JPH04119615A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH04119615A
JPH04119615A JP24080990A JP24080990A JPH04119615A JP H04119615 A JPH04119615 A JP H04119615A JP 24080990 A JP24080990 A JP 24080990A JP 24080990 A JP24080990 A JP 24080990A JP H04119615 A JPH04119615 A JP H04119615A
Authority
JP
Japan
Prior art keywords
thermal decomposition
manganese nitrate
anode body
porous anode
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24080990A
Other languages
Japanese (ja)
Inventor
Sumio Nishiyama
西山 澄夫
Yasuhiro Kobashi
小橋 康博
Takao Kajikawa
梶川 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24080990A priority Critical patent/JPH04119615A/en
Publication of JPH04119615A publication Critical patent/JPH04119615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To reduce rejection ratio of capacitors, and to contrive improvement in reliability by a method wherein a manganese nitrate solution is impregnated into a porous anode member, and a heat treatment process to be conducted in a high temperature and high humidity atmosphere and a heat decomposition treatment, to be performed in the atmospheric air, are provided. CONSTITUTION:A porous anode body 12, consisting of a tantalum of 96mg in weight having a buried lead wire 11 consisting of valve-action metal, is chemically formed at 24V, and a dielectric oxide film is formed on the surface of the anode body 12. Subsequently, a manganese nitrate solution of 1.35 in specific gravity is impregnated, and a thermal decomposition operation is conducted at 250 deg.C for 10 minutes using a hot-air circulation thermal decomposition device. Besides, a manganese nitrate of 1.93 in specific gravity is impregnated, and after a heat treatment has been conducted in the atmosphere of the temperature of 140 deg.C and the humidity of 50%, a thermal decomposition operation is conducted at 250 deg.C for 10 minutes using a hot-air circulation thermal decomposition device, and a manganese dioxide layer 13 is formed. As a result, a highly reliable solid electrolytic capacitor, having a low reject percentage in manufacturing process, can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体電解コンデンサの製造方法に関するもので
、特に電解コンデンサの不良率の低減、電気特性の向上
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing solid electrolytic capacitors, and in particular to reducing the defective rate and improving the electrical characteristics of electrolytic capacitors.

従来の技術 一般に固体電解コンデンサは、タンタル、アルミニウム
、ニオブ、チタン等の弁作用金属よりなる多孔性陽極体
に陽極酸化により陽極酸化皮膜を形成し、そしてこの陽
極酸化皮膜上に二酸化マンガン層よりなる半導体層を形
成するようにしている。また二酸化マンガン層よりなる
半導体層を形成する工程は、通常、陽極酸化皮膜を形成
した多孔性陽極体に硝酸マンガン溶液を含浸させ、かつ
焼成する工程を繰り返すことによって行われている。こ
の半導体層を構成する二酸化マンガン層の形成に関して
は、従来より種々の工夫がなされており、例えば先に形
成した陽極酸化皮膜をできるだけ損傷しないように、熱
分解条件を緩和する効果をもたらす物質を予め硝酸マン
ガン溶液に加えたり、あるいは形成された二酸化マンガ
ンの改質を図るために、同じく硝酸マンガンに添加物を
施す等、多くの試みがなされている。また硝酸マンガン
の熱分解方法についても多くの検討がなされ、例えば熱
分解の際の熱伝導について、空気の対流熱伝導を主体と
した熱風循環炉を用い、その風量、温度を変化させたり
、あるいは熱分解の雰囲気の湿度を変化させる等、多く
の試みがなされている。
Conventional technology In general, solid electrolytic capacitors are made by forming an anodized film by anodizing on a porous anode body made of a valve metal such as tantalum, aluminum, niobium, titanium, etc., and then forming a manganese dioxide layer on this anodic oxide film. A semiconductor layer is formed. Further, the step of forming a semiconductor layer consisting of a manganese dioxide layer is usually carried out by repeating the steps of impregnating a porous anode body on which an anodic oxide film is formed with a manganese nitrate solution and firing the same. Various efforts have been made to form the manganese dioxide layer that constitutes this semiconductor layer. For example, in order to minimize damage to the previously formed anodic oxide film, substances that have the effect of relaxing thermal decomposition conditions have been used. Many attempts have been made to add additives to manganese nitrate in advance or to modify the formed manganese dioxide. Many studies have also been conducted on methods for thermally decomposing manganese nitrate.For example, regarding heat conduction during thermal decomposition, methods such as using a hot air circulation furnace that mainly uses air convection heat conduction and changing the air volume and temperature, or Many attempts have been made, such as changing the humidity of the pyrolysis atmosphere.

発明が解決しようとする課題 しかしながら、このような従来の固体電解コンデンサの
製造における二酸化マンガン層の形成方法には改良すべ
き問題点を有するものである。すなわち、陽極酸化皮膜
上の二酸化マンガン層は陽極酸化皮膜の修復能力と耐外
部ストレス性を有することが必要であるため、酸化度、
すなわちM nOXのX値が大きく、かつ均質でピンホ
ールの無い適当なバッファー性を有する二酸化マンガン
層を形成する必要があるが、従来は陽極酸化皮膜を有す
る多孔性陽極体に硝酸マンガン溶液を含浸させ、かっ温
度が200℃〜350℃の大気雰囲気中で熱分解する工
程を数回〜士数回繰り返すことによって二酸化マンガン
層を形成するようにしていた。これは、多孔性陽極体に
含浸された硝酸マンガン溶液が加熱されて熱分解反応か
起こる際に、多量のH2O,No、等のガスが発生し、
これにより、多孔性陽極体の表面に析出する二酸化マン
ガンの付着状態1表面状態、密度等にばらつきか生じ、
したがって、少ない回数ではピンホールの無い所望の厚
さを有する二酸化マンガン層が得られないからである。
Problems to be Solved by the Invention However, the conventional method for forming a manganese dioxide layer in manufacturing solid electrolytic capacitors has problems that need to be improved. In other words, the manganese dioxide layer on the anodic oxide film needs to have the ability to repair the anodic oxide film and resist external stress, so the degree of oxidation,
In other words, it is necessary to form a manganese dioxide layer that has a large X value of MnOX, is homogeneous, has no pinholes, and has an appropriate buffering property. Conventionally, a porous anode body with an anodized film is impregnated with a manganese nitrate solution. The manganese dioxide layer was formed by repeating the process of pyrolysis in an air atmosphere at a temperature of 200° C. to 350° C. several times to several times. This is because when the manganese nitrate solution impregnated into the porous anode body is heated and a thermal decomposition reaction occurs, a large amount of gas such as H2O, No, etc. is generated.
As a result, variations in the adhesion state, density, etc. of manganese dioxide deposited on the surface of the porous anode body occur.
Therefore, if the number of times is too small, a manganese dioxide layer having a desired thickness without pinholes cannot be obtained.

また、熱分解に際しては通常、第2図に示すように多孔
性陽極体1のリード線2を埋設した面を上方にして行う
が、陽極酸化皮膜は基本的に揮発性を有することも影響
し、そのため、多孔性陽極体1のリード線2の埋設面7
およびその周辺のエツジ部には所望の二酸化マンガン層
3を形成することが困難であり、これがコンデンサの不
良率、信頼性に多大な影響を及ぼしているものであった
Furthermore, as shown in Figure 2, thermal decomposition is usually carried out with the surface of the porous anode body 1 where the lead wires 2 are buried facing upward; however, the fact that the anodic oxide film is basically volatile may also affect the thermal decomposition. , Therefore, the buried surface 7 of the lead wire 2 of the porous anode body 1
It is difficult to form the desired manganese dioxide layer 3 on the edge portions and the surrounding edges, and this has a great effect on the defective rate and reliability of the capacitor.

本発明はこのような課題を解決するもので、多孔性陽極
体のリード埋設面も含め、ピンホールが無くかつ均質な
バッファー性を有する二酸化マンガン層を多孔性陽極体
の全表面に形成することかでき、これにより、コンデン
サの不良率を低減し、かつ信頼性にを向上させることが
できる固体電解コンデンサの製造方法を提供することを
目的とするものである。
The present invention solves these problems by forming a manganese dioxide layer on the entire surface of the porous anode body, including the lead-embedding surface of the porous anode body, which is free from pinholes and has a homogeneous buffering property. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor, which can reduce the defective rate of capacitors and improve reliability.

課題を解決するための手段 上記目的を達成するために本発明の固体電解コンデンサ
の製造方法は、弁作用金属よりなるリード線を埋設し、
かつ陽極酸化皮膜を形成した多孔性陽極体の表面に二酸
化マンガン層を形成する際において、前記多孔性陽極体
に硝酸マンガン溶液を含浸させるとともに、この硝酸マ
ンガンが熱分解反応を起こさない条件下の高温高湿度雰
囲気中で熱処理する工程と、引き続き熱分解反応を起こ
させる大気雰囲気中で熱分解させる工程とを備えたもの
である。
Means for Solving the Problems In order to achieve the above object, the method for manufacturing a solid electrolytic capacitor of the present invention includes embedding a lead wire made of a valve metal,
When forming a manganese dioxide layer on the surface of the porous anode body on which the anodized film has been formed, the porous anode body is impregnated with a manganese nitrate solution, and the manganese nitrate is heated under conditions that do not cause a thermal decomposition reaction. This process includes a step of heat treatment in a high temperature and high humidity atmosphere, and a subsequent step of thermal decomposition in an atmospheric atmosphere to cause a thermal decomposition reaction.

作用 上記製造方法によれば、陽極酸化皮膜を形成した多孔性
陽極体の表面に二酸化マンガン層を形成する際において
、前記多孔性陽極体に硝酸マンガン溶液を含浸させると
ともに、この硝酸マンガンか熱分解反応を起こさない条
件下の高温高湿度雰囲気中で熱処理する工程を備えてい
るため、含浸された硝酸マンガン溶液は一時的に粘度が
低下し、多孔性陽極体の微細部まで浸透するとともに、
硝酸マンガン溶液中のH:O、過剰に存在するNOl等
が緩やかに除去され、最終的に多孔性陽極体の全表面に
無水硝酸マンガンに近い高粘度の硝酸マンガンを均一に
付着させることができ、しかも引き続き熱分解反応を起
こさせる大気雰囲気中で熱分解させる工程を備えている
ため、多孔性陽極体の全表面に形成される二酸化マンガ
ンは酸化度が高く、かつ表面状態もピンホールか無く、
しかも近質なバッファー性を有する二酸化マンガン層を
得ることができるものである。
According to the above manufacturing method, when forming a manganese dioxide layer on the surface of a porous anode body on which an anodic oxide film has been formed, the porous anode body is impregnated with a manganese nitrate solution, and the manganese nitrate is thermally decomposed. Because it includes a process of heat treatment in a high-temperature, high-humidity atmosphere under conditions that do not cause reactions, the viscosity of the impregnated manganese nitrate solution temporarily decreases, allowing it to penetrate into the microscopic parts of the porous anode body.
H:O, excessive NOl, etc. in the manganese nitrate solution are slowly removed, and finally manganese nitrate with a high viscosity similar to anhydrous manganese nitrate can be uniformly adhered to the entire surface of the porous anode body. Moreover, since it includes a process of thermal decomposition in an atmospheric atmosphere that causes a subsequent thermal decomposition reaction, the manganese dioxide formed on the entire surface of the porous anode has a high degree of oxidation, and the surface condition is free from pinholes. ,
Moreover, it is possible to obtain a manganese dioxide layer having close buffering properties.

