JPH0512040B2 - - Google Patents

Info

Publication number
JPH0512040B2
JPH0512040B2 JP4664389A JP4664389A JPH0512040B2 JP H0512040 B2 JPH0512040 B2 JP H0512040B2 JP 4664389 A JP4664389 A JP 4664389A JP 4664389 A JP4664389 A JP 4664389A JP H0512040 B2 JPH0512040 B2 JP H0512040B2
Authority
JP
Japan
Prior art keywords
silica
water
treatment
reverse osmosis
desilica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4664389A
Other languages
Japanese (ja)
Other versions
JPH02227185A (en
Inventor
Toshitaka Ichijo
Tetsuo Kubota
Tetsuo Suenaga
Yoshitsugu Hiroya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4664389A priority Critical patent/JPH02227185A/en
Publication of JPH02227185A publication Critical patent/JPH02227185A/en
Publication of JPH0512040B2 publication Critical patent/JPH0512040B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、スケールと腐食を防止する目的で
行う水処理の内、最も除去困難とされているシリ
カを、規模の大小に拘らず、簡易に且つ高効率に
除去する方法に関するものである。 (従来の技術) 水中に溶存するシリカの除去は、非常に困難で
古くから水処理の問題点となつており、数多くの
除去法が提案されている。主なものをあげると、
コールドライム処理、ホツトライム処理、硫酸ば
んど凝集分離処理、アルミニウム電解凝集処理、
イオン交換処理、逆浸透膜処理及びこれらの組み
合わせ等である。しかしいずれの方法も目的を達
成するためには、極めて不経済な運転を余儀なく
されているのが現状である。特に我国は火山帯が
多いので他成分に比べてシリカの含量が多い水が
多く、殆んどの場合、凝集処理とイオン交換処理
との組み合わせでシリカ除去を行つているのが現
状である。 (発明が解決しようとする課題) この凝集処理とイオン交換処理との組み合わせ
によるシリカ除去方法では、凝集分離のための広
い敷地とイオン交換のための多量の苛性ソーダが
必要であり、さらにこれらの装置の運転管理に
は、高度な技術と煩雑な手数も必要である。従つ
てその規模も大きくならざるを得ない。 また一方従来超純水のような高度な純水を造る
場合には、シリカのみではなく、シリカ化してい
ない不純物全てを除去する目的で、イオン交換処
理の前に凝集処理が行われている。そして近年逆
浸透膜が使用されるようになつて、この膜とイオ
ン交換樹脂との組み合わせで、殆んどの不純物が
除去されるようになつた。 しかし原水中にシリカが多量にある場合は逆浸
透膜を目詰りさせて所定の水量が取れなくなる。
従つてこの対策としてやはり予め凝集分離処理が
必要となつている。 これらの従来のシリカを除去するための方法は
全て目的外の物質をも除去するか、逆に他の不純
物を増加させる結果となつている。この発明も純
粋にシリカのみを除くものではないが、シリカ除
去を目的とし、簡易かつ効率良く除去できる方法
であり、この方法を実施するための装置も小型か
つ簡易なもので済むシリカ除去方法を提供するこ
とを目的としたものである。 (課題を解決するための手段) そこでこの発明は、多量のシリカが溶存してい
る水の脱シリカ処理において、原水をH型にした
磁酸性陽イオン交換樹脂で処理して脱アルカリ軟
化水とした後、残留する酸及びシリカを中和する
目的で苛性ソーダを添加し、同時にシリカ塩を適
宜の方法で活性化しながら逆浸透膜にて処理する
溶存シリカの除去方法である。 (作用) この発明は逆浸透膜により、その膜が最も除去
困難としているシリカを除去する方法である。濁
度除去の必要がある場合は単純なろ過器を使用す
れば足りる。脱アルカリ軟化には主として弱酸性
陽イオン交換樹脂をH型にして使用することによ
り消費する酸の量は殆んど中和当量と等しくな
る。また現行逆浸透膜に供給する水は膜面へのス
ケール生成防止のために弱酸性にしているが、こ
のために水中のシリカは不活性状態となり、除去
率が不安定となると同時に膜面にゲル化析出して
目詰りを生じさせる。この発明では脱アルカリ軟
化することによりカルシウム、マグネシウム、
鉄、アルミニウム及び重炭酸等を除去してあるの
で、弱アルカリ性にしても膜に支障はない。水を
弱アルカリ性にして昇温、磁場、電場等の処理に
よりシリカを活性化させて逆浸透膜によるシリカ
の除去率を上昇させると共に目詰りを防止し、長
時間安定して使用できるものである。ここで言う
シリカの活性化とは、シリカゲルの活性化とは全
く意味を異にしており、ケイ酸がイオン化してよ
り水和することを言う。 高純度の純水にする場合には、この処理の後に
仕上用逆浸透膜装置かイオン交換樹脂ミツクスベ
ツトポリシヤーを設置すればよい。前者は勿論、
後者の場合も処理対象イオン量が微量な上に非イ
オン物質がないので非再生型カートリツジ式が使
用可能であり、廃水処理は不要である。 (実施例) 以下この発明の実施例を説明する。第1図はこ
の発明の方法のフローチヤート図を示し、原水1
を脱アルカリ軟化塔2に導入する。この脱アルカ
リ軟化塔2はH型に再生された弱酸性カチオン交
換樹脂を充填した塔で原水1中のアルカリ分と硬
度成分を除去する。この脱アルカリ軟化塔2には
再生用塩酸貯槽3が接続されている。この脱アル
カリ軟化塔2を通過した原水1は脱アルカリ軟水
4となるが、この中には分解された多量の炭酸ガ
スを含むので脱炭酸ガス塔5において、向流エア
ブローにより除去する。6はこの脱炭酸ガス塔5
の炭酸ガス排出口である。この脱炭酸ガス塔5を
通過した脱アルカリ軟水4はさらに、中和用苛性
ソーダ貯槽7から送られてきた苛性ソーダで過剰
酸を中和し、微アルカリ性にする。そして軟水送
水ポンプ8によりこれをイオン活性化装置9に送
る。このイオン活性化装置9としては磁気フイル
ターを用いた。 原理は磁場を電導性物質が横切ると電流が流れ
るので、イオン化し得る塩を含んだ水を通過させ
ると磁力と通過速度に応じて電位を生じ、塩のイ
オン化を助長するものである。 この様にして溶存中のシリカ塩を活性化させ、
昇圧ポンプ10により逆浸透膜の特性に適した圧
に昇圧させて逆浸透脱シリカ筒11に送り込む。
ここでシリカを除去後、濃縮された軟水の一部は
濃縮水排出口13より排出され、他の大多量は循
環濃縮水ライン12によりイオン活性化装置9に
戻し、数回循環させる。そして数回循環して逆浸
透脱シリカ筒11を通過した脱シリカ軟水14を
処理水槽15に溜め、この脱シリカ軟水14を処
理水送水ポンプ16により必要箇所に適宜送水す
る。 次に上記処理装置を用いてこの発明の方法を実
施した結果を示す。 この処理装置により処理する処理対象水の水質
は表1の通りであつた。 この水を塩酸再生でH型にした上記弱酸性カチ
オン交換樹脂を充填した脱アルカリ軟化塔2に通
水して脱アルカリ軟化処理した。処理後の水質は
表2の通りであつた。 次で脱炭酸ガス塔5を通過し脱炭酸処理し、更
に中和用苛性ソーダ貯槽7により中和処理を行つ
た後の水質は表3の通りであつた。 中和後のアルカリ軟水をイオン活性化装置9で
イオン活性化しつつ、逆浸透脱シリカ筒11にお
いては逆浸透膜にて脱シリカ処理した水質は表4
の通りであり、目的を達成した。 なお、上記実施例ではイオン活性化装置として
磁気フイルターを用いたが、他に水質により電子
処理法、高周波処理法、超音波処理法等その他適
宜の方法によりイオン活性化することができる。
(Industrial Application Field) This invention can easily and highly efficiently remove silica, which is considered to be the most difficult to remove in water treatment for the purpose of preventing scale and corrosion, regardless of the scale. It is about the method. (Prior Art) Removal of silica dissolved in water is extremely difficult and has been a problem in water treatment for a long time, and many removal methods have been proposed. Here are the main ones:
