JPH11239792A - Production of pure water - Google Patents

Production of pure water

Info

Publication number
JPH11239792A
JPH11239792A JP10058950A JP5895098A JPH11239792A JP H11239792 A JPH11239792 A JP H11239792A JP 10058950 A JP10058950 A JP 10058950A JP 5895098 A JP5895098 A JP 5895098A JP H11239792 A JPH11239792 A JP H11239792A
Authority
JP
Japan
Prior art keywords
water
hydrofluoric acid
treated
acid
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10058950A
Other languages
Japanese (ja)
Other versions
JP3555732B2 (en
Inventor
Madoka Tanabe
円 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP05895098A priority Critical patent/JP3555732B2/en
Publication of JPH11239792A publication Critical patent/JPH11239792A/en
Application granted granted Critical
Publication of JP3555732B2 publication Critical patent/JP3555732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove hydrofluoric acid when a mixed acidic water containing hydrofluoric acid and mineral acids is treated with an electrically deionizing device, by adding an alkali to the mixed acidic water before the treatment until its pH value reaches a range where hydrofluoric acid is dissociated. SOLUTION: An alkaline solution is added to water to be treated, comprising a mixed acidic water of hydrofluoric acid and mineral acids, by a pH controller 1 before supplying the water to an electrically deionizing device (EDI device) 2. The water to be treated, after the pH adjustment, flows into the EDI device 2. The EDI device 2 has a desalination chamber, a concentration chamber, and a pair of electrodes. The water to be treated and concentrated water pass through the desalination and concentration chambers respectively. As the pH of the water to be treated has been adjusted within the range where hydrofluoric acid is dissociated to ions, fluorine ions are remove to the concentrated water which flows through an ion-exchange membrane. Thereby the treated water from which hydrofluoric acid has been removed can be obtained, and concentrated water in which salts have been enriched can be obtained at the same time in the concentration chamber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、半導体デ
バイス製造工程で使用される洗浄用純水の製造方法に関
し、詳しくは、フッ酸と鉱酸の混合酸性水を電気式脱イ
オン水製造装置で処理して、フッ酸を効率的に除去する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pure water for cleaning used, for example, in a semiconductor device production process. And a method for efficiently removing hydrofluoric acid.

【0002】[0002]

【従来の技術】近年、半導体デバイス製造工場では、水
利用率の向上と環境保護のため、排水を回収することに
より排水量の低減を図っている。すなわち、半導体デバ
イス製造工場で使用する超純水製造装置には、半導体デ
バイス製造工程で発生する排水を該超純水製造装置の原
水と合流させる排水回収系を備えることが一般的となっ
ている。この半導体デバイス製造工程から最も多量に発
生する排水は、硫酸などの鉱酸及びフッ酸を含むpH2
〜4の希薄酸性水である。したがって、この希薄酸性水
をそのまま原水に合流させて超純水製造系に供給する
と、フッ酸とカルシウムなどの硬度成分とが反応して不
溶性の塩を生成し、これが貯槽底部に析出し、後段のポ
ンプや逆浸透膜装置を汚染する。このため、回収排水中
のフッ酸濃度は、例えば0.5ppm 以下とする必要があ
る。
2. Description of the Related Art In recent years, semiconductor device manufacturing factories have attempted to reduce the amount of wastewater by collecting the wastewater in order to improve the water utilization rate and protect the environment. That is, an ultrapure water production apparatus used in a semiconductor device manufacturing plant generally includes a wastewater recovery system that merges wastewater generated in a semiconductor device production process with raw water of the ultrapure water production apparatus. . The most wastewater generated from this semiconductor device manufacturing process is pH 2 containing mineral acids such as sulfuric acid and hydrofluoric acid.
~ 4 diluted acidic water. Therefore, when this diluted acidic water is combined with raw water as it is and supplied to the ultrapure water production system, hydrofluoric acid and a hard component such as calcium react to generate an insoluble salt, which precipitates at the bottom of the storage tank, and is formed at a later stage. Pumps and reverse osmosis membrane equipment. For this reason, the concentration of hydrofluoric acid in the collected wastewater must be, for example, 0.5 ppm or less.

