JPS6016093B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor

Info

Publication number
JPS6016093B2
JPS6016093B2 JP13456377A JP13456377A JPS6016093B2 JP S6016093 B2 JPS6016093 B2 JP S6016093B2 JP 13456377 A JP13456377 A JP 13456377A JP 13456377 A JP13456377 A JP 13456377A JP S6016093 B2 JPS6016093 B2 JP S6016093B2
Authority
JP
Japan
Prior art keywords
manufacturing
manganese nitrate
solid electrolytic
electrolytic capacitor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13456377A
Other languages
Japanese (ja)
Other versions
JPS5468967A (en
Inventor
盛児 望月
義弘 今関
勝利 浦木
憲太郎 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13456377A priority Critical patent/JPS6016093B2/en
Publication of JPS5468967A publication Critical patent/JPS5468967A/en
Publication of JPS6016093B2 publication Critical patent/JPS6016093B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は固体電解コンデンサの製造方法に関する、具体
的には硝酸マンガンを浸潰した素子を熱分解処理して半
導体層を完成させる際の熱分解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolytic capacitor, and specifically to a method for thermally decomposing an element soaked with manganese nitrate to complete a semiconductor layer.

固体電解コンデンサの製造過程では、アルミ、タンタル
、ニオブ、ジルコン、チタン等の弁作用を有する金属を
陽極体とし、これを適当な金属の導線の陽極リード‘こ
接合し、このリードを取付バーに接合することにより多
数の陽極体群をバーに損持させ、この状態で各陽極体の
陽極リードとの接合部に短絡障害を防止する保護塗装を
施こし、それから陽極体をエッチング等により拡面処理
し、次いで陽極酸化処理により陽極体に酸化層を形成し
、これに硝酸マンガン液への浸債と熱分解処理とによっ
て二熱化マンガンの半導体層を形成し、それからカーボ
ン懸濁液への浸債と熱処理によりこれにカーボン層を形
成し、次いでこれに銀等の陰極層を形成してコンデンサ
素子に仕上げ、この素子に陰極リードを半田付けしてか
らモールド樹脂等の外装が施こされる。
In the manufacturing process of solid electrolytic capacitors, the anode body is made of a metal with valve action such as aluminum, tantalum, niobium, zircon, titanium, etc., this is joined to the anode lead of a suitable metal conductor, and this lead is attached to the mounting bar. By joining, a large number of anode bodies are supported by the bar, and in this state, a protective coating is applied to the joint of each anode body with the anode lead to prevent short circuit failure, and then the surface of the anode body is expanded by etching, etc. Then, an oxide layer is formed on the anode body by anodization treatment, a dithermal manganese semiconductor layer is formed on this by immersion in a manganese nitrate solution and a thermal decomposition treatment, and then a dithermal manganese semiconductor layer is formed on the anode body by anodization treatment. A carbon layer is formed on this by bonding and heat treatment, and then a cathode layer of silver or the like is formed on this to complete the capacitor element. After the cathode lead is soldered to this element, an exterior such as molded resin is applied. Ru.

このような製造方法において、陽極体の酸化層に硝酸マ
ンガン液を浸潰して、これを熱分解するのに、従来は加
熱炉の空気や窒素雰囲気による熱鱒射、熱伝導の方法を
採用している。
In this manufacturing method, the oxidized layer of the anode body is impregnated with a manganese nitrate solution and then thermally decomposed, conventionally using heat radiation or heat conduction using the air or nitrogen atmosphere of a heating furnace. ing.

量産の場合には、供給熱量を大きくするために、加熱雰
囲気の強制循環方式が探られている。この方式では加熱
雰囲気の温度コントロールが難しいので炉内の全域で均
一な温度分布が得られず、従来炉内の素子群の加熱温度
、熱供給速度にバラッキが生じ、このことがコンデンサ
の特性のバラツキの原因になつている。本発明の目的は
、上述のようなコンデンサ特性のバラッキを抑制し得る
有利な熱分解法を実現することにある。本発明によれば
、第1図に示すように、半田俗1に、硝酸マンガン液に
浸潰した直後のコンデンサ素子2を素子本体の底面にお
いて接触させる。素子2には溶融半田から熱が伝導され
、硝酸マンガンが二酸化マンガンに熱分解される。本発
明方法の有利な点は、素子2への熱供給速度が従釆に較
べ非常に大きく、しかも多くの素子を同時に半田格に並
列的に接触させることができることから全ての素子の加
熱温度が均一に制御されることである。加熱温度が均一
であることは、従来方法に較べ優れた利益であり、これ
によって各素子のコンデンサ特性のバラツキが抑制され
る。又、本発明によれば熱供給速度が大きいことから、
次のような利益が得られる。一般に素子の陽極酸化皮膜
に硝酸マンガン液が含浸されると硝酸マンガンによって
酸化皮膜が侵蝕される。
In the case of mass production, methods of forced circulation of the heating atmosphere are being explored in order to increase the amount of heat supplied. With this method, it is difficult to control the temperature of the heating atmosphere, making it impossible to obtain a uniform temperature distribution throughout the furnace. Conventionally, the heating temperature and heat supply rate of the elements in the furnace vary, and this causes the characteristics of the capacitor to vary. This is causing variation. An object of the present invention is to realize an advantageous thermal decomposition method capable of suppressing variations in capacitor characteristics as described above. According to the present invention, as shown in FIG. 1, a capacitor element 2 immediately after being immersed in a manganese nitrate solution is brought into contact with a solder plate 1 at the bottom of the element body. Heat is conducted from the molten solder to the element 2, and manganese nitrate is thermally decomposed into manganese dioxide. The advantage of the method of the present invention is that the heat supply rate to the elements 2 is much higher than that of the secondary method, and since many elements can be brought into contact with the solder plate at the same time in parallel, the heating temperature of all the elements can be reduced. It should be uniformly controlled. Uniform heating temperature is an advantage over conventional methods, and it suppresses variations in capacitor characteristics of each element. Furthermore, according to the present invention, since the heat supply rate is high,
The following benefits can be obtained: Generally, when the anodized film of an element is impregnated with a manganese nitrate solution, the oxide film is corroded by the manganese nitrate.

この侵蝕は素子を硝酸マンガン液に浸潰して引上げてか
らの時間の経過に従って大きくなる。このような侵蝕で
皮膜が化学劣化すると、コンデンサの漏れ電流が大きく
なる。従って硝酸マンガンに素子を浸潰した直後に硝酸
マンガンが熱処理により、二酸化マンガンに熱分解して
しまい、前記侵蝕作用を奏するに至らないことがコンデ
ンサ製造にとって望まれる。従釆の熱処理方法によれば
加熱雰囲気からの熱が素子に与えられるので、熱供給速
度が4・さく、従って二酸化マンガンに熱分解する速度
も小さいので、硝酸マンガンによる酸化皮膜の侵蝕を充
分には抑制できない。この点、本発明によれば、半田格
から素子に直接熱が伝導されるので、熱供給速度が従来
方法に較べ格段に大きく、従って硝酸マンガンは侵蝕作
用を奏する間もなく熱分解されてしまうので、酸化皮膜
の化学劣化による漏れ電流の発生は大きく抑制される。
ここで、本発明者の実験によれば、漏れ電流を3仏A以
下(JIS規格C5142を援用)にするための半田格
の温度と格への素子の接触時間の好ましい関係は第2図
のグラフに示す通りであることが確認された。
This corrosion increases as time passes after the element is immersed in the manganese nitrate solution and pulled out. When the film chemically deteriorates due to such erosion, the leakage current of the capacitor increases. Therefore, it is desirable for capacitor manufacturing that immediately after the element is immersed in manganese nitrate, the manganese nitrate is thermally decomposed into manganese dioxide by heat treatment, and does not exhibit the above-mentioned corrosive effect. According to the secondary heat treatment method, heat from the heating atmosphere is applied to the element, so the heat supply rate is 4.5 times lower, and the rate of thermal decomposition into manganese dioxide is also lower, so the erosion of the oxide film by manganese nitrate can be sufficiently prevented. cannot be suppressed. In this regard, according to the present invention, since heat is directly conducted from the solder plate to the element, the heat supply rate is much higher than that of the conventional method, and therefore, the manganese nitrate is thermally decomposed before it can exert its corrosive effect. The occurrence of leakage current due to chemical deterioration of the oxide film is greatly suppressed.
Here, according to the inventor's experiments, the preferable relationship between the temperature of the solder grate and the contact time of the element to the grate in order to reduce the leakage current to 3 A or less (using JIS standard C5142) is as shown in Fig. 2. It was confirmed that the results were as shown in the graph.

第2図は漏れ電流が3ムAになるまでの、浴温度に対す
る接触時間をプロットしたものである。熱分解温度は減
圧下で多少低温へシフトするが「大気圧下で硝酸マンガ
ンは20000で熱分解して半導体層を形成する。
FIG. 2 is a plot of the contact time versus bath temperature until the leakage current reaches 3 μA. Although the thermal decomposition temperature shifts to a slightly lower temperature under reduced pressure, ``Under atmospheric pressure, manganese nitrate thermally decomposes at 20,000 ℃ to form a semiconductor layer.

図中横軸は浴温度8(℃)を、縦軸は接触時間t(秒)
を表わす。
In the figure, the horizontal axis is the bath temperature 8 (℃), and the vertical axis is the contact time t (seconds).
represents.

図中の斜線領域は、200<0<800を条件とした1
120SI(8−200)tIS6000なる式で表わ
される。ここで左辺の式が6000以下の値になる様に
設定したのは、格温度8Gま800℃が限界であり、こ
の時漏れ電流が3一Aになる接触時間は1脱砂となるた
めである。
The shaded area in the figure is 1 with the condition 200<0<800.
It is expressed by the formula: 120SI(8-200)tIS6000. The reason why the equation on the left side is set to a value of 6000 or less is because the maximum temperature is 8G or 800℃, and the contact time for which the leakage current is 31A is 1 desanding. be.

800こCを限界としたのは、80び0を越えるとコン
デンサ素子2の表面の熱分解により形成されたMh02
が燃え出すためである。
The reason for setting the limit at 800C is that when the temperature exceeds 80C and 0C, Mh02 formed by thermal decomposition on the surface of the capacitor element 2 is generated.
This is because it starts to burn out.

また浴温度は硝酸マンガンの分解温度20000を最低
限度としなければならない。
Furthermore, the bath temperature must be kept at a minimum of 20,000, which is the decomposition temperature of manganese nitrate.

従って、l(8−200)t lが1120以上となる
様に設定した。上記式が6000より大きくなると、熱
により酸化皮膜が劣化し、硝酸マンガンによる劣化とは
別に漏れ電流を発生させる原因となる。
Therefore, l(8-200)tl was set to be 1120 or more. When the above formula is larger than 6000, the oxide film deteriorates due to heat, which causes leakage current to be generated in addition to the deterioration caused by manganese nitrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の素子加熱方法を示す説明図、第2図は
半田俗の温度と素子の浴嬢触時間の好ましい関係を示す
グラフである。 図において、1は溶融半田の俗、2は素子を示す。 葵1図 第2図
FIG. 1 is an explanatory diagram showing the device heating method of the present invention, and FIG. 2 is a graph showing the preferable relationship between the solder temperature and the bath contact time of the device. In the figure, 1 indicates molten solder, and 2 indicates an element. Aoi Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 陽極体の陽極酸化皮膜に硝酸マンガンを含浸させて
熱分解することにより二酸化マンガンの半導体層を形成
する工程を含む固体電解コンデンサの製造方法において
、浴温度θの半田浴にコンデンサ素子の本体を部分的に
t時間だけ下記の条件: 200℃<θ<800℃ 1120≦|(θ−200)t|≦6000で接触さ
せることにより含浸させた硝酸マンガンを熱分解するこ
とを特徴とする固体電解コンデンサの製造方法。
[Scope of Claims] 1. A method for manufacturing a solid electrolytic capacitor including a step of forming a semiconductor layer of manganese dioxide by impregnating an anodized film of an anode body with manganese nitrate and thermally decomposing the film, comprising: a solder bath having a bath temperature θ; The impregnated manganese nitrate is thermally decomposed by partially contacting the main body of the capacitor element for a time t under the following conditions: 200°C<θ<800°C 1120≦|(θ−200)t|≦6000. A method for manufacturing a solid electrolytic capacitor characterized by:
JP13456377A 1977-11-11 1977-11-11 Manufacturing method of solid electrolytic capacitor Expired JPS6016093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13456377A JPS6016093B2 (en) 1977-11-11 1977-11-11 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13456377A JPS6016093B2 (en) 1977-11-11 1977-11-11 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS5468967A JPS5468967A (en) 1979-06-02
JPS6016093B2 true JPS6016093B2 (en) 1985-04-23

Family

ID=15131248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13456377A Expired JPS6016093B2 (en) 1977-11-11 1977-11-11 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6016093B2 (en)

Also Published As

Publication number Publication date
JPS5468967A (en) 1979-06-02

Similar Documents

Publication Publication Date Title
JP3881480B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US4042420A (en) Method of producing manganese oxide solid electrolyte capacitor
US3345543A (en) Solid electrolytic capacitor with anodized aluminum electrode and method of making
US4164455A (en) Process of forming a solid tantalum capacitor
JPS6016093B2 (en) Manufacturing method of solid electrolytic capacitor
JP3748851B2 (en) Manufacturing method of capacitor element used for solid electrolytic capacitor
JPS6036090B2 (en) Manufacturing method of solid electrolytic capacitor
JPS5926590Y2 (en) solid electrolytic capacitor
US3495311A (en) Method of producing electrical capacitors with semiconductor layer
JP3157719B2 (en) Method for manufacturing solid electrolytic capacitor
JPH08296088A (en) Production of electrode foil for aluminum electrolytic capacitor
US3345208A (en) Fabrication of electrolytic capacitors
JPS5835913A (en) Method of producing solid electrolytic condenser
JPS6015141B2 (en) Manufacturing method of solid electrolytic capacitor
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JP3315714B2 (en) Method for manufacturing solid electrolytic capacitor
JP3326196B2 (en) Method for manufacturing solid electrolytic capacitor
KR0151214B1 (en) Plastic method for tantalum electrolytic condenser
JP3150464B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6214674Y2 (en)
JPS59117210A (en) Method of producing solid electrolytic condenser
JPH04177815A (en) Method of manufacturing solid electrolytic capacitor
JPS58174B2 (en) Kotai Denkai Capacitor Noseizouhouhou
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0120526B2 (en)