Cold lime treatment, hot lime treatment, sulfuric acid band coagulation separation treatment, aluminum electrolytic coagulation treatment,
These include ion exchange treatment, reverse osmosis membrane treatment, and combinations thereof. However, in order to achieve the purpose of either method, the current situation is that extremely uneconomical operation is forced. In particular, since our country has many volcanic zones, there is a lot of water with a high content of silica compared to other components, and in most cases, silica is removed by a combination of coagulation treatment and ion exchange treatment. (Problems to be Solved by the Invention) This silica removal method using a combination of flocculation treatment and ion exchange treatment requires a large area for flocculation separation and a large amount of caustic soda for ion exchange. Operation management requires advanced technology and complicated labor. Therefore, its scale has to grow. On the other hand, when producing highly pure water such as ultrapure water, flocculation treatment is performed before ion exchange treatment in order to remove not only silica but also all impurities that have not been turned into silicates. In recent years, reverse osmosis membranes have come into use, and the combination of this membrane and ion exchange resin has made it possible to remove most impurities. However, if there is a large amount of silica in the raw water, it will clog the reverse osmosis membrane, making it impossible to obtain the required amount of water.
Therefore, as a countermeasure to this problem, it is still necessary to carry out agglomeration separation treatment in advance. All of these conventional methods for removing silica either remove unintended substances or conversely result in an increase in other impurities. Although this invention does not purely remove silica, it is a simple and efficient method for removing silica, and it is a silica removal method that requires a small and simple device to carry out this method. It is intended to provide. (Means for Solving the Problems) Therefore, in the desilica treatment of water in which a large amount of silica is dissolved, the present invention treats the raw water with a magnetic acidic cation exchange resin in the H type to produce dealkalized softened water. After that, caustic soda is added for the purpose of neutralizing the remaining acid and silica, and at the same time, the silica salt is activated by an appropriate method and treated with a reverse osmosis membrane.This is a method for removing dissolved silica. (Function) This invention is a method of removing silica, which is the most difficult to remove using a reverse osmosis membrane. If turbidity removal is necessary, a simple filter can be used. For dealkalization softening, a weakly acidic cation exchange resin is mainly used in the H type, so that the amount of acid consumed is almost equal to the neutralization equivalent. In addition, the water supplied to current reverse osmosis membranes is made slightly acidic to prevent scale formation on the membrane surface, but this makes the silica in the water inactive, making the removal rate unstable and at the same time preventing the formation of scale on the membrane surface. It gels and precipitates, causing clogging. In this invention, calcium, magnesium,
Since iron, aluminum, bicarbonate, etc. have been removed, there is no problem with the membrane even if it is made slightly alkaline. By making the water slightly alkaline and activating the silica through treatments such as temperature elevation, magnetic field, electric field, etc., it increases the silica removal rate by the reverse osmosis membrane, prevents clogging, and can be used stably for a long time. . The activation of silica here has a completely different meaning from the activation of silica gel, and refers to ionization of silicic acid and further hydration. If high purity water is to be obtained, a finishing reverse osmosis membrane device or an ion exchange resin mix bed polisher may be installed after this treatment. The former, of course,
