPS591396B2 JP56080037A JP8003781A JPS591396B2 JP S591396 B2 JPS591396 B2 JP S591396B2 JP 56080037 A JP56080037 A JP 56080037A JP 8003781 A JP8003781 A JP 8003781A JP S591396 B2 JPS591396 B2 JP S591396B2
Authority
JP
Japan
Prior art keywords
anion exchange
exchange resin
weakly basic
basic anion
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56080037A
Other languages
Japanese (ja)
Other versions
JPS57197084A (en
Inventor
良弘 恵藤
忠 高土居
孝文 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURITA INDUSTRIAL CO Ltd
Original Assignee
KURITA INDUSTRIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURITA INDUSTRIAL CO Ltd filed Critical KURITA INDUSTRIAL CO Ltd
Priority to JP56080037A priority Critical patent/JPS591396B2/en
Publication of JPS57197084A publication Critical patent/JPS57197084A/en
Publication of JPS591396B2 publication Critical patent/JPS591396B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 この発明はホウ素とCODを含む水の処理方法、特にホ
ウ素とCODを含む排煙脱硫排水の処理方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating water containing boron and COD, and particularly to a method for treating flue gas desulfurization wastewater containing boron and COD.

排煙脱硫排水、例えば石灰石こう法における排煙脱硫排
水にはホウ素およびCODが含まれている。
Flue gas desulfurization wastewater, for example, flue gas desulfurization wastewater in a lime-gypsum process, contains boron and COD.

このような排水に含まれているホウ素は通常BOトまた
はホウフッ化物の形であり、またCODはジチオン酸、
ポリチオン酸、NS化合物などの溶解性CODである。
The boron contained in such wastewater is usually in the form of BO or borofluoride, and COD is in the form of dithionic acid,
Soluble COD such as polythionic acid and NS compounds.

従来、このような排水のホウ素の除去方法としては、ア
ニオン交換樹脂により交換吸着する方法と、アルミニウ
ム化合物により不溶性沈殿物とする方法があり、これら
の単独または組合せにより処理することができるが、ア
ニオン交換樹脂による場合、多量の再生剤を必要とする
欠点があった。
Conventionally, methods for removing boron from such wastewater include a method of exchange adsorption with an anion exchange resin and a method of forming an insoluble precipitate with an aluminum compound. Treatment can be performed by using these alone or in combination, but anion When using exchange resin, there was a drawback that a large amount of regenerant was required.

またCODの除去方法としては、SS系や金属系のCO
Dは空気酸化、中和、凝集処理などによっである程度の
CODを除去することができる、が、ジチオン酸、ポリ
チオン酸、NS化合物などの溶解性CODは上記処理方
法では除去できないので、さらにアニオン交換樹脂で吸
着処理を行っている。
In addition, as a method for removing COD, SS-based and metal-based COD
A certain amount of COD can be removed from D by air oxidation, neutralization, coagulation, etc. However, soluble COD such as dithionic acid, polythionic acid, and NS compounds cannot be removed by the above treatment methods. Adsorption treatment is performed using exchange resin.

ところでこのような排水をアニオン交換樹脂で処理して
、ホウ素およびCODを同時に除去しようとすると、両
者のイオン交換反応における好適なpHが違うため処理
効率が悪く、再生剤も多量に必要とするという欠点があ
った。
However, if such wastewater is treated with an anion exchange resin to remove boron and COD at the same time, the optimum pH for the ion exchange reaction is different, resulting in poor treatment efficiency and the need for a large amount of regenerant. There were drawbacks.

この発明は以上のような点を改善するためのもので、O
H形およびSO4形の弱塩基性アニオン交換樹脂を使用
することにより、効率よくイオン交換を行うと吉もに、
再生剤量を少なくすることのできるホウ素とCODを含
む水の処理方法を提案することを目的としている。
This invention is intended to improve the above points, and O
By using weakly basic anion exchange resins of H type and SO4 type, ion exchange can be carried out efficiently.
The purpose of this study is to propose a method for treating water containing boron and COD that can reduce the amount of regenerant.

この発明はホウ素とCODを含む水をOH形弱塩基性ア
ニオン交換樹脂層に通液したのち、SO4形弱塩基性ア
ニオン交換樹脂層に通液するイオン交換工程と、樹脂の
再生に際して、OH形弱塩基性アニオン交換樹脂層に硫
酸を、そしてSO4形弱塩基性アニオン交換樹脂に水酸
化ナトIJウムをそれぞれ通液して再生し、OH形弱塩
基性アニオン交換樹脂層から排出される再生廃液をS0
4形弱塩基性アニオン交換樹脂層に、他方S04形弱塩
基性アニオン交換樹脂層から排出される再生廃液をOH
形弱塩基性アニオン交換樹脂層にそれぞれ通液する再生
工程とを含むことを特徴とするホウ素とCODを含む水
の処理方法である。
This invention involves an ion exchange process in which water containing boron and COD is passed through an OH type weakly basic anion exchange resin layer and then passed through an SO4 type weakly basic anion exchange resin layer. Sulfuric acid is passed through the weakly basic anion exchange resin layer, and sodium hydroxide is passed through the SO4 type weakly basic anion exchange resin for regeneration, and the recycled waste liquid is discharged from the OH type weakly basic anion exchange resin layer. S0
The regenerated waste liquid discharged from the S04 weakly basic anion exchange resin layer is placed in the OH type 4 weakly basic anion exchange resin layer.
This is a method for treating water containing boron and COD, which is characterized by including a regeneration step of passing the liquid through a weakly basic anion exchange resin layer.

この発明において処理対象となるホウ素とCODを含む
水としては、BOR−またはホウフッ化物のようにイオ
ン交換可能な形でホウ素を含み、またジチオン酸、ポリ
チオン酸またはNS化合物などの溶解性CODのように
、イオン交換可能な形でCODを含む水であり、前述の
石灰石こう法排煙脱硫排水などがこれに含まれる。
In this invention, the water containing boron and COD to be treated includes boron in an ion-exchangeable form such as BOR- or borofluoride, and soluble COD such as dithionic acid, polythionic acid, or NS compound. This is water that contains COD in an ion-exchangeable form, and includes the aforementioned lime-gypsum process flue gas desulfurization wastewater.

排煙脱硫排水のように、フッ素や重金属を多量に含む場
合は、消石灰添加等の前処理によってこれらを除去して
おくのが望ましく、またホウ素の含有量が多い場合には
、硫酸バンドおよび消石灰添加等の前処理を行って、ホ
ウ素含有量を低くしておくのが望ましい。
When flue gas desulfurization wastewater contains a large amount of fluorine and heavy metals, it is desirable to remove these by pretreatment such as adding slaked lime, and when the content of boron is high, it is recommended to remove fluorine and heavy metals. It is desirable to lower the boron content by performing pretreatment such as addition.

さらに原水がカルシウム塩等の硬度成分を含む場合、特
に前処理において消石灰を添加した場合には、樹脂のス
ケール対策として軟化を行って、硬度成分を除去してお
くのが望ましい。
Further, when the raw water contains hardness components such as calcium salts, especially when slaked lime is added in pretreatment, it is desirable to soften the water to remove the hardness components as a measure against resin scaling.

軟化の方法としては、原水に炭酸塩、重炭酸塩、または
炭酸ガスを添加し、生成するCaCO3等の不用 沈殿
物を分離する方法がある。
As a softening method, there is a method of adding carbonate, bicarbonate, or carbon dioxide gas to raw water and separating unnecessary precipitates such as CaCO3 that are generated.

イオン交換工程は、必要により上記の前処理を行った原
水を、OH形弱塩基性アニオン交換樹脂層に通液してホ
ウ素を交換吸着し、次いでSO4形弱塩基性アニオン交
換樹脂に通液してCODを交換吸着する。
In the ion exchange step, raw water that has been pretreated as described above is passed through an OH type weakly basic anion exchange resin layer to exchange and adsorb boron, and then passed through an SO4 type weakly basic anion exchange resin. to exchange and adsorb COD.

OH形弱塩基性アニオン交換樹脂層に供給する水のpH
は9以上とするのが望ましく、SO4形弱塩基性アニオ
ン交換樹脂層に供給する水のpHは7以下とするのが望
ましい。
pH of water supplied to the OH type weakly basic anion exchange resin layer
is preferably 9 or more, and the pH of the water supplied to the SO4 type weakly basic anion exchange resin layer is preferably 7 or less.

弱塩基性アニリン交換樹脂によりホウ素を交換吸着する
場合、SO4形でも交換吸着可能であるが、OH形の方
が交換吸着効率が良く、しかもpHによる影響も少ない
When boron is exchange-adsorbed using a weakly basic aniline exchange resin, the SO4 form can also be exchange-adsorbed, but the OH form has better exchange-adsorption efficiency and is less affected by pH.

SO4形の場合、pH11以下では吸着力が弱<、pH
12にしてもOH形より吸着量は少ない。
In the case of SO4 form, the adsorption power is weak below pH 11.
Even if it is 12, the amount of adsorption is smaller than that of the OH type.

またOH形の場合、SO4形よりもpHの影響を受は難
いが、pH9以上の方が交換吸着効率がよい。
Further, in the case of the OH type, it is less affected by pH than the SO4 type, but the exchange adsorption efficiency is better at pH 9 or higher.

このような点については後述の実験例により明らかであ
る。
This point will be made clear by the experimental examples described below.

一方、弱塩基性アニオン交換樹脂によるCODの交換吸
着特性は、OH形よりもS04形の方が交換吸着効率が
良く、原水pHは7以下が良い。
On the other hand, regarding the exchange adsorption characteristics of COD by a weakly basic anion exchange resin, the exchange adsorption efficiency of the S04 type is better than that of the OH type, and the raw water pH is preferably 7 or less.

原水の通水順位は、前述のように、原水をpH9以上と
してOH形弱塩基性アニオン交換樹脂層に通水したのち
、pH4〜7としてSO4形アニオン交換樹脂層に通水
すると、前処理の関係から好都合である。
As mentioned above, the raw water flow order is as follows: First, the raw water is made to pH 9 or more and passed through the OH type weakly basic anion exchange resin layer, and then the water is passed through the SO4 type anion exchange resin layer with the pH adjusted to 4 to 7. It's convenient because of the relationship.

すなわち前処理として、フッ素、重金属、多量のホウ素
などを除去するために前述の前処理を行ったり、あるい
は軟化処理を行うと、高アルカリ性の前処理水が生成す
るから、高アルカリ下で処理を行うホウ素の交換吸着工
程を行うと、高アルカリのままで処理を行うことができ
有利である。
In other words, if the above-mentioned pretreatment is performed to remove fluorine, heavy metals, large amounts of boron, etc., or if softening treatment is performed, highly alkaline pretreated water is generated, so treatment under highly alkaline conditions is not recommended. If the boron exchange adsorption step is carried out, it is advantageous because the treatment can be carried out in a highly alkaline state.

イオン交換工程に供給する原水のホウ素、COD濃度に
ついては特に限定はないが、高濃度のホウ素を含有する
場合は、前述のように前処理である程度除去しておくの
が望ましい。
There are no particular limitations on the concentration of boron and COD in the raw water supplied to the ion exchange step, but if it contains a high concentration of boron, it is desirable to remove it to some extent through pretreatment as described above.

イオン交換に適した原水のホウ素濃度は200m1i/
を程度以下である。
The boron concentration of raw water suitable for ion exchange is 200 m1i/
is below the level.

またイオン交換工程における通水速度は、OH形、S0
4形ともSVI〜10h−’程度である。
In addition, the water flow rate in the ion exchange process is OH type, S0
All four types are about SVI~10h-'.

イオン交換工程においてホウ素およびCODを交換吸着
したOH形およびS04形弱塩基性アニオン交換樹脂は
、それぞれ引続いて再生を行う。
The OH type and S04 type weakly basic anion exchange resins that have exchanged and adsorbed boron and COD in the ion exchange step are each successively regenerated.

ホウ素を交換吸着したOH形弱塩基性アニオン交換樹脂
は直接水酸化す) IJウムで再生を行うと樹脂をOH
形に整えることができるが、再生効率(ホウ素の溶離効
率)は悪く、硫酸再生の方が再生効率は良い。
(The OH-type weakly basic anion exchange resin that has exchanged and adsorbed boron is directly hydroxylated.) When regenerated with IJium, the resin becomes OH.
Although it can be shaped, the regeneration efficiency (boron elution efficiency) is poor, and sulfuric acid regeneration has better regeneration efficiency.

一方CODを交換吸着したS04形弱塩基性アニオン交
換樹脂は硫酸よりも水酸化ナトリウムの方が再生効率は
よい。
On the other hand, for the S04 type weakly basic anion exchange resin that has exchanged and adsorbed COD, the regeneration efficiency is better with sodium hydroxide than with sulfuric acid.

そこで再生工程では、OH形弱塩基性アニオン交換樹脂
層に硫酸を、そしてS04形弱塩基性アニオン交換樹脂
層に水酸化ナトリウムをそれぞれ通液して再生し、さら
に樹脂層をOH形およびS04形に戻すために、OH形
弱塩基性アニオン交換樹脂層から排出される再生廃液を
S04形弱塩基性アニオン交換樹脂層に通液し、他方S
O4形弱塩基性アニオン交換樹脂層から排出される再生
廃液をOH形弱塩基性アニオン交換樹脂層に通液する。
Therefore, in the regeneration process, sulfuric acid is passed through the OH type weakly basic anion exchange resin layer and sodium hydroxide is passed through the S04 type weakly basic anion exchange resin layer for regeneration. In order to return the recycled waste liquid discharged from the OH type weakly basic anion exchange resin layer to the S04 type weakly basic anion exchange resin layer,
The recycled waste liquid discharged from the O4 type weakly basic anion exchange resin layer is passed through the OH type weakly basic anion exchange resin layer.

このような再生方法を行うことにより、再生効率を高く
するとともに、再生廃液中の余剰の硫酸および水酸化す
l−IJウムを有効に利用して樹脂の形の転換を行うこ
とができる。
By carrying out such a regeneration method, the regeneration efficiency can be increased and the form of the resin can be converted by effectively utilizing the excess sulfuric acid and sulfur hydroxide in the regeneration waste liquid.

この場合、溶離したホウ素およびCODが再び樹脂に交
換吸着されることはない。
In this case, the eluted boron and COD are not exchanged and adsorbed onto the resin again.

再生に使用する硫酸は20〜100y7を程度のものを
1〜8t/l−R程度、水酸化ナトリウムは20〜10
0 ’?/を程度のものを0.3〜1.5t/l−R程
度使用し、SVo、5〜4h’程度で通液したのち、常
法に従って押出、水洗等を行う。
The sulfuric acid used for regeneration is about 20 to 100y7 at about 1 to 8t/l-R, and the sodium hydroxide is about 20 to 10
0'? / of about 0.3 to 1.5 t/l-R is used, and after passing the liquid at SVo of about 5 to 4 h', extrusion, washing with water, etc. are carried out according to a conventional method.

以上により再生工程を終ったOH形およびSq形弱塩基
性アニオン交換樹脂は再びイオン交換工程に供し、原水
を通水してホウ素およびCODの除去を行う。
The OH type and Sq type weakly basic anion exchange resins that have undergone the regeneration process as described above are again subjected to an ion exchange process, and raw water is passed through them to remove boron and COD.

本発明では、ホウ素およびCODを含む水をOH形弱塩
基性アニオン交換樹脂層に通液したのち、S04形弱塩
基性アニオン交換樹脂層に通液するので、ホウ素および
CODを効率的に除去することができるとともに、前処
理を行う場合、前処理水の高アルカリ性をそのまま維持
して効率的な交換吸着を行うことができ、さらに再生剤
を有効利用して効率的な再生を行うことができる。
In the present invention, since water containing boron and COD is passed through the OH type weakly basic anion exchange resin layer and then through the S04 type weakly basic anion exchange resin layer, boron and COD are efficiently removed. In addition, when performing pretreatment, it is possible to maintain the high alkalinity of the pretreated water and perform efficient exchange adsorption, and it is also possible to perform efficient regeneration by making effective use of the regenerant. .

すなわちOH形弱塩基性アニオン交換樹脂層に硫酸を通
液し、S04形弱塩基性アニオン交換樹脂層に水酸化す
l−IJウムを通液したのち、再生廃液を他方の樹脂層
に通液することにより、再生効率を良くするとともに、
再生剤を有効に利用することができる。
That is, sulfuric acid is passed through the OH type weakly basic anion exchange resin layer, sulfuric acid is passed through the S04 type weakly basic anion exchange resin layer, and then the recycled waste liquid is passed through the other resin layer. By doing so, we can improve the regeneration efficiency and
The regenerant can be used effectively.

次に実験例および実施例により、本発明の効果を具体的
に説明する。
Next, the effects of the present invention will be specifically explained using experimental examples and examples.

実験例 排煙脱硫排水に炭酸ナトリウムと水酸化ナトリウムを加
えて脱カルシウム処理した上澄水の濾過水(pH11,
8、B 106”?/l 、 Ca 3.Q77v/、
/、)を、硫酸でSO4形、あるいは水酸化すl−IJ
ウムでOH形とした弱塩基性アニオン交換樹脂に5v3
h−’で通水した結果を表1に示す。
Experimental Example Filtered supernatant water (pH 11,
8, B 106”?/l, Ca 3.Q77v/,
/, ) with sulfuric acid in SO4 form or hydroxylated with l-IJ
5v3 to weakly basic anion exchange resin made into OH form with um.
Table 1 shows the results of water flow at h-'.

なお、通水原水のpHは硫酸で調整した。Note that the pH of the flowing raw water was adjusted with sulfuric acid.

表1の結果より、ホウ素の除去にはOH形弱塩基性アニ
オン交換樹脂がよく、しかもpH9以上で通液するのが
望ましいことがわかる。
From the results in Table 1, it can be seen that the OH type weakly basic anion exchange resin is good for removing boron, and it is desirable to run the resin at a pH of 9 or higher.

実施例 排煙脱硫排水に炭酸ナトリウムと水酸化すI−IJウム
を加えて脱カルシウム処理した結果、pH11,8、ホ
ウ素含有量106■/7.COD50mti/lの上澄
水が得られた。
Example When flue gas desulfurization wastewater was decalcified by adding sodium carbonate and I-IJ hydroxide, the pH was 11.8 and the boron content was 106/7. Supernatant water with a COD of 50 mti/l was obtained.

この水をOH形弱塩基性アニオン交換樹脂層に通水した
のち、硫酸を加えてpHを4.5に調整し、S04形弱
塩基性アニオン交換樹脂層に通水した。
After this water was passed through the OH type weakly basic anion exchange resin layer, sulfuric acid was added to adjust the pH to 4.5, and the water was passed through the S04 type weakly basic anion exchange resin layer.

通水速度はいずれも3h−1とした。The water flow rate was 3h-1 in both cases.

こ04果、最終処理水としてホウ素0.7TIg/l、
C0D6.0■/lの処理水が得られた(通水量401
/l−Rのとき)。
04, boron 0.7TIg/l as final treated water,
Treated water with C0D6.0/l was obtained (water flow rate 401
/l-R).

この運転をさらに続け、通水量が581/l−Rのとき
、CODが107IIIi/lとなったので運転を中断
し、再生した。
This operation was further continued, and when the water flow rate was 581/l-R, the COD became 107IIIi/l, so the operation was interrupted and regeneration was performed.

再生!屯 OH形弱塩基性アニオン交換樹脂に硫酸50
グ/を水溶液をS V 2 h−’で3t/l−R通液
したのち、引続き純水を同一条件で1t7t−R通水し
た。
reproduction! Tun OH type weakly basic anion exchange resin with sulfuric acid 50%
After passing an aqueous solution of 3 t/l-R at S V 2 h-', pure water was subsequently passed through at 1 t/l-R under the same conditions.

再生廃液(以下この廃液を再生廃液Aという)の性状は
次の通りであった。
The properties of the recycled waste liquid (hereinafter referred to as recycled waste liquid A) were as follows.

pH0,5ホウ素: 13001117/l 硫酸:
22700m’i/1%COD : 17m?/lこの
結果、硫酸により、樹脂に吸着されていたホウ素はほぼ
1oo%溶理 れたことがわかる。
pH0.5 Boron: 13001117/l Sulfuric acid:
22700m'i/1%COD: 17m? /l The results show that approximately 10% of the boron adsorbed on the resin was dissolved by sulfuric acid.

また、pH9以上ではOH形弱塩基性アニオン交換樹脂
はホウ素を選択的に吸着し、CODはほとんど吸着しな
いこともわかる。
It is also seen that at pH 9 or higher, the OH type weakly basic anion exchange resin selectively adsorbs boron and hardly adsorbs COD.

他方、S04形弱塩基性アニオン交換樹脂には水酸化ナ
トリウム水溶液80 t/lをS V2 h−’で1.
2t/l−Rで通液し、続いて同一条件で純水1t/l
−Rで水洗した。
On the other hand, for the S04 type weakly basic anion exchange resin, a sodium hydroxide aqueous solution of 80 t/l was added at SV2 h-' for 1.
2t/l-R, followed by pure water 1t/l under the same conditions.
-R was washed with water.

この結果、次の性状の再生廃液(以下再生廃液Bという
)が得られた。
As a result, a recycled waste liquid (hereinafter referred to as recycled waste liquid B) having the following properties was obtained.

pH12,7ホウ素:23■/l 水酸化ナトリウム:
18000■/l COD:1080■/1゜これか
ら、S04形弱塩基性アニオン交換樹脂に吸着されたC
ODはほぼ100%溶離されることがわかる。
pH12.7 Boron: 23■/l Sodium hydroxide:
18000■/l COD: 1080■/1゜From now on, C adsorbed on the S04 type weakly basic anion exchange resin
It can be seen that almost 100% of OD is eluted.

両樹脂を上記のように処理したのち、再生廃液AをS0
4形弱塩基性アニオン交換樹脂層に、一方再生廃訓をO
H形弱塩基性アニオン交換樹脂層にそれぞれ通液し、い
ずれも純水1t/l−Rで水洗し、それぞれの樹脂層を
S04形およびOH形に転換した。
After treating both resins as described above, the recycled waste liquid A is
4 type weakly basic anion exchange resin layer, on the other hand, O
The solution was passed through each of the H-type weakly basic anion exchange resin layers, and both were washed with 1 t/l of pure water to convert each resin layer into an S04-type and an OH-type.

その結果、再生廃液Aは次の性状を示した。As a result, recycled waste liquid A exhibited the following properties.

pH1,2ホウ素: 101077v/l COD ニ
ア711fl/lまた、再生廃液Bは次の性状を示した
pH 1,2 Boron: 101077v/l COD near 711fl/l In addition, recycled waste liquid B showed the following properties.

pH3,7ホウ素:167/lg/1CODニア20m
1!7/lこの結果、希釈率を考慮すると、ホウ素、C
ODが再吸着されることなく、イオン交換されることが
わかる。
pH 3,7 Boron: 167/lg/1 COD near 20m
1!7/l As a result, considering the dilution rate, boron, C
It can be seen that OD is ion-exchanged without being readsorbed.

このように再生を終了したのち、再度通水を再開した。After completing the regeneration in this way, water flow was restarted again.

その結果、40t/l−Hの通水量の時点で最終処理水
中のホウ素含有量は0.9■/l、CODは6.1■/
lであった。
As a result, at a flow rate of 40t/l-H, the boron content in the final treated water was 0.9■/l, and the COD was 6.1■/l.
It was l.

これは最初の状態と比べるとほとんど性能的に同一であ
り、上記再生がほぼ完全に行われたことがわかる。
This is almost the same in performance as the initial state, and it can be seen that the above regeneration was almost completely performed.

Claims (1)

【特許請求の範囲】 1 ホウ酸とCODを含む水をOH形弱塩基性アニオン
交換樹脂層に通液したのち、SO4形弱塩基性アニオン
交換樹脂層に通液するイオン交換工程と、樹脂の再生に
際して、OH形弱塩基性アニオン交換樹脂層に硫酸を、
そしてSO4形弱塩基性アニオン交換樹脂層に水酸化ナ
トリウムをそれぞれ通液して再生し、OH形弱塩基性ア
ニオン交換樹脂から排出される再生廃液をSO4形弱塩
基性アニオン交換樹脂層に、他方SO4形弱塩基性アニ
オン交換樹脂層から排出される再生廃液をOH形弱塩基
性アニオン交換樹脂層にそれぞれ通液する再生工程とを
含むことを特徴とするホウ素とCODを含む水の処理方
法。 2 ホウ素とCODを含む水は排煙脱硫排水である特許
請求の範囲第1項記載のホウ素とCODを含む水の処理
方法。 30H形弱塩基性アニオン交換樹脂層に供給する水のp
Hは9以上であり、SO4形弱塩基性アニオン交換樹脂
層に供給する水のpHは7以下である特許請求の範囲第
1項または第2項記載のホウ素とCODを含む水の処理
方法。 40H形弱塩基性アニオン交換樹脂層に供給する水は予
め軟化した水である特許請求の範囲第1項ないし第3項
のいずれかに記載のホウ素とCODを含む水の処理方法
[Claims] 1. An ion exchange step in which water containing boric acid and COD is passed through an OH type weakly basic anion exchange resin layer and then passed through an SO4 type weakly basic anion exchange resin layer; During regeneration, sulfuric acid is added to the OH type weakly basic anion exchange resin layer.
Then, sodium hydroxide is passed through each of the SO4 type weakly basic anion exchange resin layers for regeneration, and the recycled waste liquid discharged from the OH type weakly basic anion exchange resin is transferred to the SO4 type weakly basic anion exchange resin layer. A method for treating water containing boron and COD, comprising a regeneration step of passing recycled waste liquid discharged from an SO4 type weakly basic anion exchange resin layer through an OH type weakly basic anion exchange resin layer. 2. The method for treating water containing boron and COD according to claim 1, wherein the water containing boron and COD is flue gas desulfurization wastewater. p of water supplied to the 30H type weakly basic anion exchange resin layer
3. The method for treating water containing boron and COD according to claim 1 or 2, wherein H is 9 or more and the pH of the water supplied to the SO4 type weakly basic anion exchange resin layer is 7 or less. The method for treating water containing boron and COD according to any one of claims 1 to 3, wherein the water supplied to the 40H type weakly basic anion exchange resin layer is pre-softened water.
JP56080037A 1981-05-28 1981-05-28 How to treat water containing boron and COD Expired JPS591396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56080037A JPS591396B2 (en) 1981-05-28 1981-05-28 How to treat water containing boron and COD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56080037A JPS591396B2 (en) 1981-05-28 1981-05-28 How to treat water containing boron and COD

Publications (2)

Publication Number Publication Date
JPS57197084A JPS57197084A (en) 1982-12-03
JPS591396B2 true JPS591396B2 (en) 1984-01-11

Family

ID=13707046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56080037A Expired JPS591396B2 (en) 1981-05-28 1981-05-28 How to treat water containing boron and COD

Country Status (1)

Country Link
JP (1) JPS591396B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196900U (en) * 1984-11-30 1986-06-21
JPH0131198Y2 (en) * 1984-11-30 1989-09-25
JPH0133038Y2 (en) * 1984-11-30 1989-10-06

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412842B2 (en) * 1992-07-28 2003-06-03 ミヨシ油脂株式会社 Metal collecting agent and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196900U (en) * 1984-11-30 1986-06-21
JPH0131198Y2 (en) * 1984-11-30 1989-09-25
JPH0133038Y2 (en) * 1984-11-30 1989-10-06

Also Published As

Publication number Publication date
JPS57197084A (en) 1982-12-03

Similar Documents

Publication Publication Date Title
US2155318A (en) Processes for the deacidification of liquids, especially water
US4695387A (en) Removal of ammonia from wastewater
CN101502742B (en) Method for removing thermostable salt in amine liquid for desulphurization
CA1186075A (en) Method for partially desalinating water with a weakly acid and strongly basic ion exchanger materials and subsequently regenerating the ion exchanger materials
JPS62191800A (en) Method of processing waste water containing uranium and fluorine
JPH0512040B2 (en)
JPS591396B2 (en) How to treat water containing boron and COD
JPS5815193B2 (en) How to treat boron-containing water
JPS5924876B2 (en) How to treat boron-containing water
US3429835A (en) Regeneration of weak base anion exchange resins
US2855363A (en) Water treatment
JP4315567B2 (en) Method for treating wastewater containing fluorine and boron
US2139227A (en) Removing fluorides from water
US2373632A (en) Removal of fluorine from water
US3192156A (en) Removal of hydrogen sulfide from water
SU1512651A1 (en) Method of regeneration of antionite filter for selective denitrification of water
JP2001232372A (en) Treatment process for water containing boron
JPS60143891A (en) Treatment of waste water from stack gas desulfurization
JPS5531409A (en) Removing phosphate ion from waste water
JPS5939517B2 (en) Method for recovering and reusing selenium components from electrolytic coloring process wastewater
JP3955162B2 (en) Method and apparatus for removing acid from acid solution
JPS6230596A (en) Method for treating fluorine in waste water
JPS5522379A (en) Manufacture of pure water
JPH0299189A (en) Process for treating waste water containing fluorine
JPH0140675B2 (en)