JPS5915373B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor

Info

Publication number
JPS5915373B2
JPS5915373B2 JP7858478A JP7858478A JPS5915373B2 JP S5915373 B2 JPS5915373 B2 JP S5915373B2 JP 7858478 A JP7858478 A JP 7858478A JP 7858478 A JP7858478 A JP 7858478A JP S5915373 B2 JPS5915373 B2 JP S5915373B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
manufacturing
layer
tan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7858478A
Other languages
Japanese (ja)
Other versions
JPS558001A (en
Inventor
省三 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi Condenser Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Condenser Co Ltd filed Critical Hitachi Condenser Co Ltd
Priority to JP7858478A priority Critical patent/JPS5915373B2/en
Publication of JPS558001A publication Critical patent/JPS558001A/en
Publication of JPS5915373B2 publication Critical patent/JPS5915373B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は、固体電解コンデンサの製造方法に関し、特に
tanδ特性を改善しうる固体電解コンデンサの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolytic capacitor, and particularly to a method for manufacturing a solid electrolytic capacitor that can improve tan δ characteristics.

一般に固体電解コンデンサの発熱劣化等を減少させ信頼
性を向上させるだめに、そのtanδの改善が要求され
ている。
In general, in order to reduce thermal deterioration of solid electrolytic capacitors and improve their reliability, it is required to improve the tan δ.

固体電解コンデンサ例えばタンタル固体電解コンデンサ
のtanδの主要因は、タンタルの陽極酸化皮膜層、二
酸化マンガン層、カーボン層及び金属層の各抵抗並びに
各層間の接触抵抗であり、そのうち二酸化マンガン層と
カーボン層との間の接触抵抗が大きな割合を占めている
The main factors for the tan δ of a solid electrolytic capacitor, such as a tantalum solid electrolytic capacitor, are the resistances of the tantalum anodic oxide film layer, manganese dioxide layer, carbon layer, and metal layer, as well as the contact resistance between each layer. The contact resistance between the

二酸化マンガン層とカーボン層との間の接触抵抗が大き
くなる原因は、二酸化マンガン層が多孔性で極めて疎で
カーボン層との接触が不十分となるだめと考えられる。
It is thought that the reason why the contact resistance between the manganese dioxide layer and the carbon layer increases is that the manganese dioxide layer is porous and extremely sparse, resulting in insufficient contact with the carbon layer.

それ故、tanδを改善するには、二酸化マンガン層と
カーボン層との接触を改良する必要がある。
Therefore, to improve tan δ, it is necessary to improve the contact between the manganese dioxide layer and the carbon layer.

本発明は、以上の点に鑑み、tanδを改善できる固体
電解コンデンサの製造方法を提供することを目的とする
In view of the above points, it is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor that can improve tan δ.

そのために、本発明の要旨は、弁作用を有する金属の表
面に陽極酸化皮膜を生成させ、該陽極酸化皮膜上に半導
体層、カーボン層及び金属層を順次形成キする固体電解
コンデンサの製造方法において、半導体層形成後、硝酸
溶液に浸漬し、さらに高温雰囲気中に保持する工程を行
なうことを特徴とする固体電解コンデンサの製造方法に
ある。
To this end, the gist of the present invention is to provide a method for manufacturing a solid electrolytic capacitor in which an anodic oxide film is formed on the surface of a metal having a valve action, and a semiconductor layer, a carbon layer, and a metal layer are sequentially formed on the anodic oxide film. , a method for producing a solid electrolytic capacitor, which comprises the steps of immersing the capacitor in a nitric acid solution and holding the capacitor in a high-temperature atmosphere after forming the semiconductor layer.

以下本発明の実施例について述べる。Examples of the present invention will be described below.

先ず、タンタル焼結体のタンタル表面に酸化皮膜を生成
させ、さらに硝酸マンガンの含浸そして焼成の工程を繰
り返し行ない、二酸化マンガン層を形成させる。
First, an oxide film is formed on the tantalum surface of the tantalum sintered body, and the steps of impregnation with manganese nitrate and firing are repeated to form a manganese dioxide layer.

次に、この二酸化マンガン層の形成されたタンタル焼結
体を温度20℃、濃度3係の硝酸溶液に3分間浸漬する
Next, the tantalum sintered body with the manganese dioxide layer formed thereon is immersed for 3 minutes in a nitric acid solution with a concentration of 3 at a temperature of 20°C.