なお、本発明に用いる硝酸マンガン溶液は、多孔性陽極
体の全表面に形成される二酸化マンガンの改質を図るた
めに各種添加物を加えたり、あるいは熱分解回数を低減
させるために硝酸マンガン溶液に増粘剤や二酸化マンガ
ンの粉末等を加えても全く差し支えないものである。
The manganese nitrate solution used in the present invention may contain various additives in order to modify the manganese dioxide formed on the entire surface of the porous anode body, or may contain manganese nitrate solution in order to reduce the number of times of thermal decomposition. There is no problem in adding a thickener, manganese dioxide powder, etc.

実施例 以下、本発明の実施例について、第1図とともに、さら
に詳しく説明する。
EXAMPLES Hereinafter, examples of the present invention will be described in more detail with reference to FIG.

(実施例1) 弁作用金属よりなるリード線11を埋設した重量96■
のタンタルよりなる多孔性陽極体12を24Vで化成し
、その表面に誘電体酸化皮膜を形成した。その後、比重
1.35(50℃)の硝酸マンガン溶液を含浸させると
ともに、熱風循環式熱分解装置を用いて、温度250℃
9時間10分の熱分解を行った。この場合、この含浸−
熱分解の操作を適宜修復化成を組み合わせながら5回繰
り返して行った。さらに比重1.93(50℃)の硝酸
マンガン溶液を含浸させ、次に温度140℃、湿度50
%(VOL%)の雰囲気中で時間10分の熱処理を施し
た後、熱風循環式熱分解装置を用いて温度250℃9時
間10分で熱分解を行って二酸化マンガン層13を形成
した。この場合、比重1.93の硝酸マンガン溶液の含
浸−熱分解の操作を修復化成を組み合わせながら3回繰
り返して行った。なお、比較サンプル(従来品)は、硝
酸マンガン溶液を含浸させた後、高温高湿度雰囲気中で
熱処理しない他は全く同様の条件で熱分解を行って二酸
化マンガン層を形成した。
(Example 1) Weight 96cm with embedded lead wire 11 made of valve metal
A porous anode body 12 made of tantalum was anodized at 24 V to form a dielectric oxide film on its surface. After that, it was impregnated with a manganese nitrate solution with a specific gravity of 1.35 (50°C), and was heated to a temperature of 250°C using a hot air circulation type pyrolysis device.
Pyrolysis was carried out for 9 hours and 10 minutes. In this case, this impregnation -
The thermal decomposition operation was repeated five times while appropriately combining repair chemical conversion. Furthermore, it was impregnated with a manganese nitrate solution with a specific gravity of 1.93 (50℃), and then the temperature was 140℃ and the humidity was 50℃.
% (VOL%) atmosphere for 10 minutes, thermal decomposition was performed at a temperature of 250° C. for 9 hours and 10 minutes using a hot air circulation type thermal decomposition apparatus to form a manganese dioxide layer 13. In this case, the operation of impregnation with a manganese nitrate solution having a specific gravity of 1.93 and thermal decomposition was repeated three times while combining repair chemical conversion. The comparative sample (conventional product) was impregnated with a manganese nitrate solution and then thermally decomposed under the same conditions except that no heat treatment was performed in a high-temperature, high-humidity atmosphere to form a manganese dioxide layer.

次に、カーボン層、銀層、半田層およびリードを作成し
、そして樹脂外装を施して固体電解コンデンサを作成し
、それらのコンデンサの特性、不良率、信頼性を比較し
た。その結果は第1表に示す通りである。
Next, a carbon layer, a silver layer, a solder layer, and a lead were created, and a resin exterior was applied to create a solid electrolytic capacitor, and the characteristics, failure rate, and reliability of these capacitors were compared. The results are shown in Table 1.

(以  下  余  白) (実施例2) 弁作用金属よりなるリード線11を埋設した重量96■
のタンタルよりなる多孔性陽極体12を24Vで化成し
、その表面に誘電体酸化皮膜を形成した。その後、比重
1.35(50℃)の硝酸マンガン溶液を含浸させると
ともに、熱風循環式熱分解装置を用いて、温度250℃
1時間10分の熱分解を行った。この場合、この含浸−
熱分解の操作を適宜修復化成を組み合わせながら5回繰
り返して行った。さらに比重1.93の硝酸マンガン溶
液100mj!に3mlのアンモニア水溶液を添加して
、組成がMa(N03)=  Mn(OH)2N H<
 N O3H20のスラリー状となる溶液を含浸させ、
次に温度120℃、湿度25%(VOL%)の雰囲気中
で時間14分の熱処理を施した後、熱風循環式熱分解装
置を用いて温度250℃1時間10分で熱分解を行って
二酸化マンガン層13を形成した。この場合、この含浸
−熱分解の操作を修復化成を組み合わせながら2回繰り
返して行った。
(Left below) (Example 2) Weight 96cm with embedded lead wire 11 made of valve metal
A porous anode body 12 made of tantalum was anodized at 24 V to form a dielectric oxide film on its surface. After that, it was impregnated with a manganese nitrate solution with a specific gravity of 1.35 (50°C), and was heated to a temperature of 250°C using a hot air circulation type pyrolysis device.
Thermal decomposition was carried out for 1 hour and 10 minutes. In this case, this impregnation -
The thermal decomposition operation was repeated five times while appropriately combining repair chemical conversion. In addition, 100 mj of manganese nitrate solution with a specific gravity of 1.93! By adding 3 ml of ammonia aqueous solution to the solution, the composition becomes Ma(N03)=Mn(OH)2N H<
Impregnation with a slurry solution of N O3H20,
Next, heat treatment was performed for 14 minutes in an atmosphere with a temperature of 120°C and a humidity of 25% (VOL%), and then thermal decomposition was performed at a temperature of 250°C for 1 hour and 10 minutes using a hot air circulation type pyrolysis device to produce carbon dioxide. A manganese layer 13 was formed. In this case, this impregnation-pyrolysis operation was repeated twice while combining repair chemical conversion.

以下、(実施例1)と全く同様にして固体電解コンデン
サを作成し、それらのコンデンサの特性、不良率、信頼
性を比較した。その結果は第2表に示す通りである。
Hereinafter, solid electrolytic capacitors were produced in exactly the same manner as in Example 1, and the characteristics, defective rate, and reliability of these capacitors were compared. The results are shown in Table 2.

(以  下  余  白) (実施例3) 弁作用金属よりなるリード線11を埋設した重量96■
のタンタルよりなる多孔性陽極体12を24Vで化成し
、その表面に誘電体酸化皮膜を形成した。その後、比重
1.35(50℃)の硝酸マンガンを含浸させるととも
に、熱風循環式熱分解装置を用いて、温度250℃1時
間10分の熱分解を行った。この場合、この含浸−熱分
解の操作を適宜修復化成を組み合わせながら5回繰り返
して行った。さらに比重1.93の硝酸マンガン溶液に
M。02の粉末を40重量%加えた混合物に浸漬した多
孔性陽極体12を温度160℃9湿度50%(VOL)
の雰囲気中で時間3分の熱処理を施した後、熱風循環式
熱分解装置を用いて温度250℃9時間10分で熱分解
を行って二酸化マンガン層13を形成した。この場合、
浸漬−熱分解の操作を修復化成を組み合わせながら2回
繰り返して行った。
(Left below) (Example 3) Weight 96cm with embedded lead wire 11 made of valve metal
A porous anode body 12 made of tantalum was anodized at 24 V to form a dielectric oxide film on its surface. Thereafter, it was impregnated with manganese nitrate having a specific gravity of 1.35 (50°C), and thermally decomposed at a temperature of 250°C for 1 hour and 10 minutes using a hot air circulation type thermal decomposition apparatus. In this case, this impregnation-pyrolysis operation was repeated five times while appropriately combining repair chemical conversion. Furthermore, M was added to a manganese nitrate solution with a specific gravity of 1.93. The porous anode body 12 was immersed in a mixture containing 40% by weight of powder No. 02 at a temperature of 160°C and a humidity of 50% (VOL).
After heat treatment was performed for 3 minutes in the atmosphere, thermal decomposition was performed at a temperature of 250° C. for 9 hours and 10 minutes using a hot air circulation type thermal decomposition apparatus to form a manganese dioxide layer 13. in this case,
The immersion-pyrolysis operation was repeated twice in combination with restorative chemical conversion.

以下、(実施例1)と全く同様にして固体電解コンデン
サを作成し、それらのコンデンサの特性 不良率。
Hereinafter, solid electrolytic capacitors were created in exactly the same manner as in (Example 1), and the characteristic failure rates of these capacitors were measured.

信頼性を比較した。Reliability was compared.

その結果は第3 表に示す通りである。The result is the third As shown in the table.

(以 下 余 白) 発明の効果 上記実施例の説明から明らかなように、本発明の固体電
解コンデンサの製造方法によれば、陽極酸化皮膜を形成
した多孔性陽極体の表面に二酸化マンガン層を形成する
際において、前記多孔性陽極体に硝酸マンガン溶液を含
浸させるとともに、この硝酸マンガンが熱分解反応を起
こさない条件下の高温高湿度雰囲気中で熱処理を行い、
脱水、濃縮した後、引き続き熱分解反応を起こさせる大
気雰囲気中で熱分解させる工程を備えているため、酸化
度が高く、修復能力もすぐれ、しかも電導度の高いβ二
酸化マンガンを多孔性陽極体の全表面に均一に付着させ
ることができ、その結果、製造工程での不良率が低く、
特性、信頼性にすぐれた固体電解コンデンサを得ること
ができるものである。
(The following is a blank space) Effects of the Invention As is clear from the description of the above embodiments, according to the method for manufacturing a solid electrolytic capacitor of the present invention, a manganese dioxide layer is formed on the surface of a porous anode body on which an anodic oxide film is formed. In this case, the porous anode body is impregnated with a manganese nitrate solution, and the manganese nitrate is heat-treated in a high-temperature, high-humidity atmosphere under conditions that do not cause a thermal decomposition reaction.
After being dehydrated and concentrated, it is thermally decomposed in the atmosphere to cause a thermal decomposition reaction, so β-manganese dioxide, which has a high degree of oxidation and excellent repair ability, and has high conductivity, is used as a porous anode. As a result, the defect rate during the manufacturing process is low.
A solid electrolytic capacitor with excellent characteristics and reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は誘電体酸化皮膜を有する多孔性陽極体に硝酸マ
ンガン溶液を含浸させ、本発明の固体電解コンデンサの
製造方法により熱分解を1回行った際に形成される二酸
化マンガンの付着状態をガす斜視図、第2図は同様に多
孔性陽極体に硝酸1ンガン溶液を含浸させ、従来の固体
電解コンデンサの製造方法により熱分解を1回行った際
に形部される二酸化マンガンの付着状態を示す斜視図で
ある。 11・・・・・・リード線、12・・・・・・多孔性陽
極体、13・・・・・・二酸化マンガン層。 代理人の氏名 弁理士小蝦治明 ほか2名に 第 図 二級イしマンカ゛ン層
Figure 1 shows the state of adhesion of manganese dioxide formed when a porous anode body having a dielectric oxide film is impregnated with a manganese nitrate solution and thermally decomposed once according to the manufacturing method of a solid electrolytic capacitor of the present invention. The gas perspective view and Figure 2 show the adhesion of manganese dioxide formed when a porous anode body is similarly impregnated with a solution of 1 nitric acid and thermally decomposed once using the conventional manufacturing method for solid electrolytic capacitors. It is a perspective view showing a state. 11... Lead wire, 12... Porous anode body, 13... Manganese dioxide layer. Name of agent: Patent attorney Haruaki Koebi and two others, who are in the second grade of Figure 2 and are in the Manganese class

Claims (3)

【特許請求の範囲】[Claims] (1)弁作用金属よりなるリード線を埋設し、かつ陽極
酸化皮膜を形成した多孔性陽極体の表面に二酸化マンガ
ン層を形成する際において、前記多孔性陽極体に硝酸マ
ンガン溶液を含浸させるとともに、この硝酸マンガンが
熱分解反応を起こさない条件下の高温高湿度雰囲気中で
熱処理する工程と、引き続き大気雰囲気中で熱分解させ
る工程とを備えたことを特徴とする固体電解コンデンサ
の製造方法。
(1) When forming a manganese dioxide layer on the surface of a porous anode body in which a lead wire made of a valve metal is embedded and an anodized film is formed, the porous anode body is impregnated with a manganese nitrate solution and A method for producing a solid electrolytic capacitor, comprising the steps of: heat-treating the manganese nitrate in a high-temperature, high-humidity atmosphere under conditions that do not cause a thermal decomposition reaction; and subsequently thermally decomposing the manganese nitrate in an air atmosphere.
(2)硝酸マンガン溶液Mn(NO_3)_2−M(O
H)_2−NH_4NO_3−H_2Oの組成を有する
ものである特許請求の範囲第1項記載の固体電解コンデ
ンサの製造方法。
(2) Manganese nitrate solution Mn(NO_3)_2-M(O
The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor has a composition of H)_2-NH_4NO_3-H_2O.
(3)硝酸マンガン溶液が二酸化マンガン粉末の混合物
よりなる特許請求の範囲第1項記載の固体電解コンデン
サの製造方法。
(3) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the manganese nitrate solution is a mixture of manganese dioxide powder.
JP24080990A 1990-09-10 1990-09-10 Manufacture of solid electrolytic capacitor Pending JPH04119615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24080990A JPH04119615A (en) 1990-09-10 1990-09-10 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24080990A JPH04119615A (en) 1990-09-10 1990-09-10 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH04119615A true JPH04119615A (en) 1992-04-21

Family

ID=17065008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24080990A Pending JPH04119615A (en) 1990-09-10 1990-09-10 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH04119615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002762A1 (en) * 1997-07-10 1999-01-21 De Nora S.P.A. Method for applying a coating to a metal substrate or repairing a coating applied to the same
US7198446B2 (en) 2001-09-28 2007-04-03 Max Kabushiki Kaisha Connected fastener having separation facilitator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002762A1 (en) * 1997-07-10 1999-01-21 De Nora S.P.A. Method for applying a coating to a metal substrate or repairing a coating applied to the same
US6287631B1 (en) 1997-07-10 2001-09-11 De Nora S.P.A. Method for applying a coating to a flange of an electrochemical cell or repairing a coating applied to the same
US7198446B2 (en) 2001-09-28 2007-04-03 Max Kabushiki Kaisha Connected fastener having separation facilitator

Similar Documents

Publication Publication Date Title
US3850764A (en) Method of forming a solid tantalum capacitor
US6214271B1 (en) Thermal treatment process for valve metal nitride electrolytic capacitors having manganese oxide cathodes
JPH04119615A (en) Manufacture of solid electrolytic capacitor
JP2000003835A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
US3481029A (en) Solid electrolyte capacitor process
JPH03178114A (en) Manufacture of solid electrolytic capacitor
JPH06124857A (en) Manufacture of solid electrolytic capacitor
JPH04119616A (en) Manufacture of solid electrolytic capacitor
JP3157719B2 (en) Method for manufacturing solid electrolytic capacitor
JP4088849B2 (en) Manufacturing method of solid electrolytic capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JP3158448B2 (en) Method for manufacturing solid electrolytic capacitor
JPS59124119A (en) Method of producing solid electrolytic condenser
JPH0722078B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0638385B2 (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP3082424B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6386509A (en) Tantalum porous sintered unit
JP2773499B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPS5952829A (en) Method of producing solid electrolyte condenser
JPS6015141B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6331105A (en) Manufacture of solid electrolytic capacitor
DE1216434B (en) Method for manufacturing an electrolytic capacitor with solid electrolyte
JPS62124728A (en) Manufacture of solid electrolyte capacitor
JPS5915373B2 (en) Manufacturing method of solid electrolytic capacitor
JPH03119713A (en) Manufacture of solid electrolytic capacitor