JPS6036090B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor

Info

Publication number
JPS6036090B2
JPS6036090B2 JP13456277A JP13456277A JPS6036090B2 JP S6036090 B2 JPS6036090 B2 JP S6036090B2 JP 13456277 A JP13456277 A JP 13456277A JP 13456277 A JP13456277 A JP 13456277A JP S6036090 B2 JPS6036090 B2 JP S6036090B2
Authority
JP
Japan
Prior art keywords
manufacturing
solid electrolytic
temperature
electrolytic capacitor
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13456277A
Other languages
Japanese (ja)
Other versions
JPS5468966A (en
Inventor
憲太郎 平田
盛児 望月
勝利 浦木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13456277A priority Critical patent/JPS6036090B2/en
Publication of JPS5468966A publication Critical patent/JPS5468966A/en
Publication of JPS6036090B2 publication Critical patent/JPS6036090B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は固体電解コンデンサの製造方法に関する、具体
的には硝酸マンガンを浸潰した素子を熱分解処理して半
導体層を完成させる際の熱分解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolytic capacitor, and specifically to a method for thermally decomposing an element soaked with manganese nitrate to complete a semiconductor layer.

固体電解コンデンサの製造過程では、アルミ、タンタル
、ニオブ、ジルコン、チタン等の弁作用を有する金属を
陽極体とし、これを適当な金属の導線の陽極IJ−ド‘
こ接合し、このリードを取付バーに接合することにより
多数の陽極体群をバーに担持させ、この状態で各陽極体
の陽極コードとの接合部に短絡障害を防止する保護塗装
を施こし、それから陽極体をエッチング等により拡面処
理し、次いで陽極酸化処理により陽極体に酸化層を形成
し、これに例えば硝酸マンガン液への浸債と熱分解処理
とによって二酸化マンガンの半導体層を形成し、それか
らカーボン懸濁液への浸債と熱処理によりこれにカーボ
ン層を形成し、次いでこれに銀等の陰極層を形成してコ
ンデンサ素子に仕上げ、この素子に陰極リードを半田付
けしてからモールド樹脂等の外装が施こされる。
In the manufacturing process of solid electrolytic capacitors, a metal with a valve action such as aluminum, tantalum, niobium, zircon, or titanium is used as an anode body, and this is connected to the anode IJ-domain of a suitable metal conductor.
By joining this lead to the mounting bar, a large number of anode bodies are supported on the bar, and in this state, a protective coating is applied to the joint of each anode body with the anode cord to prevent short circuit failure. Then, the surface of the anode body is expanded by etching, etc., and then an oxide layer is formed on the anode body by anodizing treatment, and a semiconductor layer of manganese dioxide is formed on this by, for example, soaking in a manganese nitrate solution and thermal decomposition treatment. Then, a carbon layer is formed on this by immersion in a carbon suspension and heat treatment, and then a cathode layer of silver or other material is formed on this to form a capacitor element.A cathode lead is soldered to this element, and then molded. An exterior coating such as resin is applied.

このような製造方法において、陽極体の表面酸化層に硝
酸マンガン液を浸潰して、これを熱分解するのに、1方
法として次の方法が提案されている。
In such a manufacturing method, the following method has been proposed as one method for impregnating the surface oxidized layer of the anode body with a manganese nitrate solution and thermally decomposing it.

即ち、硝酸マンガンを浸潰した段階のコンデンサ素子を
溶融金属俗、具体的には半田格に素子の底部(リードの
反対側)を浸潰させ(具体的には半田の表面張力により
単に接触する程度)、半田熱によって浸贋硝酸マンガン
を熱分解して二酸化マンガンの半導体層を形成させる。
この半導体形成は化成処理と称せられるが、この化成処
理は適当回数操返し施こされる。ところで、この熱分解
法によれば、コンデンサの漏れ電流が大きくなるという
欠点がある。本発明者は、この問題点を検討するために
熱分解時の素子の温度分布を経時的に調べてみた。
That is, the capacitor element, which has been immersed in manganese nitrate, is immersed in molten metal, specifically solder, at the bottom of the element (on the opposite side of the leads) (specifically, the capacitor element is simply brought into contact with the surface tension of the solder). degree), the impregnated manganese nitrate is thermally decomposed by soldering heat to form a semiconductor layer of manganese dioxide.
This semiconductor formation is called a chemical conversion treatment, and this chemical conversion treatment is repeated an appropriate number of times. However, this thermal decomposition method has the disadvantage that the leakage current of the capacitor increases. In order to study this problem, the present inventor investigated the temperature distribution of the element during thermal decomposition over time.

第1図は熱分解時の素子と半田俗との関係を示す説明図
であり、素子の底部c、中間部b、及び頂部aの夫々に
おける半田熱によって加熱された温度は、時間を経過と
共に第2図のグラフに示すように変化する。第1図にお
いて、1はリード、2は硝酸マンガンを含む陽極体酸化
層、3は半田俗を示している。グラフから明らかなよう
に、半田格に近い個所から遠去かるに従って加熱温度が
大きく低下している。
FIG. 1 is an explanatory diagram showing the relationship between the element and solder during thermal decomposition, and the temperature heated by soldering heat at each of the bottom part c, middle part b, and top part a of the element changes over time. It changes as shown in the graph of FIG. In FIG. 1, 1 is a lead, 2 is an anode oxide layer containing manganese nitrate, and 3 is a solder layer. As is clear from the graph, the heating temperature decreases significantly as the distance from the location near the soldering temperature increases.

従ってこのような上下温度差が素子の化成層(半導体層
)に機械的ストレスを与える結果、化成層が歪み、漏れ
電流が大きくなると判断された。そこで、本発明者は上
記認識の下に上下温度差を減少させる対策を試み、結果
として漏れ電流が小さく抑えられる有効な本発明の熱分
解法を完成するに至った。
Therefore, it was determined that such a temperature difference between the upper and lower sides applies mechanical stress to the chemical layer (semiconductor layer) of the element, resulting in distortion of the chemical layer and an increase in leakage current. Therefore, with the above recognition in mind, the present inventor attempted measures to reduce the temperature difference between the upper and lower sides, and as a result, completed the effective thermal decomposition method of the present invention in which the leakage current can be suppressed to a small level.

第3図は、本発明者の試みた対策とその結果の漏れ電流
との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the countermeasures attempted by the inventor and the resulting leakage current.

この場合、第1図に示す熱分解工程において、半田裕全
体を炉内に配置し、半田格の周囲の温度を室温から半田
格温度(約400oo)を越える高温度に至るまで変化
させ、その間の各温度における雰囲気下で半田浴に各素
子を接触させた。
In this case, in the pyrolysis step shown in Figure 1, the entire solder is placed in a furnace, and the temperature around the solder is changed from room temperature to a high temperature exceeding the solder's temperature (approximately 400 oo). Each element was brought into contact with a solder bath under an atmosphere at each temperature.

各雰囲気温度におけるサンプルについて漏れ電流を測定
した結果、第2図に示す曲線特性が明らかになった。こ
のグラフから明らかなように半田浴温度の近い雰囲気温
度200qo〜500こCにあるときに漏れ電流が最小
になることが確認された。この最小値程度の漏れ電流で
あれば、実用上充分許容される。従って、雰囲気は半田
格と同じ程度の温度にするのが一番有効であることは明
白である。上記実験例では硝酸マンガンの熱分解に関し
ているが、硝酸鉛等の熱分解に適用しても勿論有効であ
る。
As a result of measuring the leakage current of the samples at each ambient temperature, the curve characteristics shown in FIG. 2 were revealed. As is clear from this graph, it was confirmed that the leakage current is at its minimum when the ambient temperature is 200 to 500 degrees Celsius, which is close to the solder bath temperature. A leakage current of about this minimum value is sufficiently permissible in practice. Therefore, it is clear that it is most effective to keep the atmosphere at a temperature similar to that of the soldering temperature. Although the above experimental example relates to the thermal decomposition of manganese nitrate, it is of course also effective to apply to the thermal decomposition of lead nitrate, etc.

又加熱源は半田格に限らず、他の溶融金属格であっても
勿論よい。
Moreover, the heating source is not limited to solder, and may of course be other molten metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は室温雰囲気下の熱分解工程を示す説明図、第2
図は第1図に示す個所a,b,cにおける経時温度変化
を示すグラフ、第3図は第1図の工程を各種温度の雰囲
気下で行った場合の漏れ電流を示すグラフである。 図において、1はリード、2は素子、3は半田浴を示す
。 第1図 第2図 第3図
Figure 1 is an explanatory diagram showing the thermal decomposition process under room temperature atmosphere, Figure 2
The figure is a graph showing temperature changes over time at locations a, b, and c shown in FIG. 1, and FIG. 3 is a graph showing leakage current when the process shown in FIG. 1 is performed in atmospheres at various temperatures. In the figure, 1 is a lead, 2 is an element, and 3 is a solder bath. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 溶融金属浴に素子の底部を接触させて、熱分解する
ことにより半導体層を該素子に形成する工程を含む固体
電解コンデンサの製造方法において;当該熱分解を該溶
融金属浴の周囲温度を該溶融金属浴の温度に近い温度、
200℃〜500℃、の雰囲気にして行うことを特徴と
する固体電解コンデンサの製造方法。
1. A method for manufacturing a solid electrolytic capacitor comprising the step of bringing the bottom of the element into contact with a molten metal bath and forming a semiconductor layer on the element by thermal decomposition; temperature close to that of the molten metal bath,
A method for manufacturing a solid electrolytic capacitor, characterized in that the manufacturing method is carried out in an atmosphere of 200°C to 500°C.
JP13456277A 1977-11-11 1977-11-11 Manufacturing method of solid electrolytic capacitor Expired JPS6036090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13456277A JPS6036090B2 (en) 1977-11-11 1977-11-11 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13456277A JPS6036090B2 (en) 1977-11-11 1977-11-11 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS5468966A JPS5468966A (en) 1979-06-02
JPS6036090B2 true JPS6036090B2 (en) 1985-08-19

Family

ID=15131225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13456277A Expired JPS6036090B2 (en) 1977-11-11 1977-11-11 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6036090B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126264U (en) * 1986-01-31 1987-08-11
JPS62132756U (en) * 1986-02-17 1987-08-21
JPS62132757U (en) * 1986-02-17 1987-08-21
JPH04281869A (en) * 1991-03-08 1992-10-07 Iwatani Raifu Atsupu Kk Drying device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126264U (en) * 1986-01-31 1987-08-11
JPS62132756U (en) * 1986-02-17 1987-08-21
JPS62132757U (en) * 1986-02-17 1987-08-21
JPH04281869A (en) * 1991-03-08 1992-10-07 Iwatani Raifu Atsupu Kk Drying device

Also Published As

Publication number Publication date
JPS5468966A (en) 1979-06-02

Similar Documents

Publication Publication Date Title
JP3881480B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPS6036090B2 (en) Manufacturing method of solid electrolytic capacitor
US4042420A (en) Method of producing manganese oxide solid electrolyte capacitor
US3345543A (en) Solid electrolytic capacitor with anodized aluminum electrode and method of making
US4164455A (en) Process of forming a solid tantalum capacitor
US3123894A (en) Von bonin
JPS5858805B2 (en) Manufacturing method of solid electrolytic capacitor
JPH06132167A (en) Manufacture of solid electrolytic capacitor
US3496075A (en) Surface treatment for improved dry electrolytic capacitors
US3225417A (en) Ake lagercrantz
JPS6016093B2 (en) Manufacturing method of solid electrolytic capacitor
JP3158448B2 (en) Method for manufacturing solid electrolytic capacitor
JP3100411B2 (en) Method for manufacturing solid electrolytic capacitor
JPS5835913A (en) Method of producing solid electrolytic condenser
JPS63198315A (en) Manufacture of solid electrolytic capacitor
JPS5915373B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0750226A (en) Manufacture of solid electrolytic capacitor
JPH0374830A (en) Manufacture of solid electrolytic capacitor
JPS59219924A (en) Method of producing solid electrolytic condenser
GB2058735A (en) Solid electrolytic capacitors
JPS5934124Y2 (en) solid electrolytic capacitor
JPH06310382A (en) Manufacture of solid electrolytic capacitor
JPS6015141B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0515296B2 (en)
JPS596502B2 (en) Manufacturing method of solid electrolytic capacitor