そして浸漬後、200°Cの電気炉中あるいはガス炉中
に3分間保持し、熱処理を行なう。
After immersion, it is kept in an electric furnace or gas furnace at 200°C for 3 minutes to perform heat treatment.

熱処理を行なった後は、必要ならば再化成を行ない、次
いで通常の条件によりカーボン層及び銀ヘースト層を形
成し、半田により陰極リード線を接続して樹脂コーティ
ングを施す。
After the heat treatment, reconversion is performed if necessary, and then a carbon layer and a silver hash layer are formed under normal conditions, a cathode lead wire is connected with solder, and a resin coating is applied.

表1には、従来の製造方法によるものと上記実施例によ
るものとのtanδが示されている。
Table 1 shows the tan δ of the conventional manufacturing method and that of the above example.

すなわち、本発明によればtanδば、35v■μFの
もので60係そして3.15V100μFの場合には約
37係減少し、tanδが大幅に改善される。
That is, according to the present invention, tan δ is reduced by a factor of 60 in the case of 35 VμF and by about 37 in the case of 3.15 V and 100 μF, resulting in a significant improvement in tan δ.

tanδが改善される理由は、二酸化マンガン層表面が
変質してカーボン層 との接触抵抗が減少するためと思われる。
The reason for the improvement in tan δ is considered to be that the surface of the manganese dioxide layer is altered and the contact resistance with the carbon layer is reduced.

すなわち、従来の方法によるものは二酸化マンガン層表
面が茶黒色であるが、本発明による処理を施したものは
その表面が灰黒色となり変質している。
That is, the surface of the manganese dioxide layer obtained by the conventional method is brownish-black, but the surface of the manganese dioxide layer treated according to the present invention becomes grayish-black and is altered in quality.

そしてこの変質が接触抵抗を低下させ、この接触抵抗の
占める割合の大きいtanδが減少する。
This alteration lowers the contact resistance, and tan δ, which accounts for a large proportion of the contact resistance, decreases.

なお、表2の結果からも明らかな通り、浸漬後に保持す
る雰囲気の温度は100°C以上であれば、tanδは
ほとんど変らない。
As is clear from the results in Table 2, tan δ hardly changes as long as the temperature of the atmosphere maintained after immersion is 100° C. or higher.

これは、温度20°C1濃度10チの硝酸溶液に3分間
浸漬後、各温度の雰囲気中に3分間保持し、通常の方法
で 3.15V100μFのタンタル固体電解コンデンサと
したものである。
This is a tantalum solid electrolytic capacitor of 3.15 V and 100 μF by immersing it in a nitric acid solution at a temperature of 20° C. and a concentration of 10 μF for 3 minutes, holding it in an atmosphere at each temperature for 3 minutes, and using the usual method.

tanδは、100℃以上の場合には3.1〜3.2係
とほぼ一定であるが、50°Cでは3.5係となり前者
の場合に比べ約10係大きく、雰囲気の温度が100℃
以上である方がより効果的である。
Tan δ is almost constant at 3.1 to 3.2 factors when the temperature is 100°C or higher, but at 50°C it is 3.5 factors, which is about 10 factors larger than the former case, and when the temperature of the atmosphere is 100°C
It is more effective if it is more than that.

また、濃度10俸の硝酸溶液に3分間浸漬する際その液
温を20°C150℃及び100℃とし、各々100℃
の雰囲気中に3分間保持して3.15V100μFのも
のとし、tanδを測定したところ表3のような結果 が得られた。
In addition, when immersed in a nitric acid solution with a concentration of 10 g for 3 minutes, the liquid temperature was set to 20°C, 150°C, and 100°C, respectively.
The sample was held in an atmosphere of 3.15 V and 100 μF for 3 minutes, and the tan δ was measured, and the results shown in Table 3 were obtained.

これから硝酸溶液の温度によらずtanδはほぼ一定で
あることがわかる。
It can be seen from this that tan δ is almost constant regardless of the temperature of the nitric acid solution.

従って、硝酸溶液を煮沸することなく処理できるので、
製造が容易になる等の利点がある。
Therefore, the nitric acid solution can be processed without boiling it.
There are advantages such as ease of manufacturing.

すなわち、二酸化マンガン層形成後のタンタル焼結体を
硝酸溶液に浸漬する場合、焼結体を支柱(通常はステン
レスのバーを用いる)に溶接したまま浸漬するので、溶
液が煮沸しているとその飛沫により支柱が汚損されたり
あるいは溶液の濃度変化が大きくなり管理しにくくなる
等、製造が困難になるが、液温を常温に保てば製造を容
易にできる。
In other words, when a tantalum sintered body is immersed in a nitric acid solution after a manganese dioxide layer has been formed, the sintered body is immersed while welded to a support (usually a stainless steel bar), so if the solution is boiling, the Production becomes difficult, as the supports are contaminated by droplets or the concentration of the solution changes greatly, making it difficult to manage, but production can be facilitated by keeping the liquid temperature at room temperature.

以上の通り本発明によれば、主に半導体層とカーボン層
との間の接触抵抗を減少でき、全体としてtanδ特性
を改善できる。
As described above, according to the present invention, the contact resistance between the semiconductor layer and the carbon layer can be mainly reduced, and the tan δ characteristics can be improved as a whole.

Claims (1)

【特許請求の範囲】 1 弁作用を有する金属の表面に陽極酸化皮膜を生成さ
せ、該陽極酸化皮膜上に半導体層、カーボン層及び金属
層を順次形成させる固体電解コンデンサの製造方法にお
いて、半導体層形成後、硝酸溶液に浸漬し、さらに高温
雰囲気中に保持する工程を行なうことを特徴とする固体
電解コンデンサの製造方法。 2 雰囲気の温度が100°C以上である特許請求の範
囲第1項記載の固体電解コンデンサの製造方法。
[Scope of Claims] 1. A method for manufacturing a solid electrolytic capacitor in which an anodic oxide film is formed on the surface of a metal having a valve action, and a semiconductor layer, a carbon layer, and a metal layer are sequentially formed on the anodic oxide film. A method for manufacturing a solid electrolytic capacitor, which comprises, after formation, immersing it in a nitric acid solution and further holding it in a high-temperature atmosphere. 2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the temperature of the atmosphere is 100°C or higher.
JP7858478A 1978-06-30 1978-06-30 Manufacturing method of solid electrolytic capacitor Expired JPS5915373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7858478A JPS5915373B2 (en) 1978-06-30 1978-06-30 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7858478A JPS5915373B2 (en) 1978-06-30 1978-06-30 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS558001A JPS558001A (en) 1980-01-21
JPS5915373B2 true JPS5915373B2 (en) 1984-04-09

Family

ID=13665950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7858478A Expired JPS5915373B2 (en) 1978-06-30 1978-06-30 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS5915373B2 (en)

Also Published As

Publication number Publication date
JPS558001A (en) 1980-01-21

Similar Documents

Publication Publication Date Title
CN100472680C (en) Method for preparing solid electrolytic capacitor cathode
US4042420A (en) Method of producing manganese oxide solid electrolyte capacitor
US4164455A (en) Process of forming a solid tantalum capacitor
US6214271B1 (en) Thermal treatment process for valve metal nitride electrolytic capacitors having manganese oxide cathodes
JPS5915373B2 (en) Manufacturing method of solid electrolytic capacitor
JPS5858805B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0239417A (en) Manufacture of electrolytic capacitor
US3935516A (en) Capacitor with glass metal conductive layer
JPH0722078B2 (en) Manufacturing method of solid electrolytic capacitor
JP2847087B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JPH06132167A (en) Manufacture of solid electrolytic capacitor
JP3158448B2 (en) Method for manufacturing solid electrolytic capacitor
JP3074742B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0638385B2 (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP3100411B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6036090B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JPH04119615A (en) Manufacture of solid electrolytic capacitor
JP2000252169A (en) Manufacture of solid electrolytic capacitor
JP3315714B2 (en) Method for manufacturing solid electrolytic capacitor
JP2534574B2 (en) Method for manufacturing solid electrolytic capacitor
JPS59124119A (en) Method of producing solid electrolytic condenser
JP3150464B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6015141B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0719734B2 (en) Method for manufacturing solid electrolytic capacitor