In the latter case as well, since the amount of ions to be treated is small and there are no nonionic substances, a non-regenerating cartridge type can be used, and wastewater treatment is not necessary. (Example) Examples of the present invention will be described below. FIG. 1 shows a flowchart of the method of this invention, in which raw water 1
is introduced into the dealkalization softening tower 2. This dealkalization softening tower 2 is a tower filled with a weakly acidic cation exchange resin regenerated into H type, and removes alkaline content and hardness components from the raw water 1. A hydrochloric acid storage tank 3 for regeneration is connected to the dealkalization softening tower 2. The raw water 1 that has passed through the dealkalization softening tower 2 becomes dealkalization softened water 4, which contains a large amount of decomposed carbon dioxide gas, which is removed by countercurrent air blowing in the decarbonation tower 5. 6 is this decarbonation gas tower 5
This is the carbon dioxide gas outlet. The dealkalized soft water 4 that has passed through the decarbonation gas tower 5 is further neutralized with excess acid with caustic soda sent from the neutralizing caustic soda storage tank 7, making it slightly alkaline. The soft water is then sent to the ion activation device 9 by the soft water pump 8 . As this ion activation device 9, a magnetic filter was used. The principle is that when a conductive substance crosses a magnetic field, a current flows, so when water containing salt that can be ionized is passed through it, a potential is generated depending on the magnetic force and the speed of passage, promoting the ionization of the salt. In this way, the dissolved silica salt is activated,
The pressure is increased to a pressure suitable for the characteristics of the reverse osmosis membrane using a pressure boost pump 10, and then the membrane is sent to the reverse osmosis desilica cylinder 11.
After removing the silica, a portion of the concentrated soft water is discharged from the concentrated water outlet 13, and the remaining large amount is returned to the ion activation device 9 through the circulating concentrated water line 12 and circulated several times. The desilica-free soft water 14 that has been circulated several times and passed through the reverse osmosis desilica tube 11 is stored in a treated water tank 15, and the treated water water supply pump 16 sends the desilica-free soft water 14 to necessary locations as appropriate. Next, the results of implementing the method of the present invention using the above processing apparatus will be shown. The quality of the water to be treated by this treatment device was as shown in Table 1. This water was passed through a dealkalization softening tower 2 filled with the above-mentioned weakly acidic cation exchange resin which had been converted into H-type by hydrochloric acid regeneration, and was subjected to a dealkalization softening treatment. The water quality after treatment was as shown in Table 2. Next, the water was passed through a decarbonation gas tower 5 for decarboxylation treatment, and further neutralized in a caustic soda storage tank 7 for neutralization.The water quality was as shown in Table 3. The alkaline soft water after neutralization is ion activated in the ion activation device 9, and the reverse osmosis desilica tube 11 is desilicated with the reverse osmosis membrane.The water quality is shown in Table 4.
The goal was achieved. In the above embodiments, a magnetic filter was used as the ion activation device, but ions can be activated by other suitable methods such as electronic processing, high frequency processing, and ultrasonic processing depending on the water quality.

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) この発明は以上の構成であり、逆浸透膜を通過
させるにあたつて、原水を脱アルカリ軟水にし、
残留する酸及びシリカを苛性ソーダで中和し、微
アルカリ性にし、このうちのシリカ塩を活性化し
つつ逆浸透膜にて処理するものであり、シリカ除
去の最も困難である逆浸透膜での処理という一見
技術的に逆行しているような方法であるが、シリ
カが除去され難い原因を追及した結果到達し得た
方法である。しかもこの方法では従来法で必要と
されていた大面積を要する凝集処理が不要である
ため、処理に必要な設備面積乃至は規模において
も小さくて済み、経済的であり、かつ処理水水質
の面でもシリカの除去率が大きくかつ確実である
等の利点を有する。またこの方法によれば除去対
象の塩分に対して過剰の酸やアルカリを使用する
必要がないので廃液処理も不要である。
[Table] (Effects of the Invention) This invention has the above configuration, and when passing through a reverse osmosis membrane, raw water is made dealkalized and softened,
The remaining acid and silica are neutralized with caustic soda to make them slightly alkaline, and the silica salt is activated while being treated with a reverse osmosis membrane. This method may seem technically backward at first glance, but it was achieved as a result of investigating the reason why silica is difficult to remove. Moreover, this method does not require the coagulation treatment that requires a large area, which is required in the conventional method, so the area and scale of equipment required for treatment are small, making it economical and improving the quality of treated water. However, it has advantages such as a high and reliable silica removal rate. Furthermore, according to this method, there is no need to use acid or alkali in excess of the salt to be removed, so there is no need for waste liquid treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の手順を示すフローチ
ヤート図である。 なお図中1は原水、2は脱アルカリ軟化塔、4
は脱アルカリ軟水、5は脱炭酸ガス塔、7は中和
用苛性ソーダ貯槽、9はイオン活性化装置、11
は逆浸透脱シリカ筒、12は循環濃縮水ライン、
14は脱シリカ軟水である。
FIG. 1 is a flowchart showing the steps of the method of the present invention. In the figure, 1 is the raw water, 2 is the dealkalization softening tower, and 4 is the raw water.
5 is a decarbonization gas tower, 7 is a caustic soda storage tank for neutralization, 9 is an ion activation device, 11
12 is a reverse osmosis desilica cylinder, 12 is a circulating concentrated water line,
14 is desilica-free soft water.

Claims (1)

【特許請求の範囲】[Claims] 1 多量のシリカが溶存している水の脱シリカ処
理において、原水をH型にした弱酸性陽イオン交
換樹脂で処理して脱アルカリ軟化水とした後、残
留する酸及びシリカを中和させる苛性ソーダを添
加し、同時にシリカ塩を活性化しながら逆浸透膜
にて処理することを特徴とする、溶存シリカの除
去法。
1. In the desilica treatment of water in which a large amount of silica is dissolved, raw water is treated with a weakly acidic cation exchange resin in the H type to make dealkalized softened water, and then caustic soda is used to neutralize the remaining acid and silica. A method for removing dissolved silica, which is characterized by adding silica salt and treating it with a reverse osmosis membrane while activating silica salt at the same time.
JP4664389A 1989-03-01 1989-03-01 Removal of dissolved silica Granted JPH02227185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4664389A JPH02227185A (en) 1989-03-01 1989-03-01 Removal of dissolved silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4664389A JPH02227185A (en) 1989-03-01 1989-03-01 Removal of dissolved silica

Publications (2)

Publication Number Publication Date
JPH02227185A JPH02227185A (en) 1990-09-10
JPH0512040B2 true JPH0512040B2 (en) 1993-02-17

Family

ID=12752991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4664389A Granted JPH02227185A (en) 1989-03-01 1989-03-01 Removal of dissolved silica

Country Status (1)

Country Link
JP (1) JPH02227185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW404847B (en) * 1996-08-12 2000-09-11 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US6537456B2 (en) 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US5925255A (en) * 1997-03-01 1999-07-20 Mukhopadhyay; Debasish Method and apparatus for high efficiency reverse osmosis operation
DE19806796A1 (en) * 1998-02-19 1999-09-09 Membraflow Gmbh & Co Kg Filter Method and device for the treatment and / or pretreatment of liquids to be treated by means of a membrane filter device
US6398965B1 (en) 1998-03-31 2002-06-04 United States Filter Corporation Water treatment system and process
US6325983B1 (en) 2000-04-19 2001-12-04 Seh America, Inc. Nox scrubbing system and method
US6306197B1 (en) 2000-04-19 2001-10-23 Seh America, Inc. Isopropyl alcohol scrubbing system
KR100839350B1 (en) * 2006-08-24 2008-06-19 삼성전자주식회사 Waste water recycling method and apparatus for performing the same
JP5359898B2 (en) * 2010-01-22 2013-12-04 三浦工業株式会社 Water treatment method and water treatment system
JP5998796B2 (en) * 2012-09-25 2016-09-28 三浦工業株式会社 Silica removal system and water treatment system including the same
JP2015223538A (en) * 2014-05-26 2015-12-14 三菱重工業株式会社 Water treatment apparatus, and water treatment method
JP2015223539A (en) * 2014-05-26 2015-12-14 三菱重工業株式会社 Water treatment equipment and water treatment method
JP7237714B2 (en) * 2019-05-07 2023-03-13 株式会社東芝 water treatment equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US9428412B2 (en) 1996-08-12 2016-08-30 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation

Also Published As

Publication number Publication date
JPH02227185A (en) 1990-09-10

Similar Documents

Publication Publication Date Title
JPH0512040B2 (en)
CA2294129A1 (en) Water treatment process
US4235715A (en) Process for removing alkalinity and hardness from waters
US4161446A (en) Process for the treatment of ground water
CN106186550A (en) Sewage recycling Zero emission device and method
JP3646900B2 (en) Apparatus and method for treating boron-containing water
JP3334142B2 (en) Treatment method for fluorine-containing water
JP2000070933A (en) Pure water production method
JP4543481B2 (en) Method for treating water containing boron and fluorine
JP3203745B2 (en) Fluorine-containing water treatment method
JP4110604B2 (en) Fluorine-containing water treatment method
JPH0137997B2 (en)
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
JP2000126766A (en) Treatment of tetraalkylammonium ion-containing liquid
JPH11565A (en) Method and apparatus for treating waste water from regeneration of ion exchange resin
CN114906957A (en) Concentrated brine recycling treatment method and treatment system
JPS62213893A (en) Method of treating waste water containing hydroxylamine or salt thereof
CN221370907U (en) Desalination treatment system of waste water
JP2001276814A (en) Treatment method of drain containing fluorine and/or boron
RU2074122C1 (en) Method of thermally desalting water
JPH11239792A (en) Production of pure water
JPH11169864A (en) Treatment method of boron-containing water
JP2001219163A (en) Treatment method of boron-containing water
JP2001192867A (en) Surface treatment method for aluminum material
SU1511214A1 (en) Method of desalinating natural water