【0003】一方、従来から、純水を製造するにはイオ
ン交換樹脂が利用されているが、このイオン交換樹脂
は、通常薬剤による再生を必要とする。このため、近
年、該イオン交換樹脂を利用した脱イオンと電気透析作
用を組合せ、薬剤による再生が不要で、高度な純水を得
る電気式脱イオン水製造装置の利用が進んでいる。
On the other hand, an ion exchange resin has conventionally been used for producing pure water, and this ion exchange resin usually requires regeneration with a chemical. For this reason, in recent years, the use of an electro-deionized water production apparatus that combines deionization using the ion-exchange resin with electrodialysis to obtain high-purity water without the need for regeneration with a chemical agent has been advanced.

【0004】そこで、前記鉱酸及びフッ酸を含有する希
薄酸性水を電気式脱イオン水製造装置で処理し、フッ酸
を除去する方法が試みられている。しかし、この場合、
鉱酸は除去されるものの、フッ酸は除去されることなく
漏出してしまう。これを解決するものとして、例えば、
被処理水(例えば、回収排水)を逆浸透膜装置に供給し
て、硫酸などの鉱酸を除去し、次いで、その後段に設置
した電気式脱イオン水製造装置でフッ酸を除去する方法
が知られている。
Therefore, a method has been attempted in which the diluted acidic water containing the mineral acid and hydrofluoric acid is treated by an electric deionized water producing apparatus to remove hydrofluoric acid. But in this case,
Although the mineral acid is removed, the hydrofluoric acid leaks without being removed. To solve this, for example,
A method of supplying treated water (for example, collected wastewater) to a reverse osmosis membrane device to remove mineral acids such as sulfuric acid, and then removing hydrofluoric acid by an electric deionized water production device installed at a subsequent stage. Are known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法は、2つの装置の設置が必要であり、設備投資が増え
る他、ランニングコストが上昇するという問題がある。
However, this method requires the installation of two devices, thus increasing the capital investment and increasing the running cost.

【0006】したがって、本発明の目的は、特に半導体
デバイス製造工程から排出される硫酸などの鉱酸及びフ
ッ酸を含む希薄混合酸性水を、実質的に単独の電気式脱
イオン水製造装置で処理することにより、効率よくフッ
酸を除去する方法を提供することである。
Accordingly, an object of the present invention is to treat a dilute mixed acidic water containing a mineral acid such as sulfuric acid and a hydrofluoric acid discharged from a semiconductor device manufacturing process with a substantially single electric deionized water manufacturing apparatus. The present invention provides a method for efficiently removing hydrofluoric acid.

【0007】[0007]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、鉱酸及びフッ酸を含む
希薄混合酸性水が、例えばpH4以下であると、電気式
脱イオン水製造装置でこれを処理しても、強電解質であ
る鉱酸は解離するものの、弱電解質であるフッ酸はイオ
ンに解離せずそのまま漏出してしまうこと、したがっ
て、フッ酸が解離するpH領域となるまでアルカリ添加
して該希薄酸性水を処理すれば、鉱酸は中和されるため
フッ酸を容易に除去できることを見出し、本発明を完成
するに至った。
Under such circumstances, the present inventors have conducted intensive studies. As a result, when the pH of the dilute mixed acidic water containing mineral acid and hydrofluoric acid is, for example, pH 4 or less, the electro-deionized water production is performed. Even if this is processed by the apparatus, the mineral acid which is a strong electrolyte is dissociated, but the hydrofluoric acid which is a weak electrolyte is not dissociated into ions but leaks as it is, so that it becomes a pH region where hydrofluoric acid dissociates. It has been found that if the diluted acidic water is treated by adding an alkali up to this, the mineral acid is neutralized and the hydrofluoric acid can be easily removed, and the present invention has been completed.

【0008】すなわち、本発明は、フッ酸及び鉱酸を含
有する混合酸性水を電気式脱イオン水製造装置で処理す
る方法において、前記混合酸性水に、フッ酸が解離する
pH値までアルカリを添加して、その後、該処理を行う
純水製造方法を提供するものである。
That is, the present invention provides a method of treating a mixed acidic water containing hydrofluoric acid and a mineral acid with an electric deionized water producing apparatus, wherein the mixed acidic water is mixed with an alkali until the pH value at which hydrofluoric acid dissociates. It is intended to provide a method for producing pure water in which the treatment is performed after the addition.

【0009】本発明の純水製造方法によれば、フッ酸が
解離するpH領域となるまでアルカリを添加し、その
後、電気式脱イオン水製造装置で処理するため、少なく
とも鉱酸は中和されると共に、フッ酸はイオンに解離す
るため電気式脱イオン水製造装置単独での除去が可能と
なる。したがって、電気式脱イオン水製造装置の前段部
に逆浸透膜装置を設置する必要はなくなる。また、従来
の半導体デバイス製造工場における排水回収系では、高
濃度の酸性排水が排出され、これを放流するためにアル
カリ添加による中和を行っていたが、本発明の方法によ
れば、被処理水を予めpH6.5以上にするため、これ
らの排水は中性又は弱アルカリであり、貯槽などで自然
に溶解する炭酸ガスによって放流可能なpH領域とな
る。このため、新たな中和設備を必要とすることがない
等の利点がある。
According to the method for producing pure water of the present invention, an alkali is added until the pH reaches a pH range in which hydrofluoric acid is dissociated, and then the treatment is carried out in an electric deionized water producing apparatus. At the same time, hydrofluoric acid is dissociated into ions, so that it can be removed by the electric deionized water producing apparatus alone. Therefore, it is not necessary to install a reverse osmosis membrane device in the front part of the electric deionized water production device. Further, in a conventional wastewater recovery system in a semiconductor device manufacturing factory, high-concentration acidic wastewater is discharged, and neutralization by adding an alkali is performed to discharge the acidic wastewater. Since the water is adjusted to pH 6.5 or higher in advance, these wastewaters are neutral or weakly alkaline, and have a pH range that can be released by carbon dioxide that is naturally dissolved in a storage tank or the like. Therefore, there is an advantage that a new neutralization facility is not required.

【0010】[0010]

【発明の実施の形態】次に、本発明の実施の形態におけ
る純水製造方法について、図面を参照して説明する。
Next, a method for producing pure water according to an embodiment of the present invention will be described with reference to the drawings.

【0011】図1は、本発明の実施の形態における純水
製造方法を説明するブロック図である。フッ酸と硫酸な
どの鉱酸の混合酸性水である被処理水は、電気式脱イオ
ン水製造装置(以下、EDI装置ともいう)2に供給さ
れる前に、予めpH調整装置1によりアルカリ溶液が添
加される。これにより、硫酸などは中和されてpH値は
6.5以上となる。pH調整された被処理水は、EDI
装置2に流入される。EDI装置2は、イオン交換樹
脂、イオン交換繊維などのイオン交換体が充填された脱
塩室と、この脱塩室とイオン交換膜を介して仕切られた
濃縮室と、これら脱塩室及び濃縮室に電圧を印加する一
対の電極を有している。そして、脱塩室に被処理水を、
また、濃縮室に濃縮水を流通する。被処理水はフッ酸が
イオンに解離するpH領域に調整されているため、フッ
素イオンはイオン交換膜を介して濃縮水を流れる濃縮水
中に移動される。これによって、フッ酸が除去された処
理水を得ると共に、塩類が濃縮された濃縮水を濃縮室に
得ることができる。従って、一対の電極を収納する電極
室にも濃縮水(電極水)を流通する。従って、該電極室
からは電極水が排出される。
FIG. 1 is a block diagram illustrating a method for producing pure water according to an embodiment of the present invention. Before being supplied to an electric deionized water producing apparatus (hereinafter also referred to as EDI apparatus) 2, the water to be treated, which is a mixed acidic water of hydrofluoric acid and a mineral acid such as sulfuric acid, is subjected to an alkaline solution by a pH adjusting apparatus 1 in advance. Is added. Thereby, sulfuric acid and the like are neutralized and the pH value becomes 6.5 or more. The treated water whose pH has been adjusted is EDI
It flows into the device 2. The EDI device 2 includes a desalination chamber filled with an ion exchanger such as an ion exchange resin and an ion exchange fiber, a concentration chamber separated from the desalination chamber via an ion exchange membrane, a desalination chamber and a concentration chamber. The chamber has a pair of electrodes for applying a voltage to the chamber. Then, the water to be treated is
In addition, the concentrated water is circulated to the concentration chamber. Since the water to be treated is adjusted to a pH range where hydrofluoric acid is dissociated into ions, fluorine ions are transferred to the concentrated water flowing through the concentrated water via the ion exchange membrane. Thereby, the treated water from which the hydrofluoric acid has been removed can be obtained, and the concentrated water in which the salts have been concentrated can be obtained in the concentration chamber. Therefore, the concentrated water (electrode water) also flows through the electrode chamber that houses the pair of electrodes. Therefore, electrode water is discharged from the electrode chamber.

【0012】前記被処理水としては、硫酸などの鉱酸及
びフッ酸を含有する混合酸性液であれば、特に制限され
ないが、例えば半導体デバイス製造工程から排出される
水酸化アンモニウム、硫酸、硝酸、フッ酸などを含有す
るpH2〜4の希薄酸性排水が挙げられる。
The water to be treated is not particularly limited as long as it is a mixed acidic solution containing a mineral acid such as sulfuric acid and hydrofluoric acid. Examples of the water to be treated include ammonium hydroxide, sulfuric acid, nitric acid, and the like discharged from a semiconductor device manufacturing process. A diluted acidic wastewater having a pH of 2 to 4 containing hydrofluoric acid or the like can be used.

【0013】前記pH調整装置1は、被処理水にアルカ
リ溶液を添加する装置であり、例えばアルカリ溶液貯槽
と注入ポンプで構成されるものである。また、pH調整
装置1は、被処理水のアルカリ添加前後のpHを検出す
るpH計と、該pH計の出力に基づいて、注入ポンプの
吐出量を制御する調整器を設置して、所定のpHを維持
する構造とするこのが好ましい。アルカリとしては、ア
ルカリ金属、アミン類など水に溶解した時にアルカリ性
を示す物質を任意に選択でき、例えば水酸化ナトリウ
ム、水酸化カリウムなどが挙げられ、このうち、水酸化
ナトリウムが工業的使用上、安価で入手し易いなどの点
で好ましい。アルカリを添加してフッ酸が解離するpH
値としては、pH6.5以上、好ましくはpH6.5〜
9.5である。pHが9.5を越えるとアルカリの漏洩
が多量になることから好ましくない。
The pH adjusting device 1 is a device for adding an alkaline solution to the water to be treated, and is composed of, for example, an alkaline solution storage tank and an injection pump. Further, the pH adjusting device 1 is provided with a pH meter for detecting pH before and after the addition of the alkali of the water to be treated, and a regulator for controlling the discharge amount of the infusion pump based on the output of the pH meter. This is preferably a structure that maintains the pH. As the alkali, an alkali metal, a substance which shows alkalinity when dissolved in water such as amines can be arbitrarily selected, and examples thereof include sodium hydroxide and potassium hydroxide. Of these, sodium hydroxide is used for industrial use. It is preferable in that it is inexpensive and easily available. PH at which hydrofluoric acid dissociates by adding alkali
The value is pH 6.5 or more, preferably pH 6.5 to
9.5. If the pH exceeds 9.5, the leakage of alkali becomes large, which is not preferable.

【0014】本発明の実施の形態における純水製造方法
によれば、pH調整装置1により、フッ酸が解離するp
H領域となるまでアルカリ溶液を添加し、その後、電気
式脱イオン水製造装置で処理するため、少なくとも鉱酸
は中和されフッ酸はイオンに解離するため、EDI装置
2単独での除去が可能となる。したがって、EDI装置
2の前段部分に逆浸透膜装置を設置する必要はない。
According to the method for producing pure water in the embodiment of the present invention, the pH adjusting device 1 is used to dissociate hydrofluoric acid.
An alkaline solution is added until the H region is reached, and then treated with an electric deionized water production system. At least mineral acid is neutralized and hydrofluoric acid is dissociated into ions. Becomes Therefore, it is not necessary to install a reverse osmosis membrane device in the preceding stage of the EDI device 2.

【0015】[0015]

【実施例】次に、実施例を挙げて、本発明を更に具体的
に説明する。 実施例1 下記仕様のEDI装置を用いて、90日間の処理実験を
行った。アルカリ添加前の被処理水は、半導体デバイス
製造工程で発生する回収排水であり、フッ酸15mg/L、
硫酸50mg/L、硝酸1mg/L、アンモニア1mg/Lを含有
し、pH3.0及び導電率500μS/cmの水であった。
また、アルカリは水酸化ナトリウムを使用し、これを前
記回収排水に添加して、pH6.5の被処理水とした。
評価は90日間経過後の処理水のフッ酸濃度を測定する
ことにより行った。結果は、処理水の組成はフッ酸0.
5mg/L以下、硫酸0.1mg/L以下、硝酸0.1mg/L以
下、アンモニア0.1mg/L以下であり、フッ酸はそのほ
とんどが除去されていた。また、処理水の導電率は2μ
S/cmであった。
Next, the present invention will be described more specifically with reference to examples. Example 1 A 90-day treatment experiment was performed using an EDI device having the following specifications. The water to be treated before the addition of alkali is recovered wastewater generated in the semiconductor device manufacturing process, and is hydrofluoric acid 15 mg / L,
The water contained 50 mg / L of sulfuric acid, 1 mg / L of nitric acid, and 1 mg / L of ammonia, and had a pH of 3.0 and a conductivity of 500 μS / cm.
As the alkali, sodium hydroxide was used, and this was added to the above-mentioned recovered wastewater to obtain treated water having a pH of 6.5.
The evaluation was performed by measuring the hydrofluoric acid concentration of the treated water after 90 days. As a result, the composition of the treated water was 0.1% hydrofluoric acid.
It was 5 mg / L or less, sulfuric acid 0.1 mg / L or less, nitric acid 0.1 mg / L or less, and ammonia 0.1 mg / L or less, and most of hydrofluoric acid was removed. The conductivity of the treated water is 2μ.
It was S / cm.

【0016】 (EDI装置) ・処理水量3.0m3/h、濃縮水量0.5m3/h、電極水量0.1m3/h ・印加電圧:200V、3.0A ・使用イオン交換体:カチオン交換樹脂アンバーライトIR120B アニオン交換樹脂アンバーライトIRA400 (いずれもロームアンドハース社製) カチオン交換樹脂とアニオン交換樹脂の混合比1:2(容量比) ・使用イオン交換膜:カチオン交換膜CMH、アニオン交換膜AMH (いずれもトクヤマ社製)(EDI device)-Treated water volume 3.0 m 3 / h, concentrated water volume 0.5 m 3 / h, electrode water volume 0.1 m 3 / h-Applied voltage: 200 V, 3.0 A-Ion exchanger used: cation Exchange resin Amberlite IR120B Anion exchange resin Amberlite IRA400 (all manufactured by Rohm and Haas) Mixing ratio of cation exchange resin and anion exchange resin 1: 2 (capacity ratio) ・ Ion exchange membrane used: cation exchange membrane CMH, anion exchange Membrane AMH (all manufactured by Tokuyama)

【0017】比較例1 被処理水をアルカリ無添加とする以外は、実施例1と同
様の方法により行った。結果は、処理水中のフッ酸濃度
は14mg/Lであり、被処理水のフッ酸のほとんどが漏出
していた。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the water to be treated was added without alkali. As a result, the concentration of hydrofluoric acid in the treated water was 14 mg / L, and most of the hydrofluoric acid in the water to be treated was leaking.

【0018】[0018]

【発明の効果】本発明の純水製造方法によれば、フッ酸
が解離するpH領域となるまでアルカリを添加し、その
後、電気式脱イオン水製造装置で処理するため、少なく
とも鉱酸は中和されると共に、フッ酸はイオンに解離す
るため電気式脱イオン水製造装置単独での除去が可能と
なる。したがって、電気式脱イオン水製造装置の前段部
に逆浸透膜装置を設置する必要はなくなる。また、従来
の半導体デバイス製造工場における排水回収系では、高
濃度の酸性排水が排出され、これを放流するためにアル
カリ添加による中和を行っていたが、本発明の方法によ
れば、被処理水を予めpH6.5以上にするため、これ
らの排水は中性又は弱アルカリであり、貯槽などで自然
に溶解する炭酸ガスによって放流可能なpH領域とな
る。このため、新たな中和設備を必要とすることがない
等の利点がある。
According to the method for producing pure water of the present invention, an alkali is added until the pH reaches a pH range in which hydrofluoric acid is dissociated, and then the resultant is treated in an electric deionized water producing apparatus. At the same time, hydrofluoric acid dissociates into ions, so that it can be removed by the electric deionized water producing apparatus alone. Therefore, it is not necessary to install a reverse osmosis membrane device in the front part of the electric deionized water production device. Further, in a conventional wastewater recovery system in a semiconductor device manufacturing factory, high-concentration acidic wastewater is discharged, and neutralization by adding an alkali is performed to discharge the acidic wastewater. Since the water is adjusted to pH 6.5 or higher in advance, these wastewaters are neutral or weakly alkaline, and have a pH range that can be released by carbon dioxide that is naturally dissolved in a storage tank or the like. Therefore, there is an advantage that a new neutralization facility is not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における純水製造方法を説
明するブロック図を示す。
FIG. 1 is a block diagram illustrating a pure water production method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 pH調整装置 2 電気式脱イオン水製造装置 1 pH adjustment device 2 Electric deionized water production device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フッ酸及び鉱酸を含有する混合酸性水を
電気式脱イオン水製造装置で処理する方法において、前
記混合酸性水に、フッ酸が解離するpH値までアルカリ
を添加して、その後、該処理を行うことを特徴とする純
水製造方法。
1. A method of treating a mixed acidic water containing hydrofluoric acid and a mineral acid with an electric deionized water producing apparatus, wherein an alkali is added to the mixed acidic water to a pH value at which hydrofluoric acid dissociates, Thereafter, the treatment is performed.
JP05895098A 1998-02-24 1998-02-24 Pure water production method Expired - Fee Related JP3555732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05895098A JP3555732B2 (en) 1998-02-24 1998-02-24 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05895098A JP3555732B2 (en) 1998-02-24 1998-02-24 Pure water production method

Publications (2)

Publication Number Publication Date
JPH11239792A true JPH11239792A (en) 1999-09-07
JP3555732B2 JP3555732B2 (en) 2004-08-18

Family

ID=13099119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05895098A Expired - Fee Related JP3555732B2 (en) 1998-02-24 1998-02-24 Pure water production method

Country Status (1)

Country Link
JP (1) JP3555732B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274019B1 (en) * 2000-03-08 2001-08-14 Organo Corporation Electrodeionization apparatus
JP2002119974A (en) * 2000-10-12 2002-04-23 Kurita Water Ind Ltd Pure water making method
JP2007296444A (en) * 2006-04-28 2007-11-15 Ebara Corp Method and system for treating waste water
JP2021079318A (en) * 2019-11-15 2021-05-27 伊勢化学工業株式会社 Method for producing iodine compound-containing aqueous solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798189B1 (en) * 2015-07-16 2017-11-16 동양하이테크산업주식회사 Ammonium hydroxide manufacturing systems of microcontact Scrubbing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274019B1 (en) * 2000-03-08 2001-08-14 Organo Corporation Electrodeionization apparatus
JP2002119974A (en) * 2000-10-12 2002-04-23 Kurita Water Ind Ltd Pure water making method
JP4631148B2 (en) * 2000-10-12 2011-02-16 栗田工業株式会社 Pure water production method
JP2007296444A (en) * 2006-04-28 2007-11-15 Ebara Corp Method and system for treating waste water
JP2021079318A (en) * 2019-11-15 2021-05-27 伊勢化学工業株式会社 Method for producing iodine compound-containing aqueous solution

Also Published As

Publication number Publication date
JP3555732B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
CN100415350C (en) Boron separation and recovery
JP4403621B2 (en) Electrodeionization equipment
JP3555732B2 (en) Pure water production method
JP2000051665A (en) Desalination method
JP2002143854A (en) Electrochemical water treating device
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP3484329B2 (en) Deionized water production equipment
JPH11188359A (en) Pure water producing apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2001129554A (en) Method and apparatus for making deionized water
JP4505965B2 (en) Pure water production method
JPH1080684A (en) Device and method for treating boron-containing water
JP2012183485A (en) Water treatment method and water treatment system
JP4599668B2 (en) Operation method of electrodeionization equipment
JP3501339B2 (en) Electric deionized water production equipment
JP3511459B2 (en) Electric deionized water production equipment
JP2003001258A (en) Electrolytic deionizing apparatus
JP3259557B2 (en) How to remove organic matter
JP3714076B2 (en) Fluorine-containing wastewater treatment apparatus and treatment method
JP3473472B2 (en) Treatment method for fluorine-containing water
JP4631148B2 (en) Pure water production method
JP3674475B2 (en) Pure water production method
JPH09262588A (en) Fluorine recovering method and treatment of waste water
JP3352731B2 (en) Pure water production method
JP2000000571A (en) Electric deionized water apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees