JP3157719B2 - Method for manufacturing solid electrolytic capacitor - Google Patents
Method for manufacturing solid electrolytic capacitorInfo
- Publication number
- JP3157719B2 JP3157719B2 JP22224096A JP22224096A JP3157719B2 JP 3157719 B2 JP3157719 B2 JP 3157719B2 JP 22224096 A JP22224096 A JP 22224096A JP 22224096 A JP22224096 A JP 22224096A JP 3157719 B2 JP3157719 B2 JP 3157719B2
- Authority
- JP
- Japan
- Prior art keywords
- manganese
- solid electrolytic
- forming
- electrolytic capacitor
- thermal decomposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体電解コンデン
サの製造方法に関し、特に、半導体層にマンガン酸化物
を用いる固体電解コンデンサの製造方法に関する。The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor using manganese oxide for a semiconductor layer.
【0002】[0002]
【従来の技術】この種の固体電解コンデンサは、通常、
タンタル,アルミニウム,チタンなどのような所謂弁作
用金属の多孔質焼結体に、陽極酸化により化成皮膜を生
成させる工程と、その化成皮膜上に、二酸化マンガンよ
りなる半導体層を形成する工程とを含む製造工程による
製造される。2. Description of the Related Art This type of solid electrolytic capacitor is usually
A step of forming a chemical conversion film on a porous sintered body of a so-called valve action metal such as tantalum, aluminum, titanium or the like by anodic oxidation, and a step of forming a semiconductor layer made of manganese dioxide on the chemical conversion film. It is manufactured by a manufacturing process including:
【0003】上記の工程の中、二酸化マンガン層形成工
程では、化成皮膜形成済みの焼結体に硝酸マンガン水溶
液を含浸、付着させて熱分解させる(焼成する)操作を
数回乃至十数回繰り返して行う。このようにして得られ
た固体電解コンデンサでは、従来、コンデンサとして完
成後の静電容量値が、製造工程中の陽極酸化後に電解液
中で測定した静電容量値よりも小さく、又、高湿の雰囲
気中では静電容量値が経時的に増大して行く現象が見ら
れる。これは、二酸化マンガン層が化成皮膜表面に均一
に密着し難いことによるものである。すなわち、化成皮
膜には、一部二酸化マンガン層に覆われない部分が生じ
る。その化成皮膜の二酸化マンガン層に覆われていない
部分に水分が付着すると、その水分が電解質として働い
て、静電容量値が増大するのである。In the manganese dioxide layer forming step, the operation of impregnating and adhering a manganese nitrate aqueous solution to a sintered body having a chemical conversion film formed thereon and thermally decomposing (firing) it is repeated several times to several tens of times. Do it. In the solid electrolytic capacitor thus obtained, conventionally, the capacitance value after completion as a capacitor is smaller than the capacitance value measured in the electrolytic solution after anodic oxidation during the manufacturing process, In the atmosphere, the phenomenon that the capacitance value increases with time is observed. This is because the manganese dioxide layer is difficult to uniformly adhere to the surface of the chemical conversion film. That is, a part of the chemical conversion film is not covered with the manganese dioxide layer. If moisture adheres to a portion of the chemical conversion film that is not covered by the manganese dioxide layer, the moisture acts as an electrolyte and the capacitance value increases.
【0004】二酸化マンガン層の被覆率は、硝酸マンガ
ン水溶液の熱分解の反応速度に関連し、反応速度が速い
程、被覆率は良好である。これは、反応速度が遅いと、
二酸化マンガン層が形成される前に、焼結体内部のポテ
ンシャルの低い部分に硝酸マンガン水溶液が凝集するか
らである。この特性を利用すると、硝酸マンガンの焼成
温度を高めることで、反応速度を増進し被覆率を向上さ
せることができる。しかし、この方法による場合、コン
デンサとしての漏れ電流の増大や信頼性の低下などの副
作用が伴う。焼成温度が高くなるほど、化成皮膜の熱的
劣化が著しくなるからである。[0004] The coverage of the manganese dioxide layer is related to the reaction rate of the thermal decomposition of the aqueous solution of manganese nitrate. The faster the reaction rate, the better the coverage. This is because if the reaction speed is slow,
This is because, before the manganese dioxide layer is formed, the manganese nitrate aqueous solution is aggregated in a low potential portion inside the sintered body. By utilizing this property, the reaction rate can be increased and the coverage can be improved by increasing the sintering temperature of manganese nitrate. However, this method has side effects such as an increase in leakage current as a capacitor and a decrease in reliability. This is because the higher the firing temperature, the more the thermal deterioration of the chemical conversion film becomes significant.
【0005】これに対し、硝酸マンガンの焼成温度を高
めずに二酸化マンガン層の被覆率を改善することを目的
とした発明が、特開昭63ー31106号公報に開示さ
れている。上記公報記載の発明では、二酸化マンガン層
形成の母液として用いる硝酸マンガン水溶液に、アンモ
ニウム塩,カルボニル化合物,アミド化合物など、硝酸
マンガン水溶液に可溶な物質を添加して熱分解反応を促
進させることで、二酸化マンガン層の被覆率を向上させ
ている。On the other hand, JP-A-63-31106 discloses an invention aimed at improving the coverage of a manganese dioxide layer without increasing the manganese nitrate firing temperature. In the invention described in the above publication, a substance soluble in an aqueous manganese nitrate solution, such as an ammonium salt, a carbonyl compound, or an amide compound, is added to an aqueous manganese nitrate solution used as a mother liquor for forming a manganese dioxide layer, thereby promoting a thermal decomposition reaction. , The coverage of the manganese dioxide layer is improved.
【0006】[0006]
【発明が解決しようとする課題】上述したように、二酸
化マンガン層形成の母液である硝酸マンガン水溶液にア
ンモニウム塩などの熱分解促進剤を添加することによ
り、焼成温度を高めることなく二酸化マンガン層の被覆
率を向上させることができる。As described above, by adding a thermal decomposition accelerator such as an ammonium salt to a manganese nitrate aqueous solution which is a mother liquor for forming a manganese dioxide layer, the manganese dioxide layer can be formed without increasing the firing temperature. The coverage can be improved.
【0007】しかし、この場合、効果を増大させるため
に熱分解促進剤の添加量を増すと、漏れ電流が増大する
という悪影響が生じる。これは、硝酸マンガン水溶液中
のアンモニウム塩の熱分解温度が硝酸マンガン水溶液の
熱分解温度より高いためであって、添加量が多いと熱分
解完了後にアンモニウム塩が残留し、その残留物により
漏れ電流が増大するからである。However, in this case, if the amount of the thermal decomposition accelerator is increased to increase the effect, the adverse effect of increasing the leakage current occurs. This is because the thermal decomposition temperature of the ammonium salt in the aqueous solution of manganese nitrate is higher than the thermal decomposition temperature of the aqueous solution of manganese nitrate.If the amount of addition is large, the ammonium salt remains after the completion of thermal decomposition, and the residue causes leakage current. Is increased.
【0008】従って本発明は、半導体層に二酸化マンガ
ンを用いる固体電解コンデンサにおいて、焼成温度を高
めることなく、二酸化マンガン層の被覆率を向上させる
ことによって、外部からの水分による静電容量値の経時
変化がなく、しかも硝酸マンガン層の形成に伴う漏れ電
流増大のない、信頼性に優れた固体電解コンデンサを提
供することを目的とするものである。Accordingly, the present invention provides a solid electrolytic capacitor using manganese dioxide for the semiconductor layer, by increasing the coverage of the manganese dioxide layer without increasing the firing temperature, thereby allowing the capacitance value due to external moisture to increase over time. It is an object of the present invention to provide a highly reliable solid electrolytic capacitor having no change and no increase in leakage current due to the formation of a manganese nitrate layer.
【0009】[0009]
【課題を解決するための手段】本発明の固体電解コンデ
ンサの製造方法は、弁作用金属の多孔質焼結体に陽極酸
化皮膜を生成させる工程と、その陽極酸化皮膜上に硝酸
マンガン水溶液の熱分解によりマンガン酸化物層を形成
する工程とを含む固体電解コンデンサの製造方法におい
て、前記マンガン酸化物層の形成工程で、硝酸マンガン
水溶液に予めマンニットを添加した液を母液として用い
ることを特徴とする。According to the present invention, there is provided a method for manufacturing a solid electrolytic capacitor, comprising the steps of forming an anodic oxide film on a porous sintered body of a valve action metal, and forming a manganese nitrate aqueous solution on the anodic oxide film. Forming a manganese oxide layer by decomposition, characterized in that in the step of forming the manganese oxide layer, a liquid obtained by adding mannite to a manganese nitrate aqueous solution in advance is used as a mother liquor. I do.
【0010】硝酸マンガン水溶液への添加物としては、
マンニットに替えて、ソルビットを用いることができ
る。As an additive to the manganese nitrate aqueous solution ,
Sorbit can be used instead of mannite.
【0011】本発明においては、二酸化マンガン層形成
の母液である硝酸マンガン水溶液に、マンニット又はソ
ルビットを添加し、その酸化反応熱を利用して、硝酸マ
ンガンの熱分解反応を増速させる。マンニットやソルビ
ットは、熱分解温度が硝酸マンガンの熱分解温度より低
く、又、固体電解コンデンサの製造において、硝酸マン
ガンの熱分解に一般的に用いられる250℃という温度
以上では、完全に熱分解し残留物が残らない。しかも、
取扱いが安全で環境保全性にも優れている。In the present invention, mannite or sodium manganese is added to a manganese nitrate aqueous solution which is a mother liquor for forming a manganese dioxide layer.
Rubit is added and the heat of the oxidation reaction is used to accelerate the thermal decomposition reaction of manganese nitrate. Mannit and sorbie
If the thermal decomposition temperature is lower than the thermal decomposition temperature of manganese nitrate, and if it is higher than 250 ° C, which is generally used for thermal decomposition of manganese nitrate in the production of solid electrolytic capacitors, it will completely Nothing remains. Moreover,
Handling is safe and excellent in environmental preservation.
【0012】[0012]
【発明の実施の形態】次に、本発明の実施の形態につい
て、実施例を用いて説明する。Next, embodiments of the present invention will be described with reference to examples.
【0013】〔実施例1〕 60Vで化成した定格16Vー220μF用のタンタル
焼結ペレット(粉末倍率:40,000CV/g)を、
硝酸マンガン水溶液にマンニットを3%添加した水溶液
(以下、液種Aと記す)に含浸させた。又、比較のため
に、硝酸マンガン水溶液のみの溶液(以下、液種Bと記
す)に含浸させた。これらを引き上げ、表1に示す2種
類の温度条件で、10分間熱分解した。この含浸ー熱分
解の操作を、適宜再化成を行いながら、8回実施した。
尚、熱分解には、熱風循環式熱分解装置を用いた。[Example 1] Tantalum sintered pellets (powder magnification: 40,000 CV / g) rated at 16 V and 220 µF, formed at 60 V,
An aqueous solution (hereinafter referred to as liquid type A) obtained by adding 3% of mannite to an aqueous manganese nitrate solution was impregnated. For comparison, a solution containing only a manganese nitrate aqueous solution (hereinafter referred to as liquid type B) was impregnated. These were pulled up and pyrolyzed under the two temperature conditions shown in Table 1 for 10 minutes. This operation of impregnation and thermal decomposition was carried out eight times while appropriately performing re-chemical formation.
In addition, a hot-air circulation type pyrolysis apparatus was used for the pyrolysis.
【0014】次いで、二酸化マンガン層上にカーボン
層,銀層を順次形成して、実施例1,比較例1,比較例
2の3水準の固体電解コンデンサを完成し、各水準のコ
ンデンサについて、二酸化マンガン層の被覆率、熱分解
反応時間、コンデンサの漏れ電流を比較した。その結果
を表1に示す。Next, a carbon layer and a silver layer are sequentially formed on the manganese dioxide layer to complete three levels of solid electrolytic capacitors of Example 1, Comparative Example 1, and Comparative Example 2. The manganese layer coverage, pyrolysis reaction time, and capacitor leakage current were compared. Table 1 shows the results.
【0015】硝酸マンガン水溶液を加熱し、熱分解反応
をさせる場合、下記の反応が起るものと考えられてい
る。 Mn(NO3 )2 ・nH2 O→Mn(NO3 )2 +nH2 O Mn(NO3 )2 →MnO2 +2NOx 上記の過程により硝酸マンガン水溶液から熱分解反応に
より二酸化マンガンが得られるまでの反応時間を、示差
熱分析から測定した。When a manganese nitrate aqueous solution is heated to cause a thermal decomposition reaction, it is considered that the following reaction occurs. Mn (NO 3) 2 .nH 2 O → Mn (NO 3 ) 2 + nH 2 O Mn (NO 3) 2 → MnO 2 + 2NO x Reaction time until manganese dioxide is obtained by thermal decomposition reaction from manganese nitrate aqueous solution by the above process Was determined from differential thermal analysis.
【0016】[0016]
【表1】 [Table 1]
【0017】表1を参照して、硝酸マンガン水溶液にマ
ンニットを3%添加した水溶液(液種A)を用いた実施
例1では、200℃という低温の焼成温度で、98%と
いう高い被覆率が得られた。このとき漏れ電流は、1.
5μAという小さい値であった。これは、表1に示すよ
うに、マンニットを添加したことにより反応時間が短く
なったことの効果であると考えられる。一方、従来のよ
うな硝酸マンガン水溶液のみ(液種B)の水溶液を用い
た比較例1では、熱分解の反応速度は約2分の1程度と
遅く、反応時間をマンニットを添加した場合と同等の約
120秒にするには、比較例2のように、焼成温度を3
00℃に上昇させなければならない。しかしながらその
ような比較例2では、マンニットを添加した実施例1に
比べ、二酸化マンガンの被覆率は同等であるものの、漏
れ電流が約3.5倍に増大してしまう。Referring to Table 1, in Example 1 using an aqueous solution (liquid type A) obtained by adding 3% of mannite to an aqueous manganese nitrate solution, a high coverage of 98% at a low firing temperature of 200 ° C. was gotten. At this time, the leakage current is 1.
The value was as small as 5 μA. This is considered to be the effect of shortening the reaction time by adding mannite as shown in Table 1. On the other hand, in Comparative Example 1 in which a conventional aqueous solution of only manganese nitrate aqueous solution (liquid type B) was used, the reaction rate of thermal decomposition was as low as about half, and the reaction time was longer than that in the case of adding mannite. In order to make the same approximately 120 seconds, as in Comparative Example 2, the firing temperature is set to 3 seconds.
It must be raised to 00 ° C. However, in such Comparative Example 2, although the manganese dioxide coverage is the same as in Example 1 in which mannite is added, the leakage current is increased by about 3.5 times.
【0018】〔実施例2〕 次に、硝酸マンガン水溶液に対する添加剤を、マンニッ
トからソルビットに変え、実施例1におけると同様の条
件で、実施例2,比較例3,比較例4の3水準の固体電
解コンデンサを作製した。各水準のコンデンサを、実施
例1におけると同様の方法で比較した結果を、表2に示
す。Example 2 Next, an additive to an aqueous solution of manganese nitrate was added to
The solid electrolytic capacitors of Example 2, Comparative Example 3, and Comparative Example 4 were produced under the same conditions as in Example 1 except that the solid electrolytic capacitor was changed from solvit to solbit . Table 2 shows the results of comparing the capacitors of each level in the same manner as in Example 1.
【0019】[0019]
【表2】 [Table 2]
【0020】表2を参照して、この場合も、実施例2で
は、焼成温度が200℃という低温で反応時間は120
秒と短くて済み、漏れ電流は1.3μAと良好な結果が
得られている。一方、比較例3,比較例4では、反応時
間を短くするには焼成温度を300℃迄上げなけれなら
ず、漏れ電流が増大している。Referring to Table 2, in this case also, in Example 2, the firing temperature was as low as 200 ° C. and the reaction time was 120 ° C.
Seconds, and the leakage current is as good as 1.3 μA. On the other hand, in Comparative Examples 3 and 4, the firing temperature had to be increased to 300 ° C. in order to shorten the reaction time, and the leakage current was increased.
【0021】これ迄説明した実施例1,実施例2は、マ
ンニット或いはソルビットを硝酸マンガン水溶液に添加
した例であるが、本発明に用いる添加物はこれに限られ
るものではない。酸化反応熱を発することによって硝酸
マンガンの熱分解反応速度を増速させる物質で、且つ、
添加剤それ自身の酸化反応温度が、母液である二酸化マ
ンガン水溶液の熱分解温度以下であるものであれば、ど
のようなものでも実施例と同様の効果を示す。しかし、
二酸化マンガン水溶液の熱分解に一般的に用いられる2
50℃程度以上の温度で完全に分解し残留物が残らない
ものであること及び、取扱いの安全性に優れ環境保全性
にも優れているものであるという点で、添加物としてマ
ンニット又はソルビットが好適であろう。The first and second embodiments described above are different from the first embodiment.
This is an example of adding nit or sorbite to an aqueous solution of manganese nitrate, but the additives used in the present invention are not limited to this. A substance that increases the rate of thermal decomposition of manganese nitrate by generating heat of oxidation reaction, and
As long as the oxidation reaction temperature of the additive itself is lower than the thermal decomposition temperature of the aqueous solution of manganese dioxide as the mother liquor, any additive exhibits the same effect as the embodiment. But,
Generally used for thermal decomposition of manganese dioxide aqueous solution 2
As an additive, it decomposes completely at a temperature of about 50 ° C. or more, leaving no residue, and is excellent in handling safety and environmental conservation .
Unit or sorbite would be suitable.
【0022】尚、実施例においてはタンタルの多孔質焼
結体を用いたが、他の弁作用金属、例えばアルミニウム
箔などを、他の手段、例えばエッチングなどにより拡面
化した固体電解コンデンサであっても、本発明を適用し
て同様の効果が得られることは、明かであろう。In the embodiment, a porous sintered body of tantalum is used. However, a solid electrolytic capacitor obtained by enlarging another valve metal, for example, aluminum foil, by another means, for example, etching or the like is used. However, it will be apparent that a similar effect can be obtained by applying the present invention.
【0023】[0023]
【発明の効果】以上説明したように、本発明の固体電解
コンデンサの製造方法では、二酸化マンガン層形成の母
液である硝酸マンガン水溶液に、マンニット或いはソル
ビットを添加し、その酸化反応熱を利用して硝酸マンガ
ンの熱分解反応を促進させる。As described above, according to the method for manufacturing a solid electrolytic capacitor of the present invention, mannite or sol is added to a manganese nitrate aqueous solution which is a mother liquor for forming a manganese dioxide layer.
A bit is added, and the thermal decomposition reaction of manganese nitrate is promoted using the heat of the oxidation reaction.
【0024】これにより本発明によれば、二酸化マンガ
ン層形成の反応時間が短くなり、二酸化マンガン層の陽
極酸化皮膜に対する被覆率が向上するので、高湿雰囲気
中での静電容量値の経時的増大がなくなり、信頼性が高
まる。Thus, according to the present invention, the reaction time for forming the manganese dioxide layer is shortened, and the coverage of the manganese dioxide layer on the anodic oxide film is improved. There is no increase and reliability is increased.
【0025】又、硝酸マンガンの焼成温度を上げなくて
も反応時間を短縮できるので、加熱に伴う陽極酸化皮膜
の劣化が無くなり、漏れ電流特性が改善される。Further, since the reaction time can be shortened without raising the sintering temperature of manganese nitrate, deterioration of the anodic oxide film due to heating is eliminated, and the leakage current characteristics are improved.
【0026】マンニットやソルビットは、取扱いが安全
で環境保全性にも優れており、本発明の工業的効果は大
である。 Mannit and sorbite are safe to handle and excellent in environmental preservation, and the industrial effects of the present invention are great.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 9/032 H01G 9/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01G 9/032 H01G 9/00
Claims (3)
膜を生成させる工程と、その陽極酸化皮膜上に硝酸マン
ガン水溶液の熱分解によりマンガン酸化物層を形成する
工程とを含む固体電解コンデンサの製造方法において、 前記マンガン酸化物層の形成工程で、硝酸マンガン水溶
液に予めマンニットを添加した液を母液として用いるこ
とを特徴とする固体電解コンデンサの製造方法。1. A solid electrolytic method comprising: a step of forming an anodic oxide film on a porous sintered body of a valve metal; and a step of forming a manganese oxide layer on the anodic oxide film by thermal decomposition of a manganese nitrate aqueous solution. A method for manufacturing a solid electrolytic capacitor, characterized in that in the step of forming a manganese oxide layer, a liquid obtained by adding mannite to an aqueous manganese nitrate solution in advance is used as a mother liquor.
膜を生成させる工程と、その陽極酸化皮膜上に硝酸マン
ガン水溶液の熱分解によりマンガン酸化物層を形成する
工程とを含む固体電解コンデンサの製造方法において、前記マンガン酸化物層の形成工程で、硝酸マンガン水溶
液に予めソルビットを添加した液を母液として 用いるこ
とを特徴とする固体電解コンデンサの製造方法。2. A porous sintered body of a valve metal having anodized skin
The process of forming a film, and man nitrate on the anodic oxide film
Form manganese oxide layer by thermal decomposition of gun solution
And the step of forming a manganese oxide layer,
A method for producing a solid electrolytic capacitor, comprising using a liquid obtained by adding sorbit to a liquid in advance as a mother liquor .
ンガン水溶液に対する添加率を3wt.%にすることを
特徴とする、請求項1又は請求項2に記載の固体電解コ
ンデンサの製造方法。 3. Mannit or sorbit nitrate.
3 wt. %
The solid electrolytic capacitor according to claim 1 or 2, characterized in that:
Method of manufacturing capacitor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22224096A JP3157719B2 (en) | 1996-08-23 | 1996-08-23 | Method for manufacturing solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22224096A JP3157719B2 (en) | 1996-08-23 | 1996-08-23 | Method for manufacturing solid electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1064763A JPH1064763A (en) | 1998-03-06 |
JP3157719B2 true JP3157719B2 (en) | 2001-04-16 |
Family
ID=16779308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22224096A Expired - Fee Related JP3157719B2 (en) | 1996-08-23 | 1996-08-23 | Method for manufacturing solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3157719B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7005445B2 (en) | 2001-10-22 | 2006-02-28 | The Research Foundation Of State University Of New York | Protein kinase and phosphatase inhibitors and methods for designing them |
US7106575B2 (en) * | 2004-08-26 | 2006-09-12 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor |
US8837114B2 (en) | 2010-03-31 | 2014-09-16 | Nippon Chemi-Con Corporation | Solid electrolytic capacitor |
-
1996
- 1996-08-23 JP JP22224096A patent/JP3157719B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1064763A (en) | 1998-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1054872A (en) | Method of producing manganese oxide solid electrolyte capacitor | |
JP3157719B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3748851B2 (en) | Manufacturing method of capacitor element used for solid electrolytic capacitor | |
WO2001093288A2 (en) | Thermal treatment process for valve metal nitride electrolytic capacitors having manganese oxide cathodes | |
US3301704A (en) | Capacitor and process therefor | |
JPH10135080A (en) | Solid-state electrolytic capacitor and its manufacture | |
JP2000003835A (en) | Manufacture of electrode foil for aluminum electrolytic capacitor | |
US3467895A (en) | Manganous nitrate-catalytic agent solution for solid electrolyte capacitor | |
JP2833383B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3082424B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH0722078B2 (en) | Manufacturing method of solid electrolytic capacitor | |
US3345208A (en) | Fabrication of electrolytic capacitors | |
JPH0722080B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JPS6015141B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP3750476B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2946591B2 (en) | Method for manufacturing solid electrolytic capacitor | |
US3217381A (en) | Method of capacitor manufacture | |
JPS6257249B2 (en) | ||
JPH04324612A (en) | Manufacture of organic semiconductor solid electrolytic capacitor | |
JPS581537B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP3315714B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH09246107A (en) | Method for manufacturing solid electrolytic capacitor | |
JP2000040642A (en) | Manufacture of solid electrolytic capacitor | |
JP2891506B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3150464B2 (en) | Manufacturing method of solid electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010123 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090209 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090209 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130